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NEW GEOMETRIC ATTRACTOR AND NEURAL NETWORKS
APPROACH TO STUDYING CHAOTIC PROCESSES IN PHOTOELECTRONICS

SYSTEMS

Nonlinear modelling of chaotic processes in systems and devices, including quantum
electronics and photo may be based on the concept of compact geometric attractors. We
present a new approach to analyze and predict the nonlinear dynamics of chaotic systems
based on the concept of geometric attractors, chaos theory methods and algorithms for neural
network simulation. Using information on the phase space evolution of the physical process
in time and Al simulation of neural network modelling techniques can be considered as one
of the fundamentally new approaches in the construction of global nonlinear models of the
most effective and accurate description of the structure of the corresponding attractor.

1. Introduction

It is very well known now that multiple quan-
tum-and photoelectronics systems and devices
could demonstrate the typical chaotic behaviour
[1-2]. One could remind here laser and differ-
ent quantum generators, radio-technical devices,
multi-element semiconductors etc. To date, the
obvious is the fact that the overwhelming number
of physical and technical systems are formally
very complex, and this feature is manifested at
different spatial and temporal scale levels [1-11].
Naturally, the task list for studying the dynamics
of complex systems is not limited to the above
examples. It is not difficult to understand that ex-
amples of such systems are the chemical systems,
biological populations, and finally, cybernetical
(neurocybernetical) and communication system
and its subsystems.

Most important, the fundamental issue in the
description of the dynamics of the system is its
ability to forecast its future evolution, i.e. predict-
ability of behavior. Recently, the theory of dy-
namical systems is intensively developed, and,
in particular, speech is about the application of
methods of the theory to the analysis of complex
systems that provide description of their evolu-

tionary dynamics by means solving system of dif-
ferential equations. If the studied system is more
complicated then the greater the equations is nec-
essary for its adequate description. Meanwhile,
examples of the systems described by a small
amount of equations, are known nevertheless,
theses systems exhibit a complicated behavior.
Probably the best-known examples of such sys-
tems are the Lorenz system, the Sinai billiard, etc.
They are described, for example, three equations
(i.e., in consideration included three independent
variables), but the dynamics of their behavior over
time shows elements of chaos (so-called “deter-
ministic chaos”). In particular, Lorentz was able
to identify the cause of the chaotic behavior of the
system associated with a difference in the initial
conditions. Even microscopic deviation between
the two systems at the beginning of the process
of evolution leads to an exponential accumula-
tion of errors and, accordingly, their stochastic
divergence. During the analysis of the observed
dynamics of some characteristic parameters of
the systems over time it is difficult to say to what
class belongs to the system and what will be its
evolution in the future. Many interesting exam-
ples can be reminded in the modern sstatistical
physics, physics of non-ordered semiconductors
etc.
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In recent years for the analysis of time series of
fundamental dynamic parameters there are with
varying degrees of success developed and imple-
mented a variety of methods, in particular, the
nonlinear spectral and trend analysis , the study
of Markov chains, wavelet and multifractal analy-
sis, the formalism of the matrix memory and the
method of evolution propagators etc. Most of the
cited approaches are defined as the methods of a
chaos theory. In the theory of dynamical systems
methods have been developed that allow for the
recording of time series of one of the parameters
to recover some dynamic characteristics of the
system. In recent years a considerable number of
works, including an analysis from the perspective
of the theory of dynamical systems and chaos,
fractal sets, is devoted to time series analysis of
dynamical characteristics of physics and other
systems [1-11]. In a series of papers [12-15] the
authors have attempted to apply some of these
methods in a variety of the physical, geophysi-
cal, hydrodynamic problems. In connection with
this, there is an extremely important task on de-
velopment of new, more effective approaches to
the nonlinear modelling and prediction of chaotic
processes in physical, (in particular, quantum- and
photo-electronics) systems. In this work we pre-
sent an advanced approach to analysis and fore-
casting nonlinear dynamics of chaotic systems,
based on conceptions of a geometric attractor and
neural networks modelling [11,16].

2. New approach to analysis of chaotic
processes

The basic idea of the construction of our ap-
proach to prediction of chaotic properties of com-
plex systems is in the use of the traditional concept
of'a compact geometric attractor in which evolves
the measurement data, plus the implementation of
neural network algorithms. The existing so far in
the theory of chaos prediction models are based
on the concept of an attractor, and are described
in a number of papers (e.g. [1-10]). The meaning
of the concept is in fact a study of the evolution of
the attractor in the phase space of the system and,
in a sense, modelling (“guessing”) time-variable
evolution..
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From a mathematical point of view, it is a
fact that in the phase space of the system an or-
bit continuously rolled on itself due to the action
of dissipative forces and the nonlinear part of the
dynamics, so it is possible to stay in the neighbor-
hood of any point of the orbit y (n) other points
of the orbit y" (n), r = 1, 2, ..., N,, which come
in the neighborhood y (n) in a completely differ-
ent times than n. Of course, then one could try
to build different types of interpolation functions
that take into account all the neighborhoods of the
phase space and at the same time explain how the
neighborhood evolve from y (n) to a whole fam-
ily of points about y (n+1). Use of the informa-
tion about the phase space in the simulation of
the evolution of some physical (geophysical etc.)
process in time can be regarded as a fundamental
element in the simulation of random processes.

In terms of the modern theory of neural sys-
tems, and neuro-informatics (e.g. [11]), the pro-
cess of modelling the evolution of the system
can be generalized to describe some evolutionary
dynamic neuro-equations (miemo-dynamic equa-
tions). Imitating the further evolution of a com-
plex system as the evolution of a neural network
with the corresponding elements of the self-study,
self- adaptation, etc., it becomes possible to sig-
nificantly improve the prediction of evolutionary
dynamics of a chaotic system. Considering the
neural network (in this case, the appropriate term
“geophysical” neural network) with a certain
number of neurons, as usual, we can introduce the
operators S, synaptic neuron to neuron u, u, while
the corresponding synaptic matrix is reduced to
a numerical matrix strength of synaptic connec-
tions: W = | W, | |. The operator is described by
the standard activation neuro-equation determin-
ing the evolution of a neural network in time:

N
s, = Sign(z w,s, —0,), (1)
j=1

where 1<i<N.

Of course, there can be more complicated
versions of the equations of evolution of a neu-
ral network. Here it is important for us another
proven fact related to information behavior neu-
ro-dynamical system. From the point of view of



the theory of chaotic dynamical systems, the state
of the neuron (the chaos-geometric interpretation
of the forces of synaptic interactions, etc.) can be
represented by currents in the phase space of the
system and its the topological structure is obvi-
ously determined by the number and position of
attractors. To determine the asymptotic behavior
of the system it becomes crucial information as-
pect of the problem, namely, the fact of being the
initial state to the basin of attraction of a particu-
lar attractor.

Modelling each physical attractor by a re-
cord in memory, the process of the evolution of
neural network, transition from the initial state
to the (following) the final state is a model for
the reconstruction of the full record of distorted
information, or an associative model of pattern
recognition is implemented. The domain of at-
traction of attractors are separated by separatrices
or certain surfaces in the phase space. Their struc-
ture, of course, is quite complex, but mimics the
chaotic properties of the studied object. Then, as
usual, the next step is a natural construction pa-
rameterized nonlinear function F (x, &), which
transforms:

y(n) = y(n+ 1) =F(y(n), a),

and then to use the different ( including neural
network) criteria for determining the parameters
a (see below). The easiest way to implement
this program is in considering the original
local neighborhood, enter the model(s) of the
process occurring in the neighborhood, at the
neighborhood and by combining together these
local models, designing on a global nonlinear
model. The latter describes most of the structure
of the attractor.

Although, according to a classical theorem
by Kolmogorov-Arnold -Moser, the dynamics
evolves in a multidimensional space, the size and
the structure of which is predetermined by the
initial conditions, this, however, does not indicate
a functional choice of model elements in full
compliance with the source of random data. One
of the most common forms of the local model is
the model of the Schreiber type [3] (see also [10]).

3. Construction of the model prediction

Nonlinear modelling of chaotic processes is
based on the concept of a compact geometric at-
tractor, which evolve with measurements. Since
the orbit is continually folded back on itself by the
dissipative forces and the non-linear part of the
dynamics, some orbit points y'(k), = 1,2, ..., N,
can be found in the neighbourhood of any orbit
point y(k), at that the points y’'(k) arrive in the
neighbourhood of y(k) at quite different times
than k. Then one could build the different types
of interpolation functions that take into account
all the neighborhoods of the phase space, and ex-
plain how these neighborhoods evolve from y (n)
to a whole family of points about y (n + 1). Use of
the information about the phase space in model-
ling the evolution of the physical process in time
can be regarded as a major innovation in the mod-
elling of chaotic processes.

This concept can be achieved by construct-
ing a parameterized nonlinear function F(x, a),
which transform y(n) to y(n+1)=F(y(n), a), and
then using different criteria for determining the
parameters a. Further, since there is the notion of
local neighborhoods, one could create a model
of the process occurring in the neighborhood,
at the neighborhood and by combining together
these local models to construct a global nonlinear
model that describes most of the structure of the
attractor.

Indeed, in some ways the most important de-
viation from the linear model is to realize that the
dynamics evolve in a multidimensional space, the
size and the structure of which is dictated by the
data. However, the data do not provide “hints” as
to which model to select the source to match the
random data. And the most simple polynomial
models, and a very complex integrated models
can lead to the asymptotic time orbits of strange
attractors, so for part of the simulation is connect-
ed with physics. Therefore, physics is “reduced”
to fit the algorithmic data without any interpre-
tation of the data. There is an opinion that there
is no algorithmic solutions on how to choose a
model for a mere data.

As shown Schreiber [3], the most common
form of the local model is very simple :
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d
s(n+An)=al"” + Z a;")s(n -(j-D1)
= )

where A n - the time period for which a forecast.

The coefficients ¢!, may be determined by a

least-squares procedure, involving only points
s(k) within a small neighbourhood around the
reference point. Thus, the coefficients will
vary throughout phase space. The fit procedure
amounts to solving (d, + 1) linear equations for
the (d, + 1) unknowns.

When fitting the parameters a, several prob-
lems are encountered that seem purely technical
in the first place but are related to the nonlinear
properties of the system. If the system is low-
dimensional, the data that can be used for fitting
will locally not span all the available dimensions
but only a subspace, typically. Therefore, the lin-
ear system of equations to be solved for the fit
will be ill conditioned. However, in the presence
of noise the equations are not formally ill-condi-
tioned but still the part of the solution that relates
the noise directions to the future point is meaning-
less . Note that the method presented here is not
only because, as noted above, the choice of fitting
requires no knowledge of physics of the process
itself. Other modelling techniques are described,
for example, in [3,10].

Assume the functional form of the display is
selected, wherein the polynomials used or other
basic functions. Now, we define a characteristic
which is a measure of the quality of the curve fit
to the data and determines how accurately match
y (k + 1) with F (y (k), a), calling it by a local
deterministic error:

ep(k) =y(k+ 1) — F(y(k), a). 3)

The cost function for this error is called W (¢).
If the mapping F (y, a), constructed by us, is local,
then one has for each adjacent to y (k) point, y ©
k) (r=1,2,.,N),

(r)

D" (k)= y(r, k+ 1) - F(y"(k), 2),  (4)

where y (r, k + 1) - a point in the phase space
which evolves y (r, k). To measure the quality of
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the curve fit to the data, the local cost function is
given by

(r)(k)|

W (e, k) = —=!

S [y~ (y ()]
zy y )

and the parameters identified by minimizing W
(g, k), will depend on a.

Furthermore, formally the neural network
algorithmislaunched,inparticular,in orderto make
training the neural network system equivalent to
the reconstruction and interim forecast the state
of the neural network (respectively, adjusting the
values of the coefficients). The starting point is a
formal knowledge of the time series of the main
dynamic parameters of a chaotic system, and
then to identify the state vector of the matrix of
the synaptic interactions ||Wij|| etc. Of course, the
main difficulty here lies in the implementation of
the process of learning neural network to simulate
the complete process of change in the topological
structure of the phase space of the system and
use the output results of the neural network to
adjust the coefficients of the function display. The
complexity of the local task, but obviously much
less than the complexity of predicting the original
chaotic processes in physical or other dynamic
systems.

4. Conclusions

Here we have considered an new approach to
nonlinear modelling and prediction of chaotic
processes in physical and other systems which is
based on two key functional elements. Besides
using other elements of starting chaos theory
method the proposed approach includes the ap-
plication of the concept of a compact geometric
attractor, and one of the neural network algo-
rithms, or, in a more general definition of a model
of artificial intelligence. The meaning of the lat-
ter is precisely the application of neural network
to simulate the evolution of the attractor in phase
space, and training most neural network to predict
(or rather, correct) the necessary coefficients of
the parametric form of functional display.
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GEOMETRIC ATTRACTOR AND NEURAL NETWORKS APPROACH TO STUDYING
CHAOTIC PROCESSES IN PHOTOELECTRONICS SYSTEMS

Abstract

Nonlinear modelling of chaotic processes in systems and devices, including quantum electronics
and photo may be based on the concept of compact geometric attractors. We present a new approach
to analyze and predict the nonlinear dynamics of chaotic systems based on the concept of geometric
attractors, chaos theory methods and algorithms for neural network simulation. Using information on
the phase space evolution of the physical process in time and simulation of neural network model-
ling techniques can be considered as one of the fundamentally new approaches in the construction
of global nonlinear models of the most effective and accurate description of the structure of the cor-
responding attractor.
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0. IO. Xeyenuyc

HOBBIN TOIXO/I K N3YUEHUIO XAOTHYECKHUX ITPOIIECCOB BCUCTEMAX ®OTO-
AJIEKTPOHUKHU HA OCHOBE KOHHEINIUU '’EOMETPUYECKUX ATTPAKTOPOB U
HEWPOHHO-CETEBOI'O MOJIEJIMPOBAHUSA

Pesrome

Henunelinoe MonenupoBaHUe Xa0TUYECKUX MTPOLIECCOB B CUCTEMAX U YCTPOMCTBAX, B YACTHOCTH,
KBaHTOBOW- M (DOTOAIEKTPOHUKH, MOKET ObITh OCHOBAHO Ha KOHIIETIIMH KOMIIAKTHBIX F€OMETpHYe-
CKHX aTTpaKkTOpOB. MBI MpPEACTaBIsAEM HOBBIA MOAXO K aHAJIN3Y W IPOTrHO3UPOBAHUIO HEIIMHEUHOU
JUHAMUKHU XaOTUYECKUX CUCTEM, OCHOBAHHBIN HA KOHIIENIIMU F€OMETPUYECKUX aTTPAKTOPOB, METO-
Jax TEOPUH Xaoca M aIrOpuTMax HEWpOCeTeBOro MonxenupoBanus. Vcnonb3oBaHrne HHPOPMAITUH O
($a30BOM MPOCTPAHCTBE PBONIOUUHN (PU3UUECKOTO TPOIIEcca BO BPEMEHH U €€ MMHUTALUS METOaMH
HEHUPOCETEBOI0 MOJEIUPOBAHNS MOKET PACCMATPUBATHCS B KAYECTBE OJJHOM M3 MPUHLMUIINAIBLHO HO-
BBIX U TpHU MOCTPOCHUU IN0OANBHON HEMMHEWHOW Mozenu Hanbonee 3(h(heKTUBHOTO U TOYHOTO
OIUCAHMS CTPYKTYPBI COOTBETCTBYIOIIETO aTTPAKTOPa (PU3UIECKOTO MpoIiecca.

KurroueBble €10Ba: CUCTEMBI 2JIEKTPOHUKH, XAaOTHUECKHUE MPOLECCHI, TEOMETPUYECKUH aTTPaKkTop,
HEHUPOCETEBOM MOAXO.
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VK 681.322
0. I0. Xeyenuyc

HOBHWMH MIAXIJ 10 BABUEHHSI XAOTUYHUX MPOIECIB B CUCTEMAX ®OTO-
EJEKTPOHIKH HA OCHOBI KOHUEMNIII TEOMETPUYHUX ATPAKTOPIB I
HEMPOHHO- MEPEKEBOI'O MOJIEJIFOBAHHS

Pe3rome

Hemniniitne MoenoBaHHSI XaOTHYHUX MPOIIECIB B CUCTEMAaxX Ta MpUJIaax, 30KpeMa, KBaHTOBOI- Ta
(hOTO eNeKTPOHIKH, MOXKE OyTH 3aCHOBAHO Ha KOHIICTIIIIT KOMITAKTHUX T€OMETPUYHHX aTPakTopiB. Mu
MPEACTABISIEMO HOBHM X1/ 10 aHAJI3y Ta MPOTHO3YBAaHHS HEMHINHOT AMHAMIKH XaOTHYHHX CHC-
TeM, 3aCHOBAHMX Ha KOHIIEMII] TeOMETPUYHUX aTPaKTOPiB, METO/IaX TEOPil XaoCy Ta aJITOPUTMAaxX He-
HpOMEepe)eBOTO MOZCITIOBaHH. Bukopuctanus iHdopmarii mpo ¢a3zoBuid mpocTip eBOMOIT hi3nd-
HOTO TIPOIIeCy y Yaci Ta ii iMiTaIlis MeToAaMu HEHPOMEPEKEBOTO MOJICITFOBAHHS MOXE PO3TIISIIaTUCS
B SIKOCTI OJTHI€T 3 TPUHITUIIOBO HOBHUX 1/IeH MU MOOYI0BI I7100aIbHOT HENIHIMHOT MO/IeNT HaHOIbII
€(EKTUBHOTO Ta TOYHOTO OMHUCY CTPYKTYPH BIMOBITHOTO aTTPAKTOPA.

Kuio4oBi cjioBa: cucteMu €1eKTPOHIKH, XaOTUYHI MPOIECH, TEOMETPUYHUN aTpakTop, HeHpome-
peXKEBUHN TIX1T

37



