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STUDYING ENSEMBLES OF INTERVALS OF THE PARKINSONIAN TREMOR AND 
LOCAL POTENTIAL FLUCTUATIONS ON THE BASIS OF THE THEORY OF CHAOS

The work is devoted to the use of methods of chaos theory to characterize 
the nonlinear dynamics of neurophysiological systems and identify the presence 
of chaotic elements. The data of the studying the Parkinsonian tremor interval 
ensembles and the corresponding fluctuations of the local potential are presented.

1. Introduction

The task of studying the dynamics of chaotic 
dynamical systems arises in many areas of 
science and technology. We are talking about a 
class of problems of identifying and estimating 
the parameters of interaction between the sources 
of complex (chaotic) oscillations of the time 
series of experimentally observed values. Such 
problems arise in physics, biology, medicine, 
neuroscience, geophysics, engineering, etc. Many 
studies in the cited and other fields of science and 
technique have appeared, where a chaos theory 
was applied to a great number of dynamical 
systems [1-12]. These studies show that chaos 
theory methodology can be applied and the short-
range forecast by the non-linear prediction method 
can be satisfactory. Time series of the dynamical 
variables are however not always chaotic, and 
chaotic behaviour must be examined for each time 
series. In series of papers it has been developed an 
effective version of using a chaos theory method 
and non-linear prediction approach to studying 
chaotic behaviour of the different dynamical 
systems. In our opinion, using these methods 
has very attractive perspectives in medicine and 

physiology (neuro- physiology). As example, let 
us underline that an ability to provide interaction 
between the different areas of the brain by using 
a multi-channel electroentselophalograms helps 
determine the location of the foci of abnormal 
activity in brain of patients with epilepsy. 
Many diseases of the brain, including epilepsy, 
Parkinson’s disease, are associated with abnormal 
synchronization large groups of neurons in the 
brain. Particular attention is paid to a non-linear 
signals as obvious is a typicality of a chaotic 
behavior of nonlinear systems. 

This paper is devoted to an employing a variety 
of techniques for characterizing dynamics of the 
nonlinear neuro-physiological systems identifying 
the presence of chaotic elements. To analyze 
measured time histories of the neurophysiological 
system responses the phase space of these systems 
was reconstructed by delay embedding. Here we 
also present the numerical results regarding the 
Parkinsonian tremor interval ensembles of a few 
patients and the corresponding fluctuations of the 
local potential. To implement this program, we 
follow the procedure set out in detail in [10-12].
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2. Method: Testing for chaos in time 
        series 

2.1.  Data

Many diseases of the nervous system, including 
epilepsy and Parkinson’s disease associated with 
abnormal synchronization large groups of neu-
rons in the brain. A sign of Parkinson’s disease is 
the synchronization of neurons in the ranks of the 
thalamus and basal ganglia. However, the func-
tional role of synchronization in the generation 
of Parkinsonian tremor (involuntary limb regular 
oscillations with frequencies ranging from 3 to 6 
Hz) remains a matter of debate (see [9]). Standard 
therapy with no effect of medication - it’s a deep 
electrical deep brain stimulation (DEBS) at high 
frequencies (above 100 Hz). Standard DEBS has 
been found empirically, the mechanism of its ef-
fect has not yet been elucidated, and it has restric-
tions, such as those associated with side effects. 
Confirmation that the tremor caused synchronous 
neuronal activity in nuclei of the thalamus and ba-
sal ganglia, would presumably result in a softer 
therapies with fewer side effects. In this connec-
tion of the relevance of the problem of determin-
ing the nature of the links between different areas 
of the brain and the muscles of patients.

The ensembles intervals of spontaneous Par-
kinsonian tremor three patients have been inves-
tigated in ref. [9]. Fluctuations in the limbs were 
presented accelerometer signals recorded at the 
sampling rate of 200 Hz and 1 kHz. Information 
about the activity of the brain was presented re-
cordings of local potentials (LP) of the four deep 
electrodes implanted in the thalamus and basal 
ganglia. The data were obtained at the Depart-
ment of Stereotactic and Functional Neurosur-
gery, University of Cologne and the Institute of 
Neurosciences and Biophysics, Research Center 
Juelich (Germany). Accelerometer signals and 
the LP with one of the electrodes during heavy 
Parkinsonian tremor are shown in Fig. 1 
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Figure 1. Spontaneous interval Parkinsonian 
tremor (total duration 0.1x800) (a, b) and 
the accelerometer signal LP with one of the 
electrodes in arbitrary units (only first 8 s 
shown);

According to [9], the main conclusion is as 
the tests also showed that linear techniques do 
not reveal the activity of the thalamus and basal 
ganglia on the limb. Besides, it has been  found 
that there are the fluctuations in the accelerometer 
signal, which correspond to a distinct peak in the 
power spectrum at a frequency of 5 Hz. The sta-
tistical significance of the findings [9] has been 
confirmed by tests on surrogate data. 

2.2.  Testing for chaos in time series

In order to make testing for chaos in time se-
ries, we use the methodology [10-12]. As usually, 
let us consider scalar measurements s(n)=s(t0+ 
nDt) = s(n), where t0 is a start time, Dt is time step, 
and n is number of the measurements. In a general 
case, s(n) is any time series (f.e. atmospheric pol-
lutants concentration). As processes resulting in 
a chaotic behaviour are fundamentally multivari-
ate, one needs to reconstruct phase space using 
as well as possible information contained in s(n). 
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Such reconstruction results in set of d-dimension-
al vectors y(n) replacing scalar measurements. 
The main idea is that direct use of lagged vari-
ables s(n+t), where t is some integer to be defined, 
results in a coordinate system where a structure 
of orbits in phase space can be captured. Using a 
collection of time lags to create a vector in d di-
mensions, y(n)=[s(n),s(n + t),s(n + 2t),..,s(n +(d-
1)t)], the required coordinates are provided. In 
a nonlinear system, s(n + jt) are some unknown 
nonlinear combination of the actual physical vari-
ables. The dimension d is the embedding dimen-
sion, dE.

2.3. Time lag

The choice of proper time lag  is important for 
the subsequent reconstruction of phase space.  If  t 
is chosen too small, then the coordinates s(n + jt),  
s(n +(j +1)t)  are so close to each other in numeri-
cal value that they cannot be distinguished from 
each other. If t is too large, then s(n+jt),  s(n+(j+1)
t) are completely independent of each other in a 
statistical sense. If t is too small or too large, then 
the correlation dimension of attractor can be un-
der-or overestimated. One needs to choose some 
intermediate position between above cases. First 
approach is to compute the linear autocorrelation 
function CL(d) and to look for that time lag where 
CL(d) first passes through 0. This gives a good 
hint of choice for t at that s(n+jt) and s(n+(j +1)
t) are linearly independent. It’s better to use ap-
proach with a nonlinear concept of independence, 
e.g. an average mutual information.  The mutual 
information I of two measurements ai and bk is 
symmetric and non-negative, and equals to 0 if 
only the systems are independent. The average 
mutual information between any value ai from 
system A and bk from B is the average over all 
possible measurements of IAB(ai, bk). Usually it is 
necessary to choose that t where the first mini-
mum of I(t) occurs.

2.4. Embedding dimension

The goal of the embedding dimension determi-
nation is to reconstruct a Euclidean space Rd large 
enough so that the set of points dA can be unfolded 
without ambiguity. The embedding dimension, dE, 
must be greater, or at least equal, than a dimension 
of attractor, dA, i.e. dE > dA. In other words, we can 
choose a fortiori large dimension dE, e.g. 10 or 
15, since the previous analysis provides us pros-

pects that the dynamics of our system is probably 
chaotic. The correlation integral analysis is one 
of the widely used techniques to investigate the 
signatures of chaos in a time series. The analysis 
uses the correlation integral, C(r), to distinguish 
between chaotic and stochastic systems. Accord-
ing to [8], it is computed the correlation integral 
C(r).  If the time series is characterized by an at-
tractor, then the correlation integral C(r) is related 

to the radius r as 
r
rCd

N
r log

)(loglim
0

, where d is correla-

tion exponent. If the correlation exponent attains 
saturation with an increase in the embedding di-
mension, then the system is generally considered 
to exhibit chaotic dynamics. The saturation value 
of correlation exponent is defined as the correla-
tion dimension (d2) of the attractor (see details in 
refs. [10-12]).

2.5. Nonlinear prediction model

As usually, the predictability can be estimated 
by the Kolmogorov entropy, which is proportion-
al to a sum of positive Lyapunov exponents (LE) 
. The spectrum of LE is one of dynamical invari-
ants for non-linear system with chaotic behaviour. 
The limited predictability of the chaos is quanti-
fied by the local and global LE, which can be de-
termined from measurements. The LE are related 
to the eigenvalues of the linearized dynamics 
across the attractor. Negative values show stable 
behaviour while positive values show local un-
stable behaviour. For chaotic systems, being both 
stable and unstable, LE indicate the complexity 
of the dynamics. The largest positive value deter-
mines some average prediction limit. Since the LE 
are defined as asymptotic average rates, they are 
independent of the initial conditions, and hence 
the choice of trajectory, and they do comprise an 
invariant measure of the attractor. An estimate of 
this measure is a sum of the positive LE. The esti-
mate of the attractor dimension is provided by the 
conjecture dL and the LE are taken in descending 
order. The dimension dL gives values close to the 
dimension estimates discussed earlier and is pref-
erable when estimating high dimensions. To com-
pute LE, we use a method with linear fitted map,  
although the maps with higher order polynomials 
can be used too
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3. Results and conclusions

In our studying, we have analyzed the time se-
ries of of the LP signal  using methodology from 
chaos theory. Table 1 summarizes our preliminary 
results for the time lag calculated for first 800 val-
ues of time series of the LP signal. The values, 
where the autocorrelation function first crosses 
0.1, can be chosen as t, as an attractor cannot be 
adequately reconstructed for very large values of 
t. 

Table 1. Time lag (t), correlation dimension  
(d2), embedding dimension (dE),Kaplan- Yorke 
dimension (dL), average limit of predictability 
(Prmax), Gottwald-Melbourne chaos availabil-
ity parameter  K 

d2 dE λ1 λ2 dL Pr K

9 5.61 6 0.0143 0.0039 4,07 8 0,63

Let us note that the Kaplan-Yorke dimen-
sions, which are also the attractor dimensions, 
are smaller than the dimensions obtained by the 
algorithm of false nearest neighbours. Our results 
show that the time series is resulted from the low-
dimensional chaos. The embedding dimension 
for the time series is dN = 6. Also, the correlation 
dimensions were calculated using the algorithm 
of Grassberger and Procaccia. It is noteworthy 
that the nearest integer above the saturation value 
provides the minimum or optimum embedding 
dimension for reconstructing the phase-space or 
the number of variables necessary to model the 
dynamics of the system. This concept can be ap-
plied, since the embedding dimension determined 
by both the correlation dimension method and the 
algorithm of false nearest neighbours are identi-
cal. In this case, the number of variables neces-
sary to model the dynamics of the system equals 
six (preliminary estimate). From the other hand, 
the analysis of correlation dimension provides 
only the number of variables, but not their physi-
cal meaning. At last, let us comment regarding the 
Lyapunov exponents. Fistly, our  data show that 
the Kaplan-Yorke dimensions, which are also the 
attractor dimensions, are smaller than the dimen-
sions obtained by the algorithm of false nearest 
neighbours. 

There are the two positive li for the time se-
ries under consideration. Since the Lyapunov 
exponents determine conversion rate from a 
sphere into an ellipsoid, then the smaller sum of 
positive exponents results in the more stable dy-
namical system and, correspondingly, the higher 
predictability. The further work in application of 
the chaos theory methods to neuro-physiological 
problems requires the availability of reliable em-
pirical data and the corresponding time series of 
measured values. 
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