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NON-LINEAR OPTICS AND SPECTROSCOPY OF ATOMIC AND LASER SYSTEMS 
WITH ELEMENTS OF A CHAOS

The whole class of modern problems of the nonlinear optics and spectroscopy of 
the atomic and laser systems is considered from the point of view of a chaos theory. An 
advanced techniques of using the non-linear analysis methods and chaos theory such as 
the wavelet analysis, multi-fractal formalism, mutual information approach, correlation 
integral analysis, false nearest neighbour algorithm, Lyapunov exponent’s analysis, and 
surrogate data method are used in studying the cited problems.

1. Introduction

As it is well known in the modern quantum 
electronics, photoelectronics etc there are many 
physical systems (multielement semiconductors 
and gas lasers, different radiotechnical devices 
etc), which should  be considered in the first ap-
proximation as set of autogenerators, coupled by 
different way (c.f.[1,2]). The typical schemes of 
different autogenerators (semiconductor quan-
tum generators, coupled by means optical wave-
guide etc) are presented in refs. [1,2].  The key 
aspect of studying the dynamics of these sys-
tems is analysis of the temporal set for charac-
teristic signals. In refs.[1-4] it has been numeri-
cally studied a regular and chaotic dynamics of 
the system of the Van-der-Poll autogenerators 
with account of  finiteness of the signals propa-
gation time between them and also with special 
kind of inter-oscillators interaction forces. Chaos 
theory establishes that apparently complex irreg-
ular behaviour could be the outcome of a simple 
deterministic system with a few dominant non-
linear interdependent variables. The past decade 
has witnessed a large number of studies employ-
ing the ideas gained from the science of chaos to 
characterize, model, and predict the dynamics of 
various systems phenomena (c.f.[1-25]). The out-
comes of such studies are very encouraging, as 
they not only revealed that the dynamics of the 

apparently irregular phenomena could be under-
stood from a chaotic deterministic point of view 
but also reported very good predictions using 
such an approach for different systems. Here we 
consider some problems of the nonlinear optics 
and spectroscopy of the atomic and laser systems 
from the point of view of a chaos theory, namely 
we consider the hydrogen atom and laser with 
absorbing cell. An advanced techniques of using 
the non-linear analysis methods and chaos theory 
such as the wavelet analysis, multi-fractal formal-
ism, mutual information approach, correlation in-
tegral analysis, false nearest neighbour algorithm, 
Lyapunov exponent’s analysis, and surrogate data 
method are applied to these systems.

2. Advanced technique of a chaos theory in 
optics and spectroscopy

In this section we briefly present an ad-
vanced technique of nonlinear analysis meth-
ods and chaos theory following to the Refs. [2-
4,24,25]. Let us consider scalar measurements 
s(n) = s(t0 + nDt) = s(n), where t0 is the start time, 
Dt is the time step, and is n the number of the 
measurements. In a general case, s(n) is any time 
series, particularly the amplitude level of any 
optical or spectroscopic characteristics. Since 
processes resulting in the chaotic behaviour are 
fundamentally multivariate, it is necessary to re-
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construct phase space using as well as possible 
information contained in the s(n). Such a recon-
struction results in a certain set of d-dimensional 
vectors y(n) replacing the scalar measurements. 
Packard et al. [7] introduced the method of using 
time-delay coordinates to reconstruct the phase 
space of an observed dynamical system. The di-
rect use of the lagged variables s(n + t), where 
t is some integer to be determined, results in a 
coordinate system in which the structure of or-
bits in phase space can be captured. Then using 
a collection of time lags to create a vector in d 
dimensions,

          y(n) = [s(n), s(n + t), s(n + 2t), …, 

                           s(n + (d-1)t)],                         (1)

the required coordinates are provided. In a non-
linear system, the s(n + jt) are some unknown 
nonlinear combination of the actual physical vari-
ables that comprise the source of the measure-
ments. The dimension d is called the embedding 
dimension, dE. Example of the Lorenz attractor 
given by Abarbanel et al. [5,6] is a good choice to 
illustrate the efficiency of the method.

According to Mañé [13] and Takens [12],  any 
time lag will be acceptable is not terribly useful 
for extracting physics from data. If t is chosen 
too small, then the coordinates s(n + jt) and 
s(n + (j + 1)t) are so close to each other in numerical 
value that they cannot be distinguished from each 
other. Similarly, if t is too large, then s(n + jt) 
and s(n + (j + 1)t) are completely independent of 
each other in a statistical sense. Also, if t is too 
small or too large, then the correlation dimension 
of attractor can be under- or overestimated 
respectively [8,18]. It is therefore necessary to 
choose some intermediate (and more appropriate) 
position between above cases. First approach is to 
compute the linear autocorrelation function
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lag where CL(d) first passes through zero (see 

[18]). This gives a good hint of choice for t at that 
s(n + jt) and s(n + (j + 1)t) are linearly independent. 
However, a linear independence of two variables 
does not mean that these variables are nonlinearly 
independent since a nonlinear relationship can 
differs from linear one. It is therefore preferably 
to utilize approach with a nonlinear concept of in-
dependence, e.g. the average mutual information. 
Briefly, the concept of mutual information can be 
described as follows. Let there are two systems, A 
and B, with measurements ai and bk. The amount 
one learns in bits about a measurement of ai from 
a measurement of bk is given by the arguments of 
information theory [9] as
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where the probability of observing a out of the set 
of all A is PA(ai), and the probability of finding b 
in a measurement B is PB(bi), and the joint prob-
ability of the measurement of a and b is PAB(ai, bk). 
The mutual information I of two measurements ai 
and bk is symmetric and non-negative, and equals 
to zero if only the systems are independent. The 
average mutual information between any value ai 
from system A and bk from B is the average over 
all possible measurements of IAB(ai, bk),                                                           
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To place this definition to a context of observa-
tions from a certain physical system, let us think 
of the sets of measurements s(n) as the A and of 
the measurements a time lag t later, s(n + t), as 
B set. The average mutual information between 
observations at n and n + t is then
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Now we have to decide what property of I(t) 
we should select, in order to establish which 
among the various values of t we should use in 
making the data vectors y(n). In ref. [11] it has 
been suggested, as a prescription, that it is nec-
essary to choose that t where the first minimum 
of I(t) occurs. On the other hand, the autocorre-
lation coefficient failed to achieve zero, i.e. the 
autocorrelation function analysis not provides us 

AB

AB

AB



53

with any value of t. Such an analysis can be cer-
tainly extended to values exceeding 1000, but it is 
known [15] that an attractor cannot be adequate-
ly reconstructed for very large values of t. The 
mutual information function usually [4] exhibits 
an initial rapid decay (up to a lag time of about 
10) followed more slow decrease before attaining 
near-saturation at the first minimum. 

One could remind that the autocorrelation 
function and average mutual information can be 
considered as analogues of the linear redundancy 
and general redundancy, respectively, which was 
applied in the test for nonlinearity. If a time se-
ries under consideration have an n-dimensional 
Gaussian distribution, these statistics are theoreti-
cally equivalent as it is shown by Paluš (see [15]). 
The general redundancies detect all dependences 
in the time series, while the linear redundancies 
are sensitive only to linear structures. Further, a 
possible nonlinear nature of process resulting in 
the vibrations amplitude level variations can be 
concluded.

The goal of the embedding dimension determi-
nation is to reconstruct a Euclidean space Rd large 
enough so that the set of points dA can be unfolded 
without ambiguity. In accordance with the em-
bedding theorem, the embedding dimension, dE, 
must be greater, or at least equal, than a dimen-
sion of attractor, dA, i.e. dE > dA. In other words, 
we can choose a fortiori large dimension dE, e.g. 
10 or 15, since the previous analysis provides us 
prospects that the dynamics of our system is prob-
ably chaotic. However, two problems arise with 
working in dimensions larger than really required 
by the data and time-delay embedding [5,6,18]. 

First, many of computations for extracting in-
teresting properties from the data require searches 
and other operations in Rd whose computational 
cost rises exponentially with d. Second, but more 
significant from the physical point of view, in the 
presence of noise or other high dimensional con-
tamination of the observations, the extra dimen-
sions are not populated by dynamics, already cap-
tured by a smaller dimension, but entirely by the 
contaminating signal. In too large an embedding 
space one is unnecessarily spending time work-
ing around aspects of a bad representation of the 
observations which are solely filled with noise. It 

is therefore necessary to determine the dimension 
dA.

There are several standard approaches to re-
construct the attractor dimension (see, e.g., 
[5,6,15]), but let us consider in this study two 
methods only. The correlation integral analysis 
is one of the widely used techniques to investi-
gate the signatures of chaos in a time series. The 
analysis uses the correlation integral, C(r), to dis-
tinguish between chaotic and stochastic systems. 
To compute the correlation integral, the algorithm 
of Grassberger and Procaccia [10] is the most 
commonly used approach. According to this al-
gorithm, the correlation integral is 
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where H is the Heaviside step function with 
H(u) = 1 for u > 0 and H(u) = 0 for u £ 0, r is the 
radius of sphere centered on yi or yj, and N is the 
number of data measurements. If the time series 
is characterized by an attractor, then the integral 
C(r) is related to the radius r given by
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where d is correlation exponent that can be de-
termined as the slop of line in the coordinates 
log C(r) versus log r by a least-squares fit of a 
straight line over a certain range of r, called the 
scaling region. If the correlation exponent attains 
saturation with an increase in the embedding di-
mension, then the system is generally considered 
to exhibit chaotic dynamics. The saturation value 
of the correlation exponent is defined as the cor-
relation dimension (d2) of the attractor. The near-
est integer above the saturation value provides the 
minimum or optimum embedding dimension for 
reconstructing the phase-space or the number of 
variables necessary to model the dynamics of the 
system. On the other hand, if the correlation ex-
ponent increases without bound with increase in 
the embedding dimension, the system under in-
vestigation is generally considered stochastic. 

There are certain important limitations in the 
use of the correlation integral analysis in the 
search for chaos. For instance, the selection of 
inappropriate values for the parameters involved 
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in the method may result in an underestimation 
(or overestimation) of the attractor dimension 
[8]. Consequently, finite and low correlation di-
mensions could be observed even for a stochas-
tic process [18]. To verify the results obtained by 
the correlation integral analysis, we use surrogate 
data method.

The method of surrogate data [16] is an ap-
proach that makes use of the substitute data gen-
erated in accordance to the probabilistic structure 
underlying the original data. This means that 
the surrogate data possess some of the proper-
ties, such as the mean, the standard deviation, 
the cumulative distribution function, the power 
spectrum, etc., but are otherwise postulated as 
random, generated according to a specific null 
hypothesis. Here, the null hypothesis consists of a 
candidate linear process, and the goal is to reject 
the hypothesis that the original data have come 
from a linear stochastic process. One reasonable 
statistics suggested by Theiler et al. [16] is ob-
tained as follows.

If we denote Qorig as the statistic computed for 
the original time series and Qsi for the ith surro-
gate series generated under the null hypothesis 
and let ms and ss denote, respectively, the mean 
and standard deviation of the distribution of Qs, 
then the measure of significance S is given by                                                                     

                  
s
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S
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                          (8)

An S value of ~2 cannot be considered very sig-
nificant, whereas an S value of ~10 is highly sig-
nificant [16]. The details on the null hypothesis 
and surrogate data generation are described in 
ref. [18]. To detect nonlinearity in the amplitude 
level data, the one hundred realizations of sur-
rogate data sets were generated according to a 
null hypothesis in accordance to the probabilistic 
structure underlying the original data. The corre-
lation integrals and the correlation exponents, for 
embedding dimension values from 1 to 20, were 
computed for each of the surrogate data sets using 
the Grassberger-Procaccia algorithm as explained 
earlier. 

Often, a significant difference in the estimates 
of the correlation exponents, between the origi-
nal and surrogate data sets, can be observed. In 

the case of the original data, a saturation of the 
correlation exponent is observed after a certain 
embedding dimension value (i.e., 6), whereas the 
correlation exponents computed for the surrogate 
data sets continue increasing with the increasing 
embedding dimension. The high significance val-
ues of the statistic indicate that the null hypothe-
sis (the data arise from a linear stochastic process) 
can be rejected and hence the original data might 
have come from a nonlinear process.

It is worth consider another method for de-
termining dE, namely, a method of false nearest 
neighbours.  In practice, the percentage of false 
nearest neighbours is determined for each dimen-
sion d. A value at which the percentage is almost 
equal to zero can be considered as the embedding 
dimension. In ref. [4] under studying the chaotic 
dynamics of the quantum generat0rs was shown 
that the percentage of false neighbours drops to 
almost zero at 4 or 5, i.e. a four or five-dimen-
sional phase-space is necessary to represent the 
dynamics (or unfold the attractor) of the ampli-
tude level series. From the other hand, the mean 
percentage of false nearest neighbours computed 
for the surrogate data sets decreases steadily but 
at 20 is about 35%. Such a result seems to be in 
close agreement with that was obtained from the 
correlation integral analysis, providing further 
support to the observation made earlier regarding 
the presence of low-dimensional chaotic dynam-
ics in the amplitude level variations.

The Lyapunov exponents are the dynamical 
invariants of the nonlinear system. In a 
general case, the orbits of chaotic attractors 
are unpredictable, but there is the limited 
predictability of chaotic physical system, which 
is defined by the global and local Lyapunov 
exponents. A negative exponent indicates a local 
average rate of contraction while a positive value 
indicates a local average rate of expansion. In 
the chaos theory, the spectrum of Lyapunov 
exponents is considered a measure of the effect 
of perturbing the initial conditions of a dynamical 
system. Note that both positive and negative 
Lyapunov exponents can coexist in a dissipative 
system, which is then chaotic. Since the Lyapunov 
exponents are defined as asymptotic average rates, 
they are independent of the initial conditions, and 
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therefore they do comprise an invariant measure 
of attractor. In fact, if one manages to derive the 
whole spectrum of Lyapunov exponents, other 
invariants of the system, i.e. Kolmogorov entropy 
and attractor’s dimension can be found. The 
Kolmogorov entropy, K, measures the average 
rate at which information about the state is lost 
with time. An estimate of this measure is the sum 
of the positive Lyapunov exponents. The inverse 
of the Kolmogorov entropy is equal to the average 
predictability. The estimate of the dimension of 
the attractor is provided by the Kaplan and Yorke 
conjecture (see [15,18]). There are several ap-
proaches to computing the Lyapunov exponents 
(see, e.g., [5,6,18]). One of them [18] is in com-
puting the whole spectrum and based on the Jac-
obin matrix of the system function [14]. To cal-
culate the spectrum of Lyapunov exponents from 
the amplitude level data, one could determine the 
time delay t and embed the data in the four-di-
mensional space. In this point it is very impor-
tant to determine the Kaplan-Yorke dimension 
and compare it with the correlation dimension, 
defined by the Grassberger-Procaccia algorithm. 
The estimations of the Kolmogorov entropy and 
average predictability can further show a limit, up 
to which the amplitude level data can be on aver-
age predicted. Surely, the important moment is a 
check of the statistical significance of results.  

3. Atomic system in electromagnetic field 
and Laser with absorbing cell: Chaotic dy-
namics

One of actual problem of modern optics and 
spectroscopy of atomic systems is their behaviour 
in an external field. The classical task is study-
ing a dynamics of a hydrogen atom in an exter-
nal microwave field. This problem has been in 
details studied in Refs. [6-8] from the point of 
view of classical mechanics. Here we apply the 
above presented method to it.  As the first exam-
ple of chaotic atomic systems, in figures 1,2 we 
present the characteristic behaviour of the ioni-
zation probability for the hydrogen atom in the 
microwave electromagnetic field and correlation 
dimension results for chaotic dynamics (the re-
lationship between the correlation exponent and 
embedding dimension values).  

1.3680 1.3682 1.3684 1.3686 1.3688 1.3690
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Fig.1. Characteristic behaviour of the ioniza-
tion probability for the hydrogen atom in the 
microwave electromagnetic field [25]
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Fig.2. The relationship between correlation ex-
ponent and embedding dimension values
the hydrogen atom in the microwave electro-
magnetic field)

As it can be seen, the correlation exponent 
value increases with embedding dimension up 
to a certain value, and then saturates beyond that 
value. The saturation of the correlation exponent 
beyond a certain embedding dimension is an in-
dication of the existence of deterministic dynam-
ics. The saturation value of the correlation expo-
nent, i.e. correlation dimension of attractor, for 
the amplitude level series is about 1.8 and occurs 
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at the embedding dimension value of 6.The low, 
non-integer correlation dimension value indicates 
the existence of low-dimensional chaos in the dy-
namics of the hydrogen atom in the microwave 
electromagnetic field . the same picture has been 
found for the vibrations dynamics of the autogen-
erators [4]. The nearest integer above the correla-
tion dimension value can be considered equal to 
the minimum dimension of the phase-space es-
sential to embed the attractor. The value of the 
embedding dimension at which the saturation of 
the correlation dimension occurs is considered to 
provide the upper bound on the dimension of the 
phase-space sufficient to describe the motion of 
the attractor. Furthermore, the dimension of the 
embedding phase-space is equal to the number 
of variables present in the evolution of the sys-
tem dynamics. The results of such studying can 
indicate that to model the dynamics of process re-
sulting in the amplitude level variations the mini-
mum number of variables essential is equal to 4 
and the number of variables sufficient is equal to 
6. Therefore, the amplitude level attractor should 
be embedded at least in a four-dimensional phase-
space. The results can indicate also that the upper 
bound on the dimension of the phase-space suf-
ficient to describe the motion of the attractor, and 
hence the number of variables sufficient to model 
the dynamics of process resulting in the level var-
iations is equal to 6.

We performed a calculation of the energies 
and widths of the resonances in the hydrogen 
atom for the parameters of the external mag-
netic field corresponding to Kleppnera experi-
ments and calculations using the models of the 
IWC and TMM [7,37,52]. The classical dynam-
ics of the system depends on the scaled energy 
: e=Еg-2./3 and is completely chaotic at e>-0.12. 
Detected resonances correspond in the experi-
ments Kleppner etal. (look the review in [24]) are 
related to the already chaotic regime in the dy-
namics of the system. Examined several ranges 
of values   of the magnetic field and, in particular, 
the value of В 6Т. There are analyzed fully con-
vergent series of resonances in the energy ranges: 
[(n-0.5)g, (n-0.3g] for n=1,2,3,4.  Rydberg se-
ries of resonances are converging to the Landau 
ionization limit: Eion(nr) =( nr+1/2) g. At each in-

terval there is studied the distribution of levels 
and widths. For the energy interval between the 
first and second outside ionization (nr=0, only 
one channel is open), the ratio of average width 
to average levels interval is equal [25]: Gav/DEav 
=0.22±0.01 , that is agreed with results, obtained 
on the basis of the complex coordinates method 
(CCM):                                                   Gav/
DEav =0,23±0,01. Respectively, it can be written 
for the n opened channels: Gav/DEav =0,23n (in 
the CCM), Gav/DEav =0,22n (on the operator per-
turbation theory=OPT). To identify the statistical 
properties of the resonance it has been normal-
ized the levels and widths interval with respect to 
the mean. The above determined value Gav/DEav 
=0.22±0.01 is used used to scan the distribution 
of widths. Figure 3  shows the integral distribu-
tion of the energy levels:     N(s)= s

dxxP
0

)(  ,calcu-
lated within the random matrix theory (RMT), ad-
vanced OPT model (look [24,25]). Each system 
in Figure 3 corresponds to a fixed number of open 
channels intervals: a, b, c, d correspond to the 
number of open channels 1,2,3,4. The notations 
are used as follows: dotted line-prediction mod-
els RMT, the line points - CCM model and our 
model [25], solid line - model 2D-OPT. As can be 
seen between the results of calculations within all 
three models have a fairly good agreement.
    

Fig. 3. The integral (cumulative) distribution 
of the energy intervals for the resonances in 
the hydrogen atom in a magnetic field 6Т.

It is important to note that for n=1 all distributions 
are satisfying to the Porter-Thomas distribution: 

],2/exp[)}2/(){( 1)2/(2/
av

nn
avn nP

(9)
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where n-number of open channels, Г(n/2) is the 
gamma function (not to be confused with a width 
Г). The density of states in the middle of the each 
Landau channel is: to our data ~ 33 resonances at 
cm-1, according to the CMM model ~ 40 cm-1, that 
is in good agreement with the experimental value 
of 30 resonances cm-1 . The average width of the 
resonance is, to our data, 0.0055 cm-1, which is 
also consistent with the experiment Kleppner et 
al.: 0.004-0.006 cm-1 , the OPT result: 0.005 cm-1 
[24,25]. In the energy range [25,30 cm-1], the av-
erage width of the resonance in our data is 0,034 
cm-1, which is in agreement with the experimen-
tal value of 0.03 cm-1 and in the evaluation of the 
CCM model 0.04 cm-1 and OPT model: 0,035 cm-

1. From a physical point of view, the presence in 
the spectrum of the hydrogen atom in a magnetic 
field, many resonances with anomalously small 
widths explained quite naturally. Their appear-
ance is obviously not due to some hidden symme-
try or the phenomenon of localization, and is due 
to interference effects and random fluctuations 
inherent in general to all chaotic systems. The 
numerical calculation of the Lyapunov exponents 
for the hydrogen atom in a magnetic field (6Т) 
gives the following results:  l1=0.484; l2 =0.195, 
that confirms the conclusion regarding the chaotic 
behaviour of the system.  

Further we consider a chaotic dynamics of a 
laser system with absorbing cell. It is known that 
for a single-mode laser, described by the equa-
tions of the Lorentz needed to return to the region 
of chaotic generation combination of parameters 
is difficult to achieve. The results of study [23] 
indicate that the laser with a nonlinear absorption 
cell may be more convenient physical system for 
the experimental observation of dynamic chaos.
We consider a theoretical model of a single-mode 
laser resonator in which the reinforcement is 
placed along with a nonlinear absorbing medium. 
Each of the environments consists of identical 
two-level atoms. The gain and absorption lines 
are uniformly broadened and their centers align 
and coincide with one of the frequencies of the 
cavity. Such a model can describe the real system 
of five differential equations [23]:

                                                                       (10)
Here, the index 1 refers to intensify, and the index 

of 2 - to an absorbing medium; e, , , 

 и - the dimensionless variables, e 

- the amplitude of the laser of the field, - po-

larization in the environment, -  the dif-
ference between the populations of the working 
levels;  pk and dk -  respectively the longitudinal 
and transverse relaxation rate, related to the half-

width of the resonator , k=1,2; 

- the difference between the populations 
of the working levels in the absence of generation 

  
-the ratio of the coefficients of saturation of the 

absorbing and amplifying media; 
 is the dimensionless time. According 

to ref. [23], the system (10) is invariant under 

the substitution е→-е, → -
. Attractor of the system can be as 

invariant with respect to this change (let’s call 
this attractor «symmetrical») and non-invariant 
(«asymmetric»). In the latter case certainly, there 
are two attractor into each other after this change. 
In fig. 3 we list  present the results of numerical 
simulation for the system (10) [23]. Strange at-
tractors occur as a result of sequence of bifurca-
tions of solutions (1), the first of which is Hopf 
bifurcation of stationary solutions with zero in-
tensity of the laser field. This bifurcation occurs 

, 

if . According to data [23] 
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and our analysis the Hopf bifurcation occurs at 

moderate values   , if the relative width of the 

absorption line  is quite small, and the rela-

tive width of the gain line  is quite large.  The 
numerical calculation shows that in order to get 
the chaotic lasing it is necessary the following: to 
saturate the absorber should be saturated stronger 

than the amplifier ( ). At low  the limit 
cycles generated from the stationary solutions 
with the zeroth intensity is stable up to very large 
values   of ŋ. . In table 1 we list the numerical pa-
rameters of the chaotic regime for the laser sys-
tem with absorbing

Figure 3. Projections of the phase trajectories 
for different values   of the parameter ŋ.
ŋ: а - 1.7000, б - 1.8200, в - 1.8350, г - 1.8385, 
е - 1.8500, ж - 1.8800, з - 1.9000

cell: l1-l6 are the Lyapunov exponents in descend-
ing order, K - Kolmogorov entropy

Table 1. Parameters of chaotic regimes  in the 
laser system: l1-l6 are the Lyapunov exponents 
in descending order (our results)

                               
Regime 1 2 3

Weak 
chaos

0.175 -0.0001 -0.0003

Strong 
chaos

0.542 0.203 -0.0001

4 5 6
Weak 
chaos

0.244

Strong 
chaos

0.0004 0.067 0.188

The main conclusion of this work is that applica-
tion of the different chaos theory and nonlinear 
analysis methods and algorithms to studying cha-
otic elements in dynamics of the different atomic 
and laser systems is very useful. In particular, their 
using allows to study and confirm an existence of 
chaotic behaviour for the H atom in a microwave 
and magnetic field and laser with absorbing cell. 
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