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OPERATOR PERTURBATION THEORY TO HYDROGEN ATOM

IN A STRONG DC ELECTRIC FIELD

A consistent uniform quantum approach to the solution of the non-stationary state
problems including the DC strong-field Stark effect and also scattering problem is presented.
It is based on the operator form of the perturbation theory for the Schrédinger equation.
The method includes the physically reasonable distorted-waves approximation in the
frame of the formally exact quantum-mechanical procedure. The zero-order Hamiltonian
possessing only stationary states is determined only by its spectrum without specifying
its explicit form. The method allows calculating the resonance complex energies and
widths plus a complete orthogonal complementary of the scattering state functions. The
calculation results of the Stark resonance energies and widths for the hydrogen atom are
presented and compared with other theoretical data.

1. Introduction

The Stark effect [1] is one of the best known
problems in quantum mechanics, but at the same
time one of the most difficult (outside the weak-
field region) [1-8]. A new interest in this effect
has been stimulated in the last two decades. A
range of the interesting phenomena to be studied
includes: quasi-discrete state mixing; a zoo of the
Landau- Zener anticrossings in non-hydrogenic
(non-H) atoms; autoionization in non-H atoms;
the effects of potential barriers (shape resonanc-
es); new kinds of resonances above threshold etc
[1-63]. The dielectronic recombination involves
highly excited (Rydberg) atomic states, which are
very strongly affected by relatively weak fields
[3-6]. In fact these states provide the gateway for
ion-electron recombination processes. Now it is
well known that weak-field effects on Rydberg
states can cause the large changes in electron-ion
collision cross sections. One subject stands out
quite clearly: possible non-perturbative effects
of the electric fields on the autoionization states
responsible for dielectronic recombination. It is
of a great importance for a consistent treating the
different processes in a laser plasma, astrophysi-
cal environments etc [4-14]. Naturally in the last
two decades a great progress has been made on
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the Stark effect for the hydrogen atom as well as
for non-H atoms [2-62].

An external electric field shifts and broadens
the bound state atomic levels. The standard
quantum -mechanical approach relates complex
eigenenergies (EE) E=E, +i'/2 and complex ei-
genfunctions (EF) to the shape resonances. The
field effects drastically increase upon going from
one excited level to another. The highest levels
overlap forming a “new continuum” with lowered
boundary. The calculation difficulties inherent to
the standard quantum mechanical approach are
well known. Here one should mention the well-
known Dyson phenomenon. The Wentzel-Kram-
ers-Brillouin (WKB) approximation overcomes
these difficulties for the states lying far from the “
new continuum” boundary. Some modifications
of the WKB method [4,8,50,65,66] are intro-
duced in Stebbings and Dunning (1983), Kondra-
tovich and Ostrovsky (1982, 1984), Popov et al
(1988, 1990) and Glushkov, Ivanov and Letokhov
(1975, 1992), where the first theoretical estima-
tion of the effectiviness of the selective ioniza-
tion of the Rydberg atom using electric and laser
fields has been fulfilled. The usual WKB approx-
imation applicability is substantiated in the case
of a relatively weak electric field [2,3]. One can
show that the standard form of the WKB method



applicability condition can be reformulated as
the requirement that the examined resonances
be well separated one from other. The same is
so regarding the widespread asymptotic phase
method (Damburg and Kolosov 1976), based on
the Breit-Wigner parameterization for the asymp-
totic phase shift dependence on scattering energy
and the method by Luc-Koenig and Bachelier,
who have used a normalization constant [42,48].
Different calculational procedures are used in the
Pade and then Borel summation of the divergent
Rayleigh-Schrédinger perturbation theory (PT)
series (Franceschini et al 1985, Popov et al 1990)
and in the sufficiently exact numerical solution of
the difference equations following from expan-
sion of the wave function over finite basis (Bena-
ssi ans Grecchi 1980, Maquet et al 1983, Kolosov
1987, Telnov 1989, Anokhin-Ivanov 1994), com-
plex-scaling method [17-55]. It should be noted
that the latter has been extensively used to de-
scribe the resonance behavior in different atomic
and even molecular systems. Its mathematical
foundation is linked with the theory of dilatation
analyticity [27,28]. Surely, though the Hamil-
tonian of an atom in a DC electric field is not a
dilatational analytic operator, Reinhardt [44] has
performed the numerical experiments on the di-
agonalization of the complex-scaled Stark Hamil-
tonian for a hydrogen with a real L basis set. The
same method has been used by Cerjan et al. [40]
to get new data on the ground and low-excited
states of a hydrogen atom in a DC and AC fields.
Farrelly and Reinhardt [47] have used the com-
plex coordinate rotation method in combination
with numerical integration of the separated equa-
tion. Ivanov-Ho [54] have applied the method
for the Dirac Hamiltonian. Different applications
are reviewed in Refs. [53]. Hehenberger, Mcln-
tosh and E. Brindas (1974) [21] have applied the
Weyl’s theory to the Stark effect in the hydrogen
atom. They have shown that one of the interest-
ing features of Weyl’s theory is that it requires a
complex parameter and complex solutions to the
differential equations making it a powerful tool
for the treatment of resonance states [21]. Rittby,
Elander and Briandas (1981) [25] have applied the
Weyl’s theory and the complex-rotation method
to phenomena associated with a continuum spec-

trum. Brdndas and Froelich (1977) [23] have
shown that a complex scale transformation of the
time—dependent Schrédinger equation leads to
a symmetric EE value problem containing both
bound states and resonance (complex) EE values
as solutions. They have stated the extended virial
theorem and developed an original approach to
determination of the resonance eigenvalues by
means of elementary matrix manipulations. The
error estimates for the approximate complex ei-
genvalues of the dilated Schrédinger operator are
derived in Ref. [24], where the calculation data
for the resonances of the DC Stark effect in the
hydrogen are presented. In the complex-coordi-
nate method a dilation transformation is used to
make the resonance EF square integrable. The
resonance of nondilation analytic potentials can
be obtained numerically by using Simons exte-
rior-scaling procedures within the finite-basis-set
approximation [27,28]. The exterior-scaling pro-
cedure has been used only with direct numerical
integration methods [27-30]. The use of a finite
basis set in these calculations will enable one to
use numerical techniques developed for bound
states in calculating resonance positions and
widths for nondilation potentials [27-36]. Rao,
Liu and Li (1994) [18]) have studied theoretically
the DC strong-field Stark resonances by a com-
plex-scaling plus B-spline approach and shown
that the high accuracy is attributed to the good
stationarity behavior of eight trajectories with a
well-adjusted 8-spline basis. Rao and Li (1995)
[19] have also studied the behavior of the reso-
nances of a hydrogen atom in parallel magnetic
and electric fields with a complex scaling plus B-
spline method too and received a consistent data
on the corresponding resonance parameters in
dependence upon the ratio of the magnetic-field
strength to the electric-field strength. It is worth
to remind that the similar approaches have been
developed to describe the Zeemane resonances.
Namely, for hydrogen atoms in pure magnetic
fields, the properties of resonant states were cal-
culated by the complex scaling, the R matrix, the
operator PT (OPT) and other methods (look, for
example, [4-7]. The generalization of methods to
account for the resonance interference, non-H and
relativistic effects is still an important problem,
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though here a definite progress has been reached
too. One should mention such approaches as a
model potential method, quantum defect approxi-
mation, the OPT, complex scaling plus B-spline
method etc [3-19, 64-75]. Regarding the quan-
tum chaos phenomenon in atoms in electromag-
netic fields (look, for example, [76-79]) note that
this topic should not be considered here. Let us
only note that the approach presented below to-
gether with the various methods of the theory of
chaos in options [79-81] has been effectively used
to describe the chaotic behavior

of the hydrogen and non-H atoms in the mag-
netic and microwave fields.

Here a consistent uniform quantum-mechani-
cal approach to the solution of the non-stationary
state problems including the DC strong-field Stark
effect and also scattering problem is presented. It
allows calculation of complex EE and especially
is destined for investigation of the spectral re-
gion near the new continuum boundary. The es-
sence of the method is the inclusion of the well
known “distorted waves approximation” method
in the frame of the formally exact PT. The zero-
order Hamiltonian /| of this PT possesses only
stationary bound and scattering states. To over-
come formal difficulties, we define the zero-order
Hamiltonian by the set of orthogonal eigenfunc-
tions (EF) and EE without specifying the explicit
form of the corresponding zeroth-order potential.
To ensure rapid PT convergence, a physically rea-
sonable spectrum (EE and EF) must be chosen
as the zero order, similar to the “distorted waves”
method [6,56-58]. In a case of the optimal zeroth-
order spectrum, the PT smallness parameter is of

the order of T'/4, where T and E are the field
width and bound energy of the state level exam-
ined. The successive PT corrections can be ex-
pressed through the matrix elements of the total
Hamiltonian calculated between the zeroth-order
basis functions. This method is called the OPT.
We will define H so that it coincides with the to-
tal Hamiltonian H at ¢ =0 (e is the electric field
strength.) Let us emphasize that perturbation in
our theory does not coincide with the electric field
potential though they disappear simultaneously.
We also present a generalization of the OPT for
calculation of the DC strong field Stark effect in

22

the non-H atoms in an electric field [59-61]. The
difference between the atomic and Coulomb field
is taken into account by introducing the quantum
defects on a parabolic basis. The results of calcu-
lation of the Stark resonance energies and widths
for the H atom are listed and compared with other
theoretical and experimental data.

2 Operator perturbation theory for DC
strong-field Stark effect

2.1. DC strong —field Stark effect for the hy-
drogen atom

The Schrodinger equation for the electron
function taking into account the uniform electric
field and field of the nucleus (Coulomb units are

used: for length, 1 unit is #?/ze>m; for energy 1
unit is mze*e* /h*) is [6,57]:

[-(1 - N/Z) | r+V (1) + ez -12A-E]¥ =0, (1)

where £ is the electron energy, Z is the nu-
cleus charge, N is the number of electrons in the
atomic core (for the hydrogen atom: Z=1, N=0),
V_ is an model potential (for the hydrogen atom
V_=0). Firstly, we only deal with the Coulomb
part of the electron- atomic residue interaction.
The non-Coulomb part, as well as relativistic ef-
fects, can be approximately accounted for next
step. The separation of variables in the parabolic

coordinates (¢ =r+z, n=r—z, ¢=tan"'(y/x)):

P(e.h,@)=f (e)g(h)(ex h)™>exp(ime)/(2m)'*  (2)

transforms it to the system of two equations for
the functions f, g:

0,

AL 0L 1RE (B -N/Z)-1/4e(0r] f =
4 (3)

mp+-1 -
g+ \l g+ [12E+B, / 1+ /e (1) 1] g =0, (4)

coupled through the constraint on the separation
constants:

ﬂ1+ﬂ2:1 Q)



For the uniform electric field E(t ) =&. In
principle, the more realistic models can be consid-
ered in the framework of our approach. Potential
energy in equation (4) has the barrier. Two turn-

ing points for the classical motion along the 77
axis, f; and 7,, at a given energy E are the solu-
tions of the quadratic equation (S = f,, E=E,):

(6)
(7

t,={[ E*,- 4¢ (1-b)]'*-E }/e,
t,={-[E? - 4e (1-B)]*- E } /e, t<t,

Here and below ¢ denotes the argument com-
mon for the whole equation system. To simplify
the calculational procedure, the uniform electric
field ¢ in (3) and (4) should be substituted by the
function [57,58]:

(8)

e (t) :18{0—1) o +Z'j|

! tt 4+t
with sufficiently large r (r=1.5¢,). The function

g(7) practically coincides with the constant & in
the inner barrier motion region (#<t,) and disap-
pears at £>>¢,. The minimal acceptable value
of ¢ introduced in the spatial dependence of the
electric field, which does not influence the final
results, can be established experimentally. Thus,
the final results do not depend on the parameter
¢t (the further calculation has entirely confirmed
this fact). Besides the pure technical convenience,
the case of an asymptotically disappearing elec-
tric field is more realistic from the physical point
of view. Now we deal with the asymptotically
free (without electric field) motion of the ejected
electron along the /-axis. The corresponding ef-
fective wavenumber is:

k= (E/2 +et/4)">. 9)
The scattering states energy spectrum now

spreads over the range (— et / 2,+OO), com-

pared with (— o, + 00) in the uniform field. In
contrast to the case of a free atom in scattering
states in the presence of the uniform electric field
remain quantified at any energy £, i.e. only defi-

nite values of g, are possible. The latter are de-

termined by the confinement condition for the
motion along the s-axis. The same is true in our

case, but only for £ CL_l et ,+ l‘grj. The mo-
tion with larger E is no q&antiﬁe%i, stmilar to the
free atom case.

2.2 Energy and width of the Stark resonance

The total Hamiltonian H (g, v, ¢) does not
possess the bound stationary states. According to
OPT [6, 56-58]), one has to define the zero order
Hamiltonian H, so that its spectrum reproduces
qualitatively that of the initial one. In contrast to
H, it must have only stationary states. To calculate
the width G of the concrete quasistationary state in
the lowest PT order one needs only two zeroth—or-

der EF of H: bound state function ‘¥ (e, 1, )

and scattering state function ¥, (s, n, (p) with
the same EE. We solve a more general problem:
a construction of the bound state function along
with its complete orthogonal complementary of

scattering functions ¥, with E (—lm ,+ ooj.
2

First, one has to define the EE of the expected
bound state. It is the well known problem of states
quantification in the case of the penetrable barrier
[65,66]. Following [57], we solve the system (3)
and (4) with the total Hamiltonian A under the
conditions:

A0 at t —o, (10a)
ax(B, )/ DE=0 (10b)

with

x(b, E)=lim [ () + {g'() /Ky 41 (11)

The first condition ensures the finiteness of
motion along the ¢ -axis, the second condition
minimizes the asymptotic oscillation amplitude
for the function describing the motion along the
n -axis. These two conditions quantify the bound
energy E and separation constant g,. We elabo-
rated a special numerical procedure for this two-
dimensional eigenvalue problem. Our procedure
deals repeatedly with the solving of the system
of the ordinary differential equations (3) and (4)

with probe pairs of E, g, . The corresponding EF:
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Vel &1,0)7, (D2, ()" *exp(ime)(2n) > (12)

Here £, (¢) is the solution of (3) ( with the just
determined E, g,) at < (0,.0) and gg(r) is the
solution of (4) (with the same E, ) at r<¢, (in-
side barrier) and g¢(¢)=0 otherwise. These bound
state EE, eigenvalue g, and EF for the zero-order

Hamiltonian A, coincide with those for the to-
tal Hamiltonian # at &= 0, where all the states
can be classified due to the quantum numbers

n, n,,n,,m (principal, parabolic, azimuthal) con-
nected with E, g, m by the well known expres-

sions. We preserve the n, n,,m states classifica-
tion in the non-zero ¢ case. The scattering state
functions:

Vo (Cn@)= . (2)g, (1)) " *exp(imp) 2m) " (13)

must be orthogonal to the above defined bound
state function and to each other. In addition, these
functions must describe the motion of the ejected

electron, i.e. g, must satisfy the equation (4) as-
ymptotically. Following the OPT ideology [57],

we choose the next form of g, :
gE¢S(t) = g] (t) - Zz'gz(t) (14)
with f, and g (¢) satisfying the differential equa-

tions (3) and (4). The function g, () satisfies the
non-homogeneous differential equation, which
differs from (4) only by the right-hand term, dis-
appearing at r = « . The total equation system, de-
termining the scattering function, reads

P+ L o RE (B NIZ) 1174

t (15a)
et fEs =0,
g ML o DB B I+ 1Al 1)g) = 0,
t

(156)

o M o d (1 DB 87/ 1+ 148 (1] 22=225

1

(15¢)

(B +p,=1). As mentioned above there remains

motion quantification for 4'c [_l eT, + lgT ] )

At the given E’, the only quantum parameter g/
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is determined by the natural boundary condition:

fo—0att— oo Ofcourse: B =4, fi, = fu at
E' = E; only this case is needed in the particular
problem we deal with here. The coefficient z en-

sures the orthogonality condition <‘I’Eh |\PES> =0:

2’ = { [ld¢dn (& n) el Qgen (Mg ()}

(I agdn (&) fes(Qee (M2 () b (16)

One can check that
(Wes'lwErs)=0 for E#E"".

The imaginary part of state energy in the low-
est PT order is

ImE =172 = A< ¥y |H %> (17)

with the total Hamiltonian # . The state functions
v, and v, are assumed to be normalized to 1
and by the §(k-k’) condition, accordingly. The
action of # on v, is defined unambiguously by

(15):

(H-E’)y,=2|m|(¢ rf)-]jm(o gen (N2’
exp (imp)/[(2m)'" (&, a18)

CynlHly )= 1T dddn (S nf (9
F ed&)gm (1) 2,

The matrix elements (¥, |HW..) entering the
high-order PT corrections can be determined in
the same way. All the two-dimensional integrals
in (16)-(18) and the normalization coefficients
can be expressed through the next set of one-di-
mensional integrals:

L = dt ;2 ()",
L=ldt g, () g ()",
L= dt g1 ()™,
I=ldt g, (t)g (1) ",
Is =l dt g(t) g™,
L=[dtg,* ()i,

Iy =l dt g;* ()™,

(19)

calculated with the arbitrary normalized func-

tions fEb > 8m 5f2agzand fl :fEb > &1 = 8w - In



this notation

C=32m, N I71; 1,1, +1,1],

2 =1, + LI, + 11 (20)
with
N =lmxy 227" [ & (X0) +g ()]}
X(O)={E2 + (B-N/Z)It-E t/4}"*  (21)

Remember that arbitrary normalized state func-
tions are assumed in (20) and (21). The whole cal-
culational procedure at known resonance energy
E and separation parameter g, has been reduced
to the solution of one system of the ordinary dif-
ferential equations. This master system includes
the differential equations for the state functions
S s & s fu» i » as well as the equations for
the integrals /, — /. Thus, our calculational pro-
cedure is one-dimensional. The procedure is suffi-
ciently simple and realized as the numerical code
with using the fourth-order Runge—Kutta method
of solving the differential equations (the atomic
code “Superatom-ISAN-Stark™).

3 Calculation results and discussion

The calculation results for the Stark reso-
nances energies and widths of the ground state
hydrogen atom in the DC electric field with the
strength €=0.04, 0.08, 0.10, 0.80 a.u. are present-
ed in table 1 and 2. The comparison with earlier
similar results, obtained within the generalized
WKB approximation, summation of divergent PT
series, the numerical solution of the differential
equations following from expansion of the wave
function over finite basis, a complex scaling plus
B-spline calculation [15-51] shows quite accept-
able agreement. The calculation results of the
Stark resonances parameters for the excited state
H atom (n=2,5,15) for different strength values
are listed in table 3. The comparison with earlier
similar results, obtained within the summation of
divergent PT series, the numerical solution of the
differential equations with using the finite basis
expansion of the wave function again shows ac-
ceptable agreement.

Table 1. Energies, widths (a.u.)of Stark reso-
nances of ground state H atom (¢=0.04, 0.08 a.u.).
Notation: (al) Mendelson [15], (a2) Alexander
[17], (b1) Hehenberger- Mclntosh-Brandas [21],
(b2) Bréndas-Froelich [23], (¢) Benassi-Grecchi
[46], (d) Cerjan et al. [40], (e) Farrelly-Reinhardt
[47], (f) Franceschini-Greechi-Silverstone [45],
(g) Reinhardt [43], (h) Maquet-Chu-Reinhardt
[41], (1) Kolosov [48], (j) Damburg-Kolosov [42],
(k) Anokhin-Ivanov [51], (I) Ivanov-Ho (relativ-
istic and non-relativistic results respectively)
[54], (m) Rao- Liu-Li [18], (n) the OPT method
(our data), (o) — Filho et al [49].

€ Method | Er, a.u. /2, a.u.

0.04 | al -0.5038 -
a2 -0.5038 0.2x10°
bl -0.5037714 | 0.195x10°
b2 -0.5037715 | 0.191x107
c -0.5037716 | 0.1946x10°3
f -0.5037716 | 0.1946x10°°
] -0.5037716 | 0.195x10°
k -0.5038 0.248x10°°
1 -0.5037780 | 0.205x10~

-05037716 | 0.195x10°

m -05037716 | 0.1946x10°°
n -05037714 | 0.1945x10°3
0 -0503752 -

0.08 | al -0.5193 -
a2 -0.5175 0.230x102
bl -0.51756 0.227x1072
c -0.51756 0.2270x102
f -0.51756 0.2270x102
g -0.51756 0.2269x102
h -0.51756 0.2270x102
j -0.51749 0.2255%x10?
k -0.5176 0.220x10?
m -0.51756 0.2270x10?
n -0.51757 0.2270x102
0 -0.51745 -

25




Table 2. Energies and widths of the 1s H
atom Stark resonances (¢=0.10,0.8a.u.); Nota-
tion: (al) Mendelson [15], (a2) Alexander [17],
(bl) Hehenberger-Mclntosh-Brindas [21], (b2)
Bréindas-Froelich [23], (¢) Benassi-Grecchi [46],
(d) Cerjan et al. [40], (e) Farrelly-Reinhardt [47],
(f) Franceschini-Greechi-Silverstone [45], (g)
Reinhardt [43], (h) Maquet-Chu-Reinhardt [41],
(1) Kolosov [48], (j) Damburg-Kolosov [42], (k)
Anokhin- Ivanov [51], (1) Ivanov-Ho [54], (m)
Rao, Liu and Li [18], (n) OPT method, (o) — Fil-
ho et al [49], (p)- Popov et al [65,66].

uses the Fermi golden rule is quite wide and it
is not restricted to resonances lying far from the
continuum boundary.

Table 3. The energies and widths of the Stark
resonances of the hydrogen atom (n=2,5). Nota-
tion: a, OPT calculation; b, Damburg and Ko-
losov (1976); ¢, Kolosov (1987); d, Benassi and
Grecchi (1980); e, Telnov (1989); f, Popov et al
(1990); E — experimental data

(from Refs. [4, 42, 46,48,57,58,65,66]).

It is important to compare the theoretical val-
ues of the resonance energy and width for the
H atom in the field ¢ = 16.8 kV/cm with experi-
mental data [4]. There is quite good agreement
between theory and experiment. Note that our
results are obtained in the first PT order, i.e. al-
ready the first PT order provides the physically
reasonable results. Naturally its accuracy can be
increased by an account of the next PT order. The
range of validity of the proposed method which
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g Method | Er, a.u. I'/2,a.u. 0 5 o S )
~ ] >
0.10 |al -0.556 | - < 5 |2 ] 3
S - = "
a2 -0.527 0.7500x107 = © ] = . =
bl -0.52743 | 0.7250x102 | 2010  |0,005 a | 0.1426 |0.102:10°
b2 -0.52742 | 0.7270x10% c | 0.1426 [0.106:103
c -0.527418 | 0.7269x10? o e 8122? 818218?
5 , a . .108-10"
d -0.527417 | 0.7270x10 T o166l 10109107
f -0.527418 | 0.7269x107 d 0.1661 |0.109-10"
g -0.527425 | 0.7271x10° e | 0.1661 [0.109-10"
h 0527418 | 0.7269x102 | 12001 0.005 a | 0.1272 [0.267-10*
) ' ' - ¢ | 01272 ]0.262:10*
i -0.526905 | 0.7170x10> 0.01 a | 0.1345 [0.637-102
1 -0.527423 | 0.7268x102 c | 0.1345 ]0.628:10°
-0.527418 | 0.7269%10 ¢ 0.1345 0'628'10‘;
- 51 (5220 1.810% | a | 0.2062 [0.278-10-
m 0.527418 | 0.7269x10 b T 02062 1022810°
n -0.527419 0.7269><10'2 f 0.2062 0.228:10°%
0 -0.531090 | - £ | 02062 [0.222:10°
p -0.5274 ] 0.727x10” 151040 | 22710 4 |1.909810%|2.782:107
0.80 e -0.6304 0.5023 119095107 12.278107
1 -0.630415 | 0.50232 E 1.91-103 | 2.92-107
m -0.630415 | 0.50232
n -0.630416 | 0.50232 4. Conclusions

In this paper we present the basises of a new
uniform quantum-mechanical approach to the
solution of the non-stationary state problems in-
cluding the DC strong-field Stark effect and also
scattering problem. New OPT method allows suf-
ficiently exact calculating the complex EE and
resonance widths and especially is destined for in-
vestigation of the spectral region of an atom near
the new continuum boundary in a strong field.
The essence of the method is the inclusion of the
well known “distorted waves approximation” in



the frame of the formally exact PT. The results
of the calculation of the Stark resonance energies
and widths for the hydrogen atom are presented
and in a physically reasonable agreement with the
best results of the alternative theoretical methods
and experiment. It is noted that the zeroth model
approximation, including the potential of a strong
external electric field, can be implemented into
the general formalism of the formally exact PT
for many-electron atom [6,12,59-63,71-75]. The
range of validity of the presented method which
uses the Fermi golden rule is sufficiently wide
and it is not restricted to resonances lying far
from the continuum boundary. Let us conclude
that the OPT method has been also successfully
applied to correct description of the resonances
of the Zeeman effect in a strong magnetic field,
crossed electric and magnetic fields, the reso-
nances in molecular systems, as well as descrip-
tions of resonant states in nuclear systems such
as the resonances of the compound nucleus and
the resonances arising from the collision of heavy
ions (nuclei), accompanied by electron-positron
pairs production (look Refs. [6,79,82-90]).

References

1. J. Stark, Ann.Phys. 43, 965 (1914).

2. H.A. Bethe and E.E. Salpeter, Quantum
mechanics of One- and Two-Electron
Atoms (Springer, Berlin, 1957).

3. L.D. Landau and E. M. Lifshitz, Quan-
tum Mechanics (Pergamon, Oxford,
1977).

4. R.F. Stebbings and F. B. Dunning (ed),
Rydberg States of Atoms and Molecules
(Cambridge Univ. Press, N.-Y., 1983).

5. M.N. Nayfeh and C.W. Clark (ed),
Atomic Excitation and Recombination
in External Fields (NBS, Gaithersburg,
1984).

6. A. V. Glushkov, Atom in an Electro-
magnetic Field (KNT, Kiev, 2005),
pp-1-450.

7. V. S. Lisitsa, Phys.-Uspekhi 153, 369
(1987).

8. L. N. Ivanov and V. S. Letokhov, Quan-
tum Electron. 2, 585 (1975).

9. L. N. Ivanov and E.P.Ivanova, Atom.
Data Nucl. Data Tabl. 24, 95 (1979).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

A. V. Glushkov and L. N. Ivanov, Phys.
Lett. A 170, 33 (1992).

E. P. Ivanova and 1. P. Grant, J. Phys.B:
At. Mol. Opt. Phys. 31, 2871 (1998).
A. V. Glushkov, in: Advances in the
Theory of Quantum Systems in Chem-
istry and Physics. Series: Frontiers in
Theoretical Physics and Chemistry,
vol.26, ed. by K.Nishikawa, J. Maru-
ani, E.Brindas, G.Delgado-Barrio,
P.Piecuch (Berlin, Springer, 2012),
pp.-231-254.

N. B. Delone and M. V. Fedorov, Phys.-
Uspekhi. 158, 215 (1989).

A. J. F Siegert, Phys.Rev. 56, 750
(1939).

L. B. Mendelson, Phys. Rev. 176, 90
(1968).

A. D. Dolgov and A.V. Turbiner, Phys.
Lett. A77, 15 (1977).

M. H. Alexander, Phys. Rev. 178, 34
(1969).

J. Rao, W. Liu and B. Li, Phys. Rev. A
50, 1916 (1994).

J. Rao and B. Li, Phys. Rev. A 51, 4526
(1995).

H.-Y. Meng, Y.-X. Zhang, S. Kang, T.-
Y. Shi and M.-S. Zhan J. Phys. B: At.
Mol. Opt. Phys. 41, 155003 (2008).

M. Hehenberger, H.V. McIntosh and E.
Brindas, Phys. Rev. A 10, 1494 (1974).
M. Hehenberger, H. V. McIntosh and
E. Brindas, Phys. Rev. A 12, 1 (1975).
E. Brindas and P. Froelich, Phys. Rev.
A 16, 2207 (1977).

E. Bridndas, M. Hehenberger and
H. V. Mclntosh, Int. J.Quant.Chem. 9,
103 (1975).

M. Rittby, N. Elander and E. Bréndas,
Phys. Rev. A 24, 1636 (1981).

P. Froelich, E. R. Davidson, E. Brindas,
Phys. Rev. A 28, 2641 (1983).

N. Lipkin, N. Moiseyev and E. Brindas,
Phys. Rev. A 40, 549 (1989).

M. Rittby, N. Elander and E. Bréndas,
Int. J.Quant.Chem. 23, 865 (1983).

B. Simon, Phys.Lett. A 71, 211 (1979).
C.A. Nicolaides and D.R. Beck, Phys.
Lett. A 65, 11 (1978).

E. Brandas, P. Froelich, C. H. Obcemea,

27



28

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

N. Elander, M. Rittby, Phys. Rev. A 26,
3656 (1982).

E. Engdahl, E. Brindas, M. Rittby,
N. Elander, J. Math. Phys. 27, 2629
(1986)

E. Engdahl, E. Bridndas, M. Rittby
and N. Elander, Phys. Rev. A37, 3777
(1988).

Resonances. The Unifying Route To-
wards the Formulation of Dynamical
Processes - Foundations and Applica-
tions in Nuclear, Atomic and Molecu-
lar Physics, Series: Lecture Notes in
Physics, vol. 325, ed. by E. Brandas,N.
Elander (Springer, Berlin, 1989), pp.1-
564.

A. Scrinzi and N. Elander, J. Chem.
Phys. 98, 3866 (1993)

V. N. Ostrovsky and N. Elander, Phys.
Rev. A71, 052707 (2005)

J. M. Sigal, Commun. Math. Phys. 119,
287 (1988).

[.LW. Herbst and B. Simon, Phys. Rev.
Lett. 41, 67 (1978).

H. J. Silverstone, B. G. Adams, J. Cizek
and P.Otto, Phys. Rev. Lett. 43, 1498
(1979).

C. Cerjan, R. Hedges, C. Holt, W. P. Re-
inhardt, K. Scheibner and J. J. Wendo-
loski, Int.J.Quant.Chem. 14,393 (1978).
Magquet, S. I. Chu and W. P. Reinhardt,
Phys. Rev. A 27, 2946 (1983).

R. J. Damburg. and V.V. Kolosov,
J. Phys.B: At. Mol. Phys. 9, 3149
(1976).

E. Luc-Koenig and A. Bachelier,
J. Phys.B: At. Mol. Phys. 13, 1743
(1980).

W. P. Reinhardt, Int.J.Quant.Chem. 21,
133 (1982).

V. Franceschini, V. Grecchi and H.J. Sil-
verstone, Phys. Rev. A 32, 1338 (1985).
L. Benassi and V. Grecchi, J. Phys. B:
At. Mol. Phys. 13, 911-24 (1980).

D. Farrelly and W.P. Reinhardt, J. Phys.
B: At. Mol. Phys. 16, 2103 (1983).

V. V. Kolosov, J. Phys. B.: At. Mol.
Phys. 20, 2359 (1987).

Filho, A. Fonseca, H. Nazareno and
P. Guimaraes, Phys. Rev. A 42, 4008
(1990).

V. D. Kondratovich and V. N. Ostro-
vsky, J. Phys. B.: At. Mol. Phys. 17,

51.

52.

53.
54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

2011 (1984).

S. B. Anokhin and M. V. Ivanov, Opt.
Spectr. 59, 499 (1984).

D. A. Telnov, J. Phys. B.: At.Mol. Opt.
Phys. 22, 1399-403 (1989).

Y.-K. Ho, Phys.Rep. 99, 3 (1983).

I. A. Ivanov, and Y.-K. Ho, Phys.Rev. A
69, 023407 (2004).

R. Gonzalez-Férez and W. Schweizer,
in Quantum Systems in Chemistry and
Physics, Series: Progress in Theoretical
Chemistry and Physics, vol. 2/3, ed. by
A. Hernandez-Laguna, J. Maruani, R.
McWeeny, S.Wilson (Springer, Berlin,
2000), p. 17.

A. V. Glushkov and L. N. Ivanov, Proc.
of 3" Symposium on Atomic Spectros-
copy (Moscow-Chernogolovka, 1992).
A. V. Glushkov and L. N. Ivanov,
J.  Phys.B: At. Mol. Phys. 26, 1.379
(1993).

A. V. Glushkov, S. V. Malinovskaya,
S. V. Ambrosov, I. M. Shpinareva,
O. V. Troitskaya, J. Techn. Phys. 38,
215 (1997).

A. V. Glushkov, S. V. Ambrosov,
A. V. Ignatenko, D.A. Korchevsky,
Int.J.Quant. Chem. 99, 936 (2004).

A. V. Glushkov and A. V. Loboda,
J. Appl.Spectr. (Springer) 74, 305
(2007).

A. V. Glushkov, O. Yu. Kbhetselius,
A. V. Loboda, A.A. Svinarenko, in
Frontiers in Quantum Systems in Chem-
istry and Physics, Series: Progress in
Theoretical Chemistry and Physics,
vol. 18, ed. by S. Wilson, P.J. Grout., J.
Maruani, G. Delgado-Barrio, P. Piecuch
(Springer, Berlin, 2008), pp.523-588;
A. V. Glushkov, O. Khetselius, S. Ma-
linovskaya, Europ.Phys. Journ. T160,
195 (2008).

A. V. Glushkov, O. Yu. Khetselius,
A. A. Svinarenko and G.P.Prepelitsa,
in: Coherence and Ultrashort Pulsed
Emission, ed. F.J. Duarte. (Intech, Vi-
enna, 2011), pp.159-186.

M. L. Zimmerman, M.G. Littman,
M.M. Kash, D. Kleppner, Phys. Rev.
A20, 2251 (1979).

D.A. Harmin, Phys.Rev. A 26, 2656
(1982).

V. Popov, V. Mur, A. Sergeev and



67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

1.

82.

83.

V. Weinberg, Phys.Lett.A 149, 418, 425
(1990).

M. Grutter, O.Zehnder, T.Softley,
F.Merkt, J.Phys.B: At. Mol. Opt. Phys.
41, 115001 (2008).

E. Stambulchik and Y. Maron, J. Phys.
B: At. Mol. Opt. Phys. 41, 095703
(2008).

F. B. Dunning, J.J. Mestayer, C. O. Re-
inhold, S. Yoshida and J Burgdorfer, J.
Phys. B: At. Mol. Opt. Phys. 42, 022001
(2009).

H. C. Bryant, D. A.Clark, K. B. Butter-
field et al, Phys.Rev.A 27, 2889 (1983).
A. V. Glushkov, S. Ambrosov,
O. Yu. Khetselius, A. V. Loboda,
E. Gurnitskaya, in: Recent Advances
in Theoretical Physics and Chemistry
Systems, Series: Progress in Theoreti-
cal Chemistry and Physics, vol. 15, ed.
by J.-P. Julien, J. Maruani, D. Mayou, S.
Wilson, G. Delgado-Barrio (Springer,
Berlin, 2006), pp. 285-300.

Yu. Khetselius, J. Phys.: Conf.Ser. 397,
012012 (2012); Int.J.Quant.Chem. 109,
3330 (2009).

O. Yu. Khetselius, T. Florko, A. Svi-
narenko and T. Tkach, Phys.Scr. T153,
01437 (2013).

E. P. Ivanova, L. N. Ivanov, A. V. Glush-
kov and A.E. Kramida, Phys. Scr. 32,
512 (1985).

E. P. Ivanova and A. V. Glushkov,
J.Quant. Spectr. Rad. Tr. 36, 127 (1986).
F. Benvenuto, G. Casati and D.L. She-
pelyansky, Z.Phys.B. 94, 481 (1994).
A. Buchleitner and D. Delande, Phys.
Rev.A. 55, 1585 (1997).

T.F. Gallagher, M. Noel and M.W.
Griffith, Phys. Rev. A. 62, 063401
(2000).

A. V. Glushkov and S. V. Ambrosov,
J. Techn. Phys. 37, 347 (1996).

A.V. Glushkov, V. Khokhlov and
I. Tsenenko, Nonlin. Proc. Geophys.11,
285 (2004).

A. V. Glushkov, V. Khohlov, N. Loboda
and Yu. Bunyakova, Atm.Env. 42, 7284
(2008).

A. V. Glushkov, O. Yu. Kbhetselius,
S. V. Malinovskaya, Molec.Phys. 106,
1257 (2008).

A. V. Glushkov, V. D. Rusov, S. V. Am-

84.

85.

86.

87.

88.

89.

90.

brosov, A. V. Loboda, in New Projects
and New Lines of Research in Nuclear
Physics, ed. by G. Fazio, F. Hanappe
(World Sci., Singapore, 2003), pp. 126-
142.

A. V. Glushkov, in: Low Energy
Antiproton  Physics, vol.796, ed.
by D. Grzonka, R. Czyzykiewicz,
W. Oeclert, T. Rozek and P. Winter (AIP,
N.-Y., 2005), pp. 206-210.

A. V. Glushkov, in Meson-Nucleon
Physics and the Structure of the Nucle-
on, vol.2, ed. by S. Krewald, H. Mach-
ner (IKP, Juelich, Germany), SLAC
eConf C070910 (Menlo Park, CA,
USA, 2007), pp.111-117.

A. V. Glushkov, O. Yu. Khetselius,
A. V. Loboda and S.V. Malinovskaya,
in Meson-Nucleon Physics and the
Structure of the Nucleon, vol.2, ed. by
S. Krewald, H. Machner (IKP, Juelich,
Germany), SLAC eConf C070910
(Menlo Park, CA, USA, 2007), pp.118-
122.

A. V. Glushkov, O. Yu. Khetselius,
L. Lovett, E. P. Gurnitskaya, Yu. V. Du-
brovskaya, A. V. Loboda, Int.J. Mod.
Phys. A: Particles and Fields, Nucl.
Phys. 24, 611 (2009).

A. V. Glushkov O. Yu. Khetselius,
L. Lovett, in: Advances in the Theory
of Atomic and Molecular Systems:
Dynamics, Spectroscopy, Clusters,
and Nanostructures. Series: Progress
in Theoretical Chemistry and Physics,
vol. 20, ed. by P.Piecuch, J. Maruani, G.
Delgado-Barrio and S. Wilson (Spring-
er, Berlin, 2010), pp.125-151.

A. V. Glushkov, O. Yu. Khetselius,
A. A. Svinarenko, in: Advances in the
Theory of Quantum Systems in Chem-
istry and Physics. Series: Progress in
Theoretical Chemistry and Physics,
vol. 22, ed. by P. Hoggan, E. Bréndas,
J. Maruani, G. Delgado-Barrio and P.
Piecuch (Springer, Berlin, 2012), pp.51-
70.

A. V Glushkov, Relativistic Quantum
Theory. Quantum Mechanics of Atomic
Systems (Astroprint, Odessa, 2008),
pp-1-704.

The article is received in editorial 21.05.2013

29



UDC 539.184
A. V. Glushkov

OPERATOR PERTURBATION THEORY TO HYDROGEN ATOM IN A STRONG DC
ELECTRIC FIELD

Abstract.

A consistent uniform quantum approach to the solution of the non-stationary state problems includ-
ing the DC (Direct Current) strong-field Stark effect and also scattering problem is presented. It is
based on the operator form of the perturbation theory for the Schrodinger equation. The method allows
calculating the resonance complex energies and widths plus a complete orthogonal complementary of
the scattering state functions. The calculation results of the Stark resonance energies and widths for
the hydrogen atom are presented and compared with other theoretical data.

Key words: Stark effect, hydrogen atom, DC electric field, operator perturbation theory
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A. B. I'mywikoe

OIIEPATOPHAS TEOPUSA BO3MYUIEHUUA 1151 OMUCAHUS ATOMA BOJOPO/JIA B
IHHOCTOAHHOC JVIEKTPUYECKOM I10JIE

Pesrome.

[IpencrapieH HOBBIH, MOCIEAOBATEIBHBIN KBAHTOBBIM MOAXO/ K PELICHHUIO TPOOIEMbl HECTAIINO-
HapHBIX COCTOSTHUH, BKItoUast 3¢ dexT LlTapka 11 CUIBHBIX MMOJEH, a Takke 3a1auu paccestaus. [Toa-
XOJl OCHOBAaH Ha OIEpaTOPHON Teopuu Bo3MylleHul 1 ypaBHeHus LIpenunrepa. Meton nossossier
paccuuTaTh KOMIUIEKCHBIE SHEPTUU M IIMPHHBI PE30HAHCOB, a TAKXKE TMOJIHBIA OPTOTOHAIBHBIN HA0Op
(dbyHKIMNA cocTosTHUM paccesinus. [IpuBeneHbl pe3yabTaThl pacueTa SHEPTHil U IIUPHUH MTAPKOBCKUX
PE30HAHCOB Ul aTOMa BOAOPOA U IIPOBEJEHO CPABHEHUE C APYTUMHU TEOPETUUECKUMHU JaHHBIMU.

Kurouessble ciioBa: s¢dext Illrapka, atom Bogoposa, 3IeKTpHUecKoe Mojie, oreparopHasi TeOpHust
BO3MYIIICHU

YIK 539.184

O. B. I'ywkos

OIIEPATOPHA TEOPIA 3YPEHD IVISA OITUCY ATOMY BOJAHIO Y CTAJIOMY
EJEKTPUYHOMY I10JI1

Pesrome.

[IpencraBneHo HOBUIl MOCIOBHUI KBAaHTOBHMH MiAX1A 1O BUPILICHHS NPOOIeMHU HECTALllOHAPHUX
cTaHiB, BKIrouatoun epexr Llltapka aiist CHIIBHUX OB, @ TAKOX 3a/1adi po3ciroBaHHs. [1inxix 3acHo-
BaHMI Ha omeparopHiil Teopii 30ypens ans piBHsHHA [peninrepa. Merton m103Bossie po3paxyBaTu
KOMIUIEKCHI €Heprii Ta IIMPUHU PE30HAHCIB IUIIOC NMOBHUM OPTOrOHaJbHUI HaOlp (yHKIIN CTaHIB
po3scitoBanHs. [IpuBeneHi pe3ynbTaTd po3paxyHKy €Hepriil Ta MIUPHH IMTAPKIBCHKUX PE30HAHCIB IS
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