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STUDYING ENSEMBLES OF INTERVALS OF THE PARKINSONIAN TREMOR AND
LOCAL POTENTIAL FLUCTUATIONS ON THE BASIS OF THE THEORY OF CHAOS

The work is devoted to the use of methods of chaos theory to characterize
the nonlinear dynamics of neurophysiological systems and identify the presence
of chaotic elements. The data of the studying the Parkinsonian tremor interval
ensembles and the corresponding fluctuations of the local potential are presented.

1. Introduction

The task of studying the dynamics of chaotic
dynamical systems arises in many areas of
science and technology. We are talking about a
class of problems of identifying and estimating
the parameters of interaction between the sources
of complex (chaotic) oscillations of the time
series of experimentally observed values. Such
problems arise in physics, biology, medicine,
neuroscience, geophysics, engineering, etc. Many
studies in the cited and other fields of science and
technique have appeared, where a chaos theory
was applied to a great number of dynamical
systems [1-12]. These studies show that chaos
theory methodology can be applied and the short-
range forecast by the non-linear prediction method
can be satisfactory. Time series of the dynamical
variables are however not always chaotic, and
chaotic behaviour must be examined for each time
series. In series of papers it has been developed an
effective version of using a chaos theory method
and non-linear prediction approach to studying
chaotic behaviour of the different dynamical
systems. In our opinion, using these methods
has very attractive perspectives in medicine and

physiology (neuro- physiology). As example, let
us underline that an ability to provide interaction
between the different areas of the brain by using
a multi-channel electroentselophalograms helps
determine the location of the foci of abnormal
activity in brain of patients with epilepsy.
Many diseases of the brain, including epilepsy,
Parkinson’s disease, are associated with abnormal
synchronization large groups of neurons in the
brain. Particular attention is paid to a non-linear
signals as obvious is a typicality of a chaotic
behavior of nonlinear systems.

This paper is devoted to an employing a variety
of techniques for characterizing dynamics of the
nonlinear neuro-physiological systems identifying
the presence of chaotic elements. To analyze
measured time histories of the neurophysiological
system responses the phase space of these systems
was reconstructed by delay embedding. Here we
also present the numerical results regarding the
Parkinsonian tremor interval ensembles of a few
patients and the corresponding fluctuations of the
local potential. To implement this program, we
follow the procedure set out in detail in [10-12].
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2. Method: Testing for chaos in time
series

2.1. Data

Many diseases of the nervous system, including
epilepsy and Parkinson’s disease associated with
abnormal synchronization large groups of neu-
rons in the brain. A sign of Parkinson’s disease is
the synchronization of neurons in the ranks of the
thalamus and basal ganglia. However, the func-
tional role of synchronization in the generation
of Parkinsonian tremor (involuntary limb regular
oscillations with frequencies ranging from 3 to 6
Hz) remains a matter of debate (see [9]). Standard
therapy with no effect of medication - it’s a deep
electrical deep brain stimulation (DEBS) at high
frequencies (above 100 Hz). Standard DEBS has
been found empirically, the mechanism of its ef-
fect has not yet been elucidated, and it has restric-
tions, such as those associated with side effects.
Confirmation that the tremor caused synchronous
neuronal activity in nuclei of the thalamus and ba-
sal ganglia, would presumably result in a softer
therapies with fewer side effects. In this connec-
tion of the relevance of the problem of determin-
ing the nature of the links between different areas
of the brain and the muscles of patients.

The ensembles intervals of spontaneous Par-
kinsonian tremor three patients have been inves-
tigated in ref. [9]. Fluctuations in the limbs were
presented accelerometer signals recorded at the
sampling rate of 200 Hz and 1 kHz. Information
about the activity of the brain was presented re-
cordings of local potentials (LP) of the four deep
electrodes implanted in the thalamus and basal
ganglia. The data were obtained at the Depart-
ment of Stereotactic and Functional Neurosur-
gery, University of Cologne and the Institute of
Neurosciences and Biophysics, Research Center
Juelich (Germany). Accelerometer signals and
the LP with one of the electrodes during heavy
Parkinsonian tremor are shown in Fig. 1
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Figure 1. Spontaneous interval Parkinsonian
tremor (total duration 0.1x800) (a, b) and
the accelerometer signal LP with one of the
electrodes in arbitrary units (only first 8 s
shown);

———

According to [9], the main conclusion is as
the tests also showed that linear techniques do
not reveal the activity of the thalamus and basal
ganglia on the limb. Besides, it has been found
that there are the fluctuations in the accelerometer
signal, which correspond to a distinct peak in the
power spectrum at a frequency of 5 Hz. The sta-
tistical significance of the findings [9] has been
confirmed by tests on surrogate data.

2.2. Testing for chaos in time series

In order to make testing for chaos in time se-
ries, we use the methodology [10-12]. As usually,
let us consider scalar measurements s(n)=s(f,+
nDt) = s(n), where 7 is a start time, D¢ is time step,
and # i1s number of the measurements. In a general
case, s(n) is any time series (f.e. atmospheric pol-
lutants concentration). As processes resulting in
a chaotic behaviour are fundamentally multivari-
ate, one needs to reconstruct phase space using
as well as possible information contained in s(n).



Such reconstruction results in set of d-dimension-
al vectors y(n) replacing scalar measurements.
The main idea is that direct use of lagged vari-
ables s(n+t), where t is some integer to be defined,
results in a coordinate system where a structure
of orbits in phase space can be captured. Using a
collection of time lags to create a vector in d di-
mensions, y(n)=[s(n),s(n + t),s(n + 2t),..,s(n +(d-
1)t)], the required coordinates are provided. In
a nonlinear system, s(n + jt) are some unknown
nonlinear combination of the actual physical vari-
ables. The dimension d is the embedding dimen-
sion, d,.

2.3. Time lag

The choice of proper time lag is important for
the subsequent reconstruction of phase space. If t
is chosen too small, then the coordinates s(n + jit),
s(n +(j +1)t) are so close to each other in numeri-
cal value that they cannot be distinguished from
each other. Ift is too large, then s(ntjt), s(n+(j+1)
t) are completely independent of each other in a
statistical sense. If t is too small or too large, then
the correlation dimension of attractor can be un-
der-or overestimated. One needs to choose some
intermediate position between above cases. First
approach is to compute the linear autocorrelation
function C,(d) and to look for that time lag where
C,(d) first passes through 0. This gives a good
hint of choice for t at that s(n+jt) and s(nt+(j +1)
t) are linearly independent. It’s better to use ap-
proach with a nonlinear concept of independence,
e.g. an average mutual information. The mutual
information / of two measurements a, and b, is
symmetric and non-negative, and equals to 0 if
only the systems are independent. The average
mutual information between any value a; from
system 4 and b, from B is the average over all
possible measurements of / (a, b,). Usually it is
necessary to choose that t where the first mini-
mum of /(t) occurs.

2.4. Embedding dimension

The goal of the embedding dimension determi-
nation is to reconstruct a Euclidean space R large
enough so that the set of points d, can be unfolded
without ambiguity. The embedding dimension, d,,
must be greater, or at least equal, than a dimension
of attractor, d , i.e. d,>d . In other words, we can
choose a fortiori large dimension d,, e.g. 10 or

15, since the previous analysis provides us pros-

pects that the dynamics of our system is probably
chaotic. The correlation integral analysis is one
of the widely used techniques to investigate the
signatures of chaos in a time series. The analysis
uses the correlation integral, C(r), to distinguish
between chaotic and stochastic systems. Accord-
ing to [8], it is computed the correlation integral
C(r). If the time series is characterized by an at-
tractor, then the correlation integral C(r) is related

to the radius r as . logC(r) where d is correla-

d=li
i logr

tion exponent. If the correlation exponent attains
saturation with an increase in the embedding di-
mension, then the system is generally considered
to exhibit chaotic dynamics. The saturation value
of correlation exponent is defined as the correla-
tion dimension (d,) of the attractor (see details in
refs. [10-12]).

2.5. Nonlinear prediction model

As usually, the predictability can be estimated
by the Kolmogorov entropy, which is proportion-
al to a sum of positive Lyapunov exponents (LE)
. The spectrum of LE is one of dynamical invari-
ants for non-linear system with chaotic behaviour.
The limited predictability of the chaos is quanti-
fied by the local and global LE, which can be de-
termined from measurements. The LE are related
to the eigenvalues of the linearized dynamics
across the attractor. Negative values show stable
behaviour while positive values show local un-
stable behaviour. For chaotic systems, being both
stable and unstable, LE indicate the complexity
of the dynamics. The largest positive value deter-
mines some average prediction limit. Since the LE
are defined as asymptotic average rates, they are
independent of the initial conditions, and hence
the choice of trajectory, and they do comprise an
invariant measure of the attractor. An estimate of
this measure is a sum of the positive LE. The esti-
mate of the attractor dimension is provided by the
conjecture d, and the LE are taken in descending
order. The dimension d, gives values close to the
dimension estimates discussed earlier and is pref-
erable when estimating high dimensions. To com-
pute LE, we use a method with linear fitted map,
although the maps with higher order polynomials
can be used too
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3. Results and conclusions

In our studying, we have analyzed the time se-
ries of of the LP signal using methodology from
chaos theory. Table 1 summarizes our preliminary
results for the time lag calculated for first 800 val-
ues of time series of the LP signal. The values,
where the autocorrelation function first crosses
0.1, can be chosen as t, as an attractor cannot be
adequately reconstructed for very large values of
t.

Table 1. Time lag (t), correlation dimension
(d,), embedding dimension (d,),Kaplan- Yorke
dimension (d, ), average limit of predictability
(Pr__ ), Gottwald-Melbourne chaos availabil-
ity parameter K

T d d A A d Pr K

2 E 1 2 L

9 | 561 | 6 |0.0143 | 0.0039 | 4,07 | 8 | 0,63

Let us note that the Kaplan-Yorke dimen-
sions, which are also the attractor dimensions,
are smaller than the dimensions obtained by the
algorithm of false nearest neighbours. Our results
show that the time series is resulted from the low-
dimensional chaos. The embedding dimension
for the time series is d, = 6. Also, the correlation
dimensions were calculated using the algorithm
of Grassberger and Procaccia. It is noteworthy
that the nearest integer above the saturation value
provides the minimum or optimum embedding
dimension for reconstructing the phase-space or
the number of variables necessary to model the
dynamics of the system. This concept can be ap-
plied, since the embedding dimension determined
by both the correlation dimension method and the
algorithm of false nearest neighbours are identi-
cal. In this case, the number of variables neces-
sary to model the dynamics of the system equals
six (preliminary estimate). From the other hand,
the analysis of correlation dimension provides
only the number of variables, but not their physi-
cal meaning. At last, let us comment regarding the
Lyapunov exponents. Fistly, our data show that
the Kaplan-Yorke dimensions, which are also the
attractor dimensions, are smaller than the dimen-
sions obtained by the algorithm of false nearest
neighbours.
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There are the two positive 1 for the time se-
ries under consideration. Since the Lyapunov
exponents determine conversion rate from a
sphere into an ellipsoid, then the smaller sum of
positive exponents results in the more stable dy-
namical system and, correspondingly, the higher
predictability. The further work in application of
the chaos theory methods to neuro-physiological
problems requires the availability of reliable em-
pirical data and the corresponding time series of
measured values.
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N3YYEHUE AE-ICAMBJIEﬁ HNHTEPBAJIOB TAPKHMHCOHOBCKOI'O TPEMOPA "
OJIYKTYAIIUU JIOKAJIBHOT'O ITIOTEHIIUAJIA HA OCHOBE METOAOB TEOPUH
XAOCA

Pe3rome

PaboTa mocBsmieHa HMCMOIB30BAHUIO METOAOB TEOPHHM Xaoca I XapaKTePUCTUKH JTHUHAMHUKU
HEJIMHEHHBIX HEUPO(DU3MOJOTUYECKUX CHUCTEM W HICHTHU(UKAIIMU HAJWYHUs DJIEMEHTOB Xaoca B
cucreM.. [IpuBeneHsl JaHHBIE M3y4YeHHUs aHCaMOJIeH MHTEPBAJIIOB MAapKMHCOHOBCKOTO TpeMopa M
COOTBETCTBYIOIIUX (MITYKTyaIlui JJOKAJIbHOTO MTOTCHITHAIA.

KiroueBble ciaoBa: Teopus Xaoca, aHCaMOIIM WHTEPBAJIOB MAapKUHCOHOBCKOTO TPEMOPA,
(GIyKTyaIuu JOKaJIBHOTO MTOTSHITHATA

YK 681.320
B. B. byaoocu, C. B. Bpycenyesa, I1. A. 3aiuxo

BUBYEHHSI AHCAMBJIIB IHTEPBAJIIB ITAPKIHCOHOBCKOI'O TPEMOPY I
OIYKTYANIHN JIOKAJIBHOI'O TIOTEHOIAJTY HA OCHOBI METOAIB TEOPII XAOCY

Pesrome

PoGora mpucBsYeHa BHKOPHUCTAHHIO METOAIB TeOpii Xaocy Ui XapaKTEPUCTHKH JUHAMIKA
HeNHIMHUX Helpo@131010TIUHUX CUCTEM Ta 1IeHTH(IKallli HasBHOCTI eleMeHTIB Xaocy. HaBeneHi
JlaHI BUBYCHHsS aHCaMOIIB IHTEpBaJliB MapKIHCOHIBCHKOTO TPEMOPY Ta BIAMOBIIHUX (UIyKTyarii
JIOKaJbHOI'O MOTEHIiaITY.

KirouoBi cioBa: Teopist xaocy, aHcaMOli 1HTEpBaliB MapKIHCOHIBCHKOTO TPeMOpy, (IIyKTyarii
JIOKaJbHOT'O MOTEHIIaTy
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