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OPERATOR PERTURBATION THEORY TO HYDROGEN ATOM 
IN A STRONG DC ELECTRIC FIELD 

A consistent uniform quantum approach to the solution of the non-stationary state 
problems including the DC strong-field Stark effect and also scattering problem is presented. 
It is based on the operator form of the perturbation theory for the Schrödinger equation. 
The method includes the physically reasonable distorted-waves approximation in the 
frame of the formally exact quantum-mechanical procedure. The zero-order Hamiltonian 
possessing only stationary states is determined only by its spectrum without specifying 
its explicit form. The method allows calculating the resonance complex energies and 
widths plus a complete orthogonal complementary of the scattering state functions. The 
calculation results of the Stark resonance energies and widths for the hydrogen atom are 
presented and compared with other theoretical data. 

1. Introduction

The Stark  effect [1] is one of the best known 
problems in quantum mechanics, but at the same  
time one of the most difficult (outside the weak-
field region) [1-8].   A new interest in this effect 
has been stimulated  in the last two decades.  A 
range of the interesting phenomena to be studied 
includes: quasi-discrete state mixing; a zoo of the 
Landau- Zener anticrossings in non-hydrogenic 
(non-H) atoms; autoionization in non-H atoms; 
the effects of potential barriers (shape resonanc-
es); new kinds of resonances above threshold etc 
[1-63]. The dielectronic  recombination involves  
highly excited (Rydberg) atomic states, which  are 
very strongly affected by relatively weak  fields 
[3-6]. In fact these states provide the gateway for 
ion-electron recombination processes.  Now it is 
well known that weak-field effects on Rydberg 
states can cause the large changes in electron-ion 
collision cross sections.  One subject stands out 
quite clearly: possible  non-perturbative effects 
of the electric fields on the autoionization states 
responsible for  dielectronic recombination.  It is 
of a great importance for a consistent treating the 
different processes in a laser plasma, astrophysi-
cal environments etc [4-14]. Naturally in the last 
two decades a great progress has been made on 

the Stark effect  for the hydrogen atom as well as 
for non-H atoms [2-62].  

An external electric field shifts and broadens 
the bound state atomic levels.  The   standard 
quantum -mechanical approach relates complex 
eigenenergies (EE) 2/iEE r  and complex ei-
genfunctions (EF) to the shape resonances.  The 
field effects drastically increase upon going from 
one excited level to another. The highest levels 
overlap forming a “new continuum” with lowered 
boundary. The calculation difficulties inherent to 
the standard  quantum mechanical approach are 
well known. Here one should mention the well-
known Dyson phenomenon. The Wentzel-Kram-
ers-Brillouin (WKB) approximation overcomes 
these difficulties for the states lying far from the “ 
new continuum” boundary. Some  modifications  
of the WKB  method [4,8,50,65,66] are intro-
duced in Stebbings and Dunning (1983), Kondra-
tovich and  Ostrovsky (1982, 1984), Popov et al 
(1988, 1990) and Glushkov, Ivanov and Letokhov 
(1975, 1992),  where the first theoretical estima-
tion of the effectiviness of the selective ioniza-
tion of the  Rydberg atom using electric and laser  
fields has been fulfilled. The usual WKB  approx-
imation applicability  is substantiated in the  case 
of a relatively weak  electric field [2,3]. One can 
show that the standard form of the WKB  method 
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trum. Brändas and Froelich (1977) [23] have 
shown that a complex scale transformation of the 
time–dependent Schrödinger equation leads to 
a symmetric EE value problem containing both 
bound states and resonance (complex)  EE values 
as solutions. They have stated the extended virial 
theorem and developed an original approach to 
determination of the resonance eigenvalues by 
means of elementary matrix manipulations. The 
error estimates for the approximate complex ei-
genvalues of the dilated Schrödinger operator are 
derived in Ref. [24], where the calculation data 
for the resonances of the DC Stark effect in the 
hydrogen are presented. In the complex-coordi-
nate method a dilation transformation is used to 
make the resonance EF square integrable. The 
resonance of nondilation analytic potentials can 
be obtained numerically by using Simons exte-
rior-scaling procedures within the finite-basis-set 
approximation [27,28].  The exterior-scaling pro-
cedure has been used only with direct numerical 
integration methods [27-30]. The use of a finite 
basis set in these calculations will enable one to 
use numerical techniques developed for bound 
states  in calculating resonance positions and 
widths for nondilation potentials [27-36]. Rao, 
Liu and Li (1994) [18]) have studied theoretically 
the DC strong-field Stark resonances  by a com-
plex-scaling plus B-spline approach and shown 
that the high accuracy is attributed to the good 
stationarity behavior of  eight trajectories with a 
well-adjusted 8-spline basis. Rao and Li (1995) 
[19] have also studied the behavior of the reso-
nances of a hydrogen atom in parallel magnetic 
and electric fields with a complex scaling plus B-
spline method too and received a consistent data 
on the corresponding resonance parameters in 
dependence upon the ratio of the magnetic-field 
strength to the electric-field strength. It is worth 
to remind that the similar approaches have been 
developed to describe the Zeemane resonances. 
Namely, for hydrogen atoms in pure magnetic 
fields, the properties of resonant states were cal-
culated by the complex scaling, the R matrix, the 
operator PT (OPT) and other methods (look, for 
example, [4-7]. The generalization of methods to 
account for the resonance interference, non-H and 
relativistic effects is still an important problem, 

applicability condition can be reformulated as 
the requirement that the examined resonances  
be well separated one from other. The  same is 
so regarding  the widespread asymptotic phase 
method (Damburg and Kolosov 1976), based on  
the Breit-Wigner parameterization for the asymp-
totic phase shift dependence on scattering energy 
and the method by Luc-Koenig and Bachelier, 
who have used a normalization constant [42,48]. 
Different calculational procedures are used in the 
Pade and then Borel summation of the divergent 
Rayleigh-Schrödinger perturbation theory (PT) 
series (Franceschini et al 1985, Popov et al 1990) 
and in the sufficiently exact numerical solution  of 
the  difference equations  following from expan-
sion of the  wave function over finite basis  (Bena-
ssi ans Grecchi 1980, Maquet et al 1983, Kolosov 
1987, Telnov 1989, Anokhin-Ivanov 1994), com-
plex-scaling method [17-55].  It should be noted 
that the latter has been extensively used to de-
scribe the resonance behavior in different atomic 
and even molecular systems.  Its mathematical 
foundation is linked with the theory of dilatation 
analyticity [27,28]. Surely, though the Hamil-
tonian of an atom in a DC electric field is not a 
dilatational analytic operator, Reinhardt [44] has 
performed the numerical experiments on the di-
agonalization of the complex-scaled Stark Hamil-
tonian for a hydrogen with a real L basis set.  The 
same method has been used by Cerjan et al. [40] 
to get new data on the ground and low-excited 
states of a hydrogen atom in a DC and AC fields. 
Farrelly and Reinhardt [47] have used the com-
plex coordinate rotation method in combination 
with numerical integration of the separated equa-
tion. Ivanov-Ho [54] have applied the method 
for the Dirac Hamiltonian. Different applications 
are reviewed in Refs. [53].   Hehenberger, McIn-
tosh and E. Brändas (1974) [21] have applied the 
Weyl’s theory to the Stark effect in the hydrogen 
atom. They have shown that one of the interest-
ing features of Weyl’s theory is that it requires a 
complex parameter and complex solutions to the 
differential equations making it a powerful tool 
for the treatment of resonance states [21]. Rittby, 
Elander and Brändas (1981) [25] have applied the 
Weyl’s theory and the complex-rotation method 
to phenomena associated with a continuum spec-
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though here a definite progress has been reached  
too. One should mention such approaches as a 
model potential method, quantum defect approxi-
mation, the OPT, complex scaling plus B-spline 
method etc [3-19, 64-75].  Regarding the quan-
tum chaos phenomenon in atoms in electromag-
netic fields (look, for example, [76-79]) note that 
this topic should not be considered here. Let us 
only note that the approach presented below to-
gether with the various methods of the theory of 
chaos in options [79-81] has been effectively used 
to describe the chaotic behavior 

of the hydrogen and non-H atoms in the mag-
netic and microwave fields. 

Here a consistent uniform quantum-mechani-
cal approach to the solution of the non-stationary 
state problems including the DC strong-field Stark 
effect and also scattering problem is presented. It 
allows calculation of complex EE and especially 
is destined for investigation of the spectral re-
gion near the new continuum boundary. The es-
sence of the method is the inclusion of the well 
known “distorted waves approximation” method 
in the frame of the formally exact PT. The zero-
order Hamiltonian H0 of this PT possesses only 
stationary bound and scattering  states. To over-
come formal difficulties, we define the zero-order 
Hamiltonian by the set of orthogonal eigenfunc-
tions (EF) and EE without specifying the explicit 
form of the corresponding zeroth-order potential. 
To ensure rapid PT convergence, a physically rea-
sonable spectrum (EE and EF)  must be chosen 
as the zero order, similar to the “distorted waves” 
method [6,56-58]. In a case of the optimal zeroth-
order spectrum, the PT smallness parameter is of 
the order of Å , where  and E are the field 
width and bound energy of the state level exam-
ined. The successive PT corrections can be ex-
pressed through the matrix elements of the total 
Hamiltonian calculated between the zeroth-order 
basis functions. This method is called the OPT. 
We will define H0 so that it coincides with the to-
tal Hamiltonian H at  0  (e is the electric field 
strength.) Let us emphasize that perturbation in 
our theory does not coincide with the electric field 
potential though they disappear   simultaneously. 
We also present a generalization of the OPT for 
calculation of the DC strong field Stark effect in 

the non-H atoms in an electric field [59-61]. The 
difference between the atomic and Coulomb field 
is taken into account by introducing the quantum 
defects on a parabolic basis. The results of calcu-
lation of the Stark resonance energies and widths 
for the H atom are listed and compared with other 
theoretical and experimental data. 

2 Operator perturbation theory for DC 
strong-field Stark effect

2.1. DC strong –field Stark effect for the hy-
drogen atom

The Schrödinger equation for the electron 
function taking into account the uniform electric 
field and field of the nucleus (Coulomb units are 
used: for length, 1 unit is mZeh 22 ; for energy 1 
unit is 242 hemZ )  is [6,57]: 

[-(1 - N/Z) / r+Vm(r) + εz –1/2∆ - E ] Ψ = 0,   (1)

where E  is the electron energy, Z is the nu-
cleus charge, N is the number of electrons in the 
atomic core (for the hydrogen atom: Z=1, N=0), 
Vm is an model potential (for the hydrogen atom 
Vm=0). Firstly, we only deal with the Coulomb 
part of the electron- atomic residue interaction. 
The non-Coulomb part, as well as relativistic ef-
fects, can be approximately accounted for next 
step. The separation of  variables in the parabolic 
coordinates ( xyzrzr 1tan,, ):

Ψ(ε,h,φ)=f (ε)g(h)(ε× h)|m|/2 exp(imφ)/(2π)1/2       (2)

transforms it to the system of two equations for 
the functions  f, g:

fn+
t

m 1||  f1+[1/2E +(β1-N/Z)/t-1/4ε(t)t] f = 0,  
                                                                             (3)

gH + | |m
t

1 g1 + [1/2E+β2  / t + 1/4ε (t) t ] g = 0, (4)

coupled through the constraint on the separation 
constants:

                       121    (5)

Ze

mZe
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For the uniform electric field t .  In 
principle, the more realistic models can be consid-
ered in the framework of our approach. Potential 
energy in equation (4)  has the barrier. Two turn-
ing points for the classical motion along the  

axis, 1t  and  2t , at a given energy E are the solu-

tions of the quadratic equation ( 01 , EE ):

t2 ={[ E2
0 - 4ε (1-b)] 1/2 - E0 }/ε ,                          (6)

t1 ={-[E2
0  - 4ε (1-β)] 1/2 - E0 }/ε,   t1< t2               (7)

Here and below t denotes the argument com-
mon for the whole equation system. To simplify 
the calculational procedure, the uniform electric 
field  in (3) and (4)  should be substituted by the 
function [57,58]:

ε (t)  = 1
t

 ε ( )t
t

4

4 4
                     (8)

with sufficiently large r (r=1.5t2). The function 
t  practically coincides with the constant  in 

the inner barrier motion region (t<t2) and disap-
pears at t>>t2.  The minimal acceptable value 
of t introduced in the spatial dependence of the 
electric field, which does not influence the final 
results, can be established experimentally.  Thus, 
the final results do not depend on the parameter 
t  (the further calculation has entirely confirmed 
this fact). Besides the pure technical convenience, 
the case of an asymptotically disappearing elec-
tric field is more realistic from the physical point 
of view. Now we deal with the asymptotically  
free (without electric field) motion of the ejected 
electron along the h-axis. The corresponding  ef-
fective wavenumber is:

                          k = (Е/2 +εt/4)1/2.                 (9)
The scattering states energy spectrum now 

spreads over the range ,2 , com-

pared with  ,  in the uniform field. In 
contrast to the case of a free atom in scattering 
states in the presence of the uniform electric field 
remain quantified at any energy E, i.e. only defi-
nite values of 1  are possible. The latter are de-

termined by the confinement condition for the 
motion along the h-axis. The same is true in our 

case, but only for E 
2
1,

2
1 .  The mo-

tion with larger E is non-quantified, similar to the 
free atom case. 

2.2 Energy and width of the Stark resonance

The total Hamiltonian ,,H  does not 
possess the bound stationary states. According to 
OPT [6, 56-58]), one has to define the zero order 
Hamiltonian H0, so that its spectrum reproduces 
qualitatively that of the initial one. In contrast to 
H, it must have only stationary states. To calculate 
the width G of the concrete quasistationary state in 
the lowest PT order one needs only two zeroth–or-

der EF of H0: bound state function ,,Eb  

and scattering state function ,,Es  with 
the same EE. We solve a more general problem: 
a construction of the bound  state function along 
with its complete orthogonal complementary of  

scattering functions E  with E ,
2
1 . 

First, one has to define the EE of the expected 
bound state. It is the well known problem of states 
quantification in the case of the penetrable barrier 
[65,66]. Following [57], we solve the system (3) 
and (4) with the total Hamiltonian H  under the 
conditions:
                             f(t)0 at t →∞,                    (10a)
                             ax(β, E) / DE = 0              (10b)
with                           

x(b, E) = 
t
lim [ g2 (t) + {g1(t) / k}2 ] t| m| + 1.         (11)

The first condition ensures the finiteness of 
motion along the -axis, the second condition 
minimizes the asymptotic oscillation amplitude 
for the function describing the motion along the 

-axis. These two conditions quantify the bound 
energy E and separation constant 1 . We elabo-
rated a special numerical procedure for this two-
dimensional eigenvalue problem.  Our procedure 
deals repeatedly with the solving of the system 
of the ordinary differential equations (3) and (4) 
with probe pairs of  E, 1 . The corresponding EF:

ετ

ετ ετ

ετ
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yEb(ζ,η,φ)=fEb(ζ)gEb(η)(ζη)|m|/2exp(imφ)(2η)-1/2     (12)

Here  tf Eb   is the solution of (3) ( with the just 
determined E, 1 ) at ,0t   and tg Eb  is the 
solution of (4) (with the same E, 1 ) at 2tt  (in-
side barrier) and  0tg  otherwise.  These bound 
state EE, eigenvalue 1  and EF for the zero-order 
Hamiltonian 0H  coincide  with those  for the to-
tal Hamiltonian H  at  0 , where all the states 
can be classified  due  to the quantum numbers 

mnnn ,,, 21  (principal, parabolic, azimuthal) con-
nected with E, 1 , m by the well known expres-
sions. We preserve the mnn ,, 1  states classifica-
tion in the non-zero  case. The scattering state 
functions:

ΨE's(ζ,η,φ)=fE's(z)gE¢’s(η)(ζη)|m|/2exp(imφ)(2π)-1/2   (13)

must be  orthogonal to the above defined bound 
state function and to each other. In addition, these 
functions must describe the motion of the ejected 
electron, i.e. sEg  must satisfy the equation (4) as-
ymptotically. Following the OPT ideology [57], 
we choose the next form of sEg :

               gE¢s(t) = g1 (t) - z2' g2(t)              (14)
with sEf  and tg1  satisfying the differential equa-
tions (3) and (4). The function tg 2  satisfies the 
non-homogeneous differential equation, which 
differs from (4) only by the right-hand term, dis-
appearing at t . The total equation system, de-
termining the scattering function, reads

( 121 ). As mentioned above there remains 

motion quantification for 
2
1,

2
1Å .  

At the given E , the only quantum parameter 1  

is determined by the natural boundary condition: 

fE's→0 at t → ∞. Of course:  11 , EbsE ff   at 
EE ; only this case is needed in the particular 

problem we deal with here. The coefficient 2z  en-

sures the orthogonality condition 0sEEb :

                                                                        (16)

One can check that

The imaginary part of state energy in the low-
est PT order is 
                                                                         (17)

with the total Hamiltonian H . The state functions 

Eb  and Es  are assumed to be normalized to 1 
and by the kk  condition, accordingly. The 
action of H  on Eb  is defined unambiguously by 
(15):

                  (18)

The matrix elements 
sEEb H  entering the 

high-order PT corrections can be determined in 
the same way. All the two-dimensional integrals 
in (16)-(18) and the normalization coefficients 
can be expressed through the next set of one-di-
mensional integrals:

(19)

calculated with  the arbitrary normalized func-

tions Ebf , Ebg , 2f , 2g and Ebff1 , Ebgg1 . In 

Eb

 f E s + | |m
t

1  f  E s +[1/2E  + ( 1  - N/Z) / t-1/4  

                           (t)t] f E s = 0, 

 g1 + | |m
t

1g1 +[1/2E + 2  /t+1/4 (t)t]g1 = 0, 

 g2 + | |m
t

1g2 +[1/2E+ 2   / t+1/4  (t)t]g2=2gEb  

(15a)

(15б)

(15с)

ετ ετ

Eb

Eb

 z2   = { d d  ( + ) f 
2

Eb( )gEb ( )g1 ( )}/ 
     {  d d  ( + ) f 

2
Eb( )gEb ( )g2 ( ) }.        

ec t at
 Es’|  E ’s  = 0  for  E’ E’’. 

I2 =  dt fb
2(t)t|m|+1, 

I3 =  dt  gb (t) g1 (t) t|m| , 
I4=  dt gb(t)g1(t)t|m|+1, 

I5 =  dt  gb (t) g2 (t) t|m| , 
I6 =  dt  gb(t) g2(t)t|m|+1, 

I7 =  dt gb 2 (t) t|m| , 
I8 =  dt gb

2 (t)t|m|+1, 

ImE = /2 = |< Eb |H| Es>|2   

   (H-E’)  s =2|m|( 2)  f E s ( ) gEb ( )z2’ 

            exp (im /)/[(2 1/2 ( + )], 

Eb|H|  E’s =  d d  ( )|m|  f 
2

Eb( ) 
                   f2

 E s( )gEb ( ) '
2z .                    

Еb ЕbЕbЕb
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this notation

                                                      

                        (20)

with

                (21)

Remember that arbitrary normalized state func-
tions are assumed in (20) and (21). The whole cal-
culational procedure at known resonance energy 
E and separation parameter 1  has been reduced 
to the solution of one system of the ordinary dif-
ferential equations. This master system includes 
the differential equations for the state functions  

Ebf , Ebg , Esf , Esg , as well as the equations for 
the integrals 81 II . Thus, our calculational pro-
cedure is one-dimensional. The procedure is suffi-
ciently simple and realized as the numerical code 
with using the fourth-order Runge–Kutta method 
of solving the differential equations (the atomic 
code “Superatom-ISAN-Stark”). 

3 Calculation results and discussion
The calculation results for the Stark reso-

nances energies and widths of the ground state 
hydrogen atom in the DC electric field with the 
strength ε=0.04, 0.08, 0.10, 0.80 a.u. are present-
ed in table 1 and 2. The comparison with earlier 
similar results, obtained within the generalized 
WKB approximation, summation of divergent PT 
series, the numerical solution of the differential 
equations following from expansion of the wave 
function over  finite basis, a complex scaling plus 
B-spline calculation [15-51] shows quite accept-
able agreement. The calculation results of the 
Stark resonances parameters for the excited state 
H atom (n=2,5,15) for different strength values 
are listed in table 3. The comparison with earlier 
similar results, obtained within the summation of 
divergent PT series, the numerical solution of the 
differential equations with using the finite basis 
expansion of the wave function again shows ac-
ceptable agreement. 

Table 1. Energies, widths (a.u.)of Stark reso-
nances of ground state H atom (ε=0.04, 0.08 a.u.). 
Notation: (a1) Mendelson [15], (a2) Alexander 
[17], (b1) Hehenberger-  McIntosh-Brändas [21], 
(b2) Brändas-Froelich [23], (c) Benassi-Grecchi 
[46], (d) Cerjan et al. [40], (e) Farrelly-Reinhardt 
[47], (f) Franceschini-Greechi-Silverstone [45], 
(g) Reinhardt [43], (h) Maquet-Chu-Reinhardt 
[41], (i) Kolosov [48], (j) Damburg-Kolosov [42], 
(k) Anokhin-Ivanov [51], (l) Ivanov-Ho (relativ-
istic and non-relativistic results respectively) 
[54], (m) Rao- Liu-Li  [18], (n) the OPT method 
(our data), (o) – Filho et al [49].
ε Method Er, a.u. /2, a.u.
0.04 a1 -0.5038 -

a2 -0.5038 0.2 10-5

b1 -0.5037714 0.195 10-5

b2 -0.5037715 0.191 10-5

c -0.5037716 0.1946 10-5

f -0.5037716 0.1946 10-5

j -0.5037716 0.195 10-5

k -0.5038 0.248 10-5

1 -0.5037780
-05037716

0.205 10-5

0.195 10-5

m -05037716 0.1946 10-5

n -05037714 0.1945 10-5

o -0503752 -
0.08 a1 -0.5193 -

a2 -0.5175 0.230 10-2

b1 -0.51756 0.227 10-2

c -0.51756 0.2270 10-2

f -0.51756 0.2270 10-2

g -0.51756 0.2269 10-2

h -0.51756 0.2270 10-2

j -0.51749 0.2255 10-2

k -0.5176 0.220 10-2

m -0.51756 0.2270 10-2

n -0.51757 0.2270 10-2

o -0.51745 -

]/[32 8172
2
8

2
1

22
2 IIIIIINz s ,  

]/[][ 526132412 IIIIIIIIz    

N2
s= t

limX(t)/{2 2|m|+1[ g2
s( )X2(t) +g s

2( )]} 

            X(t)={E/2 + (  -N/Z )/t -  t/4}1/2                  

Еb Еb ЕsЕs
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Table 2. Energies and widths of the 1s H 
atom Stark resonances (ε=0.10,0.8a.u.);  Nota-
tion: (a1) Mendelson [15], (a2) Alexander [17], 
(b1) Hehenberger-McIntosh-Brändas [21], (b2) 
Brändas-Froelich [23], (c) Benassi-Grecchi [46], 
(d) Cerjan et al. [40], (e) Farrelly-Reinhardt [47], 
(f) Franceschini-Greechi-Silverstone [45], (g) 
Reinhardt [43], (h) Maquet-Chu-Reinhardt [41], 
(i) Kolosov [48], (j) Damburg-Kolosov [42], (k) 
Anokhin- Ivanov [51], (l) Ivanov-Ho [54], (m) 
Rao, Liu and Li  [18], (n) OPT method, (o) – Fil-
ho et al [49], (p)- Popov et al [65,66].
ε Method Er, a.u. /2, a.u.
0.10 a1 -0.556 -

a2 -0.527 0.7500 10-2

b1 -0.52743 0.7250 10-2

b2 -0.52742 0.7270 10-2

c -0.527418 0.7269 10-2

d -0.527417 0.7270 10-2

f -0.527418 0.7269 10-2

g -0.527425 0.7271 10-2

h -0.527418 0.7269 10-2

i -0.527418 0.7269 10-2

j -0.526905 0.7170 10-2

1 -0.527423
-0.527418

0.7268 10-2 

0.7269 10-2

m -0.527418 0.7269 10-2

n -0.527419 0.7269 10-2

o -0.531090 -
p -0.5274 0.727 10-2

0.80 e -0.6304 0.5023
i -0.630415 0.50232
m -0.630415 0.50232
n -0.630416 0.50232

It is important to compare the theoretical val-
ues of the resonance energy and width for the 
H atom in the field ε = 16.8 kV/cm with experi-
mental data [4]. There is quite good agreement 
between theory and experiment. Note that our 
results are obtained in the first PT order, i.e. al-
ready the first PT order provides the physically 
reasonable results. Naturally its accuracy can be 
increased by an account of the next PT order. The 
range of validity of the proposed method which 

uses the Fermi golden rule is quite wide and it 
is not restricted to resonances lying far from the 
continuum boundary. 

Table 3. The energies and widths of the Stark 
resonances of the hydrogen atom (n=2,5). Nota-
tion: a, OPT calculation; b, Damburg and Ko-
losov (1976); c, Kolosov (1987); d, Benassi and 
Grecchi (1980); e, Telnov (1989); f, Popov et al 
(1990); Ex– experimental data 

(from Refs. [4, 42, 46,48,57,58,65,66]).

(n
 n

1 
n 2 

m
)

ε 
, a

.u
.

M
et

ho
d

Er
, a

.u
.

, a
.u

.

2 0 1 0 0,005 a 0.1426 0.102∙10-3

c 0.1426 0.106∙10-3

e 0.1426 0.106∙10-3

0,01 a 0.1661 0.108∙10-1

c 0.1661 0.109∙10-1

d 0.1661 0.109∙10-1

e 0.1661 0.109∙10-1

2 0 0 1 0.005 a 0.1272 0.267∙10-4

c 0.1272 0.262∙10-4

e 0.1272 0.262∙10-4

0.01 a 0.1345 0.637∙10-2

c 0.1345 0.628∙10-2

e 0.1345 0.628∙10-1

5 2 2 0 1.8∙10-4 a 0.2062 0.278∙10-5

b 0,2062 0.228∙10-5

f 0.2062 0.228∙10-5

f 0.2062 0.222∙10-5

15 10 4 0 3.27∙10-

6 a 1.9098∙10-3 2.782∙10-7

f 1.9095∙10-3 2.278∙10-7

Ex 1.91∙10-3 2.92∙10-7

4. Conclusions
In this paper we present the basises of a new 

uniform quantum-mechanical approach to the 
solution of the non-stationary state problems in-
cluding the DC strong-field Stark effect and also 
scattering problem. New OPT method allows suf-
ficiently exact calculating the complex EE and 
resonance widths and especially is destined for in-
vestigation of the spectral region of an atom near 
the new continuum boundary in a strong field. 
The essence of the method is the inclusion of the 
well known “distorted waves approximation” in 
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the frame of the formally exact PT.  The results 
of the calculation of the Stark resonance energies 
and widths for the hydrogen atom are presented 
and in a physically reasonable agreement with the 
best results of the alternative theoretical methods 
and experiment. It is noted that the zeroth model 
approximation, including the potential of a strong 
external electric field, can be implemented into 
the general formalism of the formally exact PT 
for many-electron atom [6,12,59-63,71-75].  The 
range of validity of the presented method which 
uses the Fermi golden rule is sufficiently wide 
and it is not restricted to resonances lying far 
from the continuum boundary. Let us conclude 
that the OPT method has been also successfully 
applied to correct description of the resonances 
of the Zeeman effect in a strong magnetic field, 
crossed electric and magnetic fields, the reso-
nances in molecular systems, as well as descrip-
tions of resonant states in nuclear systems such 
as the resonances of the compound nucleus and 
the resonances arising from the collision of heavy 
ions (nuclei), accompanied by electron-positron 
pairs production (look Refs. [6,79,82-90]).
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