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NONLINEAR DYNAMICS OF QUANTUM AND LASER SYSTEMS WITH 
ELEMENTS OF A CHAOS

Nonlinear chaotic dynamics of the quantum and laser systems is studied with using ad-
vanced techniques such as a wavelet analysis, multi-fractal formalism, mutual information 
approach, correlation integral analysis, false nearest neighbour algorithm, the Lyapunov ex-

analysis of the oscillations 
in a grid of two autogenerators and single-mode laser with the nonlinear absorption cell
shows that the systems exhibit a nonlinear behaviour with elements of a low-dimensional 
chaos.

1. Introduction

Every science purposes predicting a future state 
of system under consideration. Consequently, the 

possible to predict a future behaviour of process 
using its past states?” Conventional approach ap-
plied to resolve this problem consists in building 
an explanatory model using an initial data and 
parameterizing sources and interactions between 
process properties. Unfortunately, that kind of 

-
-

es and/or interactions of process cannot always 

of prediction, time series is considered as random 
realization, when the randomness is caused by a 
complicated motion with many independent de-
grees of freedom. Chaos is alternative of random-
ness and occurs in very simple deterministic sys-
tems. Although chaos theory places fundamental 
limitations for long-rage prediction (see e.g. [1-9] 

ex facte random data can contain simple deter-
ministic relationships with only a few degrees of 
freedom. The systematic study of chaos is of re-
cent date, originating in the 1960s. One important 
reason for this is that linear techniques, so long 

dominant within applied mathematics and the 
natural sciences, are inadequate when considering 
chaotic phenomena since the amazingly irregular 
behaviour of some non-linear deterministic sys-
tems was not appreciated and when such behav-
iour was manifest in observations, it was typically 
explained as stochastic. Starting from the mete-
orologist Edward Lorenz, who observed extreme 
sensitivity to changes to initial conditions of a 
simple non-linear model simulating atmospheric 

-
proach relies heavily on the computational study 
of chaotic systems and includes methods for in-
vestigating potential chaotic behaviour in obser-

of physics, chemistry, biology, geosciences etc 
have appeared, in which chaos theory was ap-
plied to a great number of dynamical systems, 
including those are originated from nature. Chaos 
theory establishes that apparently complex irreg-
ular behaviour could be the outcome of a simple 
deterministic system with a few dominant non-
linear interdependent variables. The past decade 
has witnessed a large number of studies employ-
ing the ideas gained from the science of chaos to 
characterize, model, and predict the dynamics 
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The outcomes of such studies are very encourag-
ing, as they not only revealed that the dynamics 
of the apparently irregular phenomena could be 
understood from a chaotic deterministic point of 
view but also reported very good predictions us-
ing such an approach for different systems. 

In a case of quantum systems, using of cha-
os constructions may seem self-contradictory in 

associates chaos, a purely classical notion, with 
quantum physics. Furthermore it implies that this 
association, which as we will see refers tradition-
ally to the study of low-D non-interacting quan-
tum systems, will be considered in the context 
of many-body physics [6]. In any case quantum 
chaos now mainly refers to the study of the con-
sequences, for a quantum system, of the more or 
less chaotic nature of the dynamics of its classical 
analogue. It has followed two main avenues. The 

-
tions in the spirit of Gutzwiller’s trace formulae, 
hich provides a link between a quantum system 
and its 
the Bohigas-Giannoni-Schmit conjecture or relat-
ed approaches Peres, which states that the spec-

be described using the proper ensembles of ran-
dom matrices [6]. Some of the beauty of quantum 
chaos is that it has developed a set of tools which 
have found applications in a large variety of dif-
ferent physical contexts, ranging from atomic, 

a modern quantum electronics and laser physics 
etc there are many systems and devices (such as 

dynamics of which can exhibit  chaotic behaviour. 
-

proximation as a grid of autogenerators (quantum 

In this chapter we will study a non-linear chaotic 
dynamics of some quantum generator and laser 
systems with using advanced generalized tech-
niques such as the non-linear analysis methods 
to dynamics, such as the wavelet analysis, multi-
fractal formalism, mutual information approach, 
correlation integral analysis, false nearest neigh-

-

sis, and surrogate data method etc (see details in 

2. Methods of a chaos theory in studying 
dynamics of the complex  systems

2.1 Introducing remarks

Let us formally consider scalar measurements 
( (t0 + Dt ( t0 is the start time, 

Dt is the time step, and is  the number of the 
measurements. In a general case, (
series, particularly the amplitude level. Since 
processes resulting in the chaotic behaviour are 
fundamentally multivariate, it is necessary to re-
construct phase space using as well as possible 
information contained in the (

Such a reconstruction results in a certain set 
of -dimensional vectors y( -
lar measurements. Packard et al. [18] introduced 
the method of using time-delay coordinates to re-
construct the phase space of an observed dynami-
cal system. The direct use of the lagged variables 
(

results in a coordinate system in which the struc-
ture of orbits in phase space can be captured. Then 
using a collection of time lags to create a vector in 
 dimensions,

y( ( ( ( ( + (

the required coordinates are provided. In a non-
linear system, the ( + j
nonlinear combination of the actual physical vari-
ables that comprise the source of the measure-
ments. The dimension  is called the embedding 
dimension, . Example of the Lorenz attractor 
given by Abarbanel et al. [1,19] is a good choice 

2.2 Choosing time lag

According to Mañé and Takens [20,21],  any 
time lag will be acceptable is not terribly use-
ful for extracting physics from data. If t is cho-

-
merical value that they cannot be distinguished 
from each other. Similarly, if t is too large, then 
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-
pendent of each other in a statistical sense. Also, 
if t is too small or too large, then the correlation 
dimension of attractor can be under- or overesti-
mated respectively [7]. It is therefore necessary to 

position between above cases. First approach is to 
compute the linear autocorrelation function
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and to look for that time lag where C -
es through zero. This gives a good hint of choice 
for t at that ( + j ( + (j
independent. However, a linear independence 
of two variables does not mean that these vari-
ables are nonlinearly independent since a non-
linear relationship can differs from linear one. It 
is therefore preferably to utilize approach with a 
nonlinear concept of independence, e.g. the av-

mutual information can be described as follows 
[5,7,13]. Let there are two systems,  and , with 
measurements i and . The amount one learns 
in bits about a measurement of i from measure-
ment of  is given by arguments of information 
theory [5] 

where the probability of observing  out of the set 
of all  is ( i
in a measurement  is ( i -
ability of the measurement of  and  is ( i,
The mutual information  of two measurements i
and  is symmetric and non-negative, and equals 
to zero if only the systems are independent. The 
average mutual information between any value i
from system  and  from  is the average over 
all possible measurements of ( i,

-
tions from a certain physical system, let us think 
of the sets of measurements (  and of 
the measurements a time lag t later, (

 set. The average mutual information between 
observations at  and + t is then

Now we have to decide what property of 
we should select, in order to establish which 
among the various values of t we should use in 
making the data vectors y(
been suggested, as a prescription, that it is nec-

of -

autocorrelation function analysis not provides us 
with any value of t. Such an analysis can be cer-
tainly extended to values exceeding 1000, but it 
is known that an attractor cannot be adequately 
reconstructed for very large values of t. The mu-
tual information function usually [5] exhibits an 

followed more slow decrease before attaining 

One could remind that the autocorrelation 
function and average mutual information can be  
considered as analogues of the linear redundancy 
and general redundancy, respectively, which was 
applied in the test for nonlinearity. If a time se-
ries under consideration have an -dimensional
Gaussian distribution, these statistics are theoreti-
cally equivalent as it is shown in Ref. [22]. The 
general redundancies detect all dependences in 
the time series, while the linear redundancies are 
sensitive only to linear structures. Further, a pos-
sible nonlinear nature of process resulting in the 
vibrations amplitude level variations can be con-
cluded.

,
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2.3 Choosing embedding dimension. 
Correlation integral

The goal of the embedding dimension determi-
nation is to reconstruct a Euclidean space  large 
enough so that the set of points  can be unfolded 
without ambiguity. In accordance with the embed-
ding theorem, the embedding dimension, , must 
be greater, or at least equal, than a dimension of 
attractor, , i.e. > . In other words, we can 
choose a fortiori large dimension , e.g. 10 or 
15, since the previous analysis provides us pros-
pects that the dynamics of our system is probably 
chaotic. However, two problems arise with work-
ing in dimensions larger than really required by 
the data and time-delay embedding [1,7,13,19]. 
First, many of computations for extracting inter-
esting properties from the data require searches 
and other operations in  whose computational 
cost rises exponentially with . Second, but more 

presence of noise or other high dimensional con-
tamination of the observations, the extra dimen-
sions are not populated by dynamics, already cap-
tured by a smaller dimension, but entirely by the 
contaminating signal. In too large an embedding 
space one is unnecessarily spending time work-
ing around aspects of a bad representation of the 

is therefore necessary to determine the dimension 
.
There are several standard approaches to re-

construct the attractor dimension (see, e.g., 

methods only. The correlation integral analysis 
is one of the widely used techniques to investi-
gate the signatures of chaos in a time series. The 
analysis uses the correlation integral, C(r -
tinguish between chaotic and stochastic systems. 
To compute the correlation integral, the algorithm 
of Grassberger and Procaccia [23] is the most 
commonly used approach. According to this al-
gorithm, the correlation integral is 

where H is the Heaviside step function with 
H( > 0 and H( £ 0, r is the 

radius of sphere centered on yi or yj, and  is the 
number of data measurements. If the time series 
is characterized by an attractor, then the integral 
C(r r given by

r
rCd

N
r log

)(loglim
0

,

where  is correlation exponent that can be de-
termined as the slop of line in the coordinates 
log C(r r
straight line over a certain range of r, called the 
scaling region. 

If the correlation exponent attains saturation 
with an increase in the embedding dimension, 
then the system is generally considered to ex-
hibit chaotic dynamics. The saturation value of 

-
lation dimension ( 2 -
est integer above the saturation value provides 
the minimum or optimum embedding dimension 
for reconstructing the phase-space or the number 
of variables necessary to model the dynamics of 
the system. On the other hand, if the correlation 
exponent increases without bound with increase 
in the embedding dimension, the system under 
investigation is generally considered stochastic. 
There are certain important limitations in the use 
of the correlation integral analysis in the search 
for chaos. For instance, the selection of inap-
propriate values for the parameters involved in 
the method may result in an underestimation (or 

-
sions could be observed even for a stochastic 
process. To verify the results obtained by the cor-
relation integral analysis, we use surrogate data 
method.

The method of surrogate data [1,7,19] is an 
approach that makes use of the substitute data 
generated in accordance to the probabilistic struc-
ture underlying the original data. This means that 
the surrogate data possess some of the proper-
ties, such as the mean, the standard deviation, 
the cumulative distribution function, the power 
spectrum, etc., but are otherwise postulated as 

hypothesis. Here, the null hypothesis consists of a 
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candidate linear process, and the goal is to reject 
the hypothesis that the original data have come 
from a linear stochastic process. One reasonable 
statistics suggested by Theiler et al. [24] is ob-
tained as follows. If we denote  as the statistic 
computed for the original time series and for
ith surrogate series generated under the null hy-
pothesis and let m and s denote, respectively, the 
mean and standard deviation of the distribution of 

is given by

s

sorigQ
S

||

An value of ~2 cannot be considered very 
value of ~10 is highly 

-
tude level data, the one hundred realizations of 
surrogate data sets were generated according to 
a null hypothesis in accordance to the probabilis-
tic structure underlying the original data. Often, a 

-
relation exponents, between the original and sur-
rogate data sets, can be observed. In the case of 
the original data, a saturation of the correlation 
exponent is observed after a certain embedding 

-
tion exponents computed for the surrogate data 
sets continue increasing with the increasing em-

of the statistic indicate that the null hypothesis 

can be rejected and hence the original data might 
have come from a nonlinear process. It is worth 
consider another method for determining  that 
comes from asking the basic question addressed 
in the embedding theorem: when has one elimi-
nated false crossing of the orbit with itself which 
arose by virtue of having projected the attractor 
into a too low dimensional space? By examining 
this question in dimension one, then dimension 
two, etc. until there are no incorrect or false neigh-
bours remaining, one should be able to establish, 
from geometrical consideration alone, a value for 
the necessary embedding dimension. Such an ap-
proach was originally described by Kennel et al. 
[6]. Advanced version is presented in Ref. [16] 

2.4 Lyapunov exponents 

The LE are the dynamical invariants of the 
nonlinear system. In a general case, the orbits of 
chaotic attractors are unpredictable, but there is 
the limited predictability of chaotic physical sys-

[7,25-29]. A negative exponent indicates a local 
average rate of contraction while a positive value 
indicates a local average rate of expansion. In the 
chaos theory, the spectrum of LE is considered 
a measure of the effect of perturbing the initial 
conditions of a dynamical system. Note that both 
positive and negative LE can coexist in a dissipa-
tive system, which is then chaotic. Since the LE 

independent of the initial conditions, and there-
fore they do comprise an invariant measure of at-
tractor. In fact, if one manages to derive the whole 
spectrum of the LE, other invariants of the sys-
tem, i.e. Kolmogorov entropy and attractor’s di-
mension can be found. The Kolmogorov entropy, 

, measures the average rate at which informa-
tion about the state is lost with time. An estimate 
of this measure is the sum of the positive LE. The 
inverse of the Kolmogorov entropy is equal to an 
average predictability. Estimate of dimension of 
the attractor is provided by the Kaplan and Yorke 
conjecture:

|| 1

1

j

j

L jd ,

where j is such that  
j

1
0  and 

1

1
0

j
, and 

the LE la are taken in descending order. There are 
a few approaches to computing the LE. One of 
them computes the whole spectrum and is based 
on the Jacobi matrix of system [27]. In the case 
where only observations are given and the system 
function is unknown, the matrix has to be estimat-
ed from the data. In this case, all the suggested 

-
ted map proposed by Sano and Sawada [27], al-
though the maps with higher order polynomials 
can be also used. To calculate the spectrum of the 
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LE from the amplitude level data, one could de-
termine the time delay t and embed the data in the 
four-dimensional space. In this point it is very im-
portant to determine the Kaplan-Yorke dimension 
and compare it with the correlation dimension, 

The estimations of the Kolmogorov entropy and 
average predictability can further show a limit, up 
to which the amplitude level data can be on aver-
age predicted. 

and laser systems: Some illustrations 

3.1. Non-linear analysis of chaotic 
oscillations in a grid of quantum generators

non-linear analysis of the chaotic oscillations in 
a grid o two autogenerators. Its regular and cha-
otic dynamics has been in details studied in many 
papers (see e.g. [2,14,31]. In Ref.[2] the time se-
ries for the characteristic vibration amplitude are 
presented in a case of two semiconductors lasers 
connected through general resonator. We use 
these data as input ones in the non-linear analy-
sis of chaotic oscillations.  Figure 1 presents the 

the amplitude level. Autocorrelation function ex-
hibits some kind of exponential decay up to a lag 

Figure 1. (a) Autocorrelation function and (b) 
average mutual information

Such an exponential decay can be an indica-
tion of the presence of chaotic dynamics in the 
process of the level variations. The autocorrela-

-
relation function analysis not provides  with any 
value of t. Such an analysis can be certainly ex-

tended to values exceeding 1000, but it is known 
that an attractor cannot be adequately reconstruct-
ed for very large values of t. Figure 2 shows the 
relationship between the correlation exponent 
values and the embedding dimension values for 
original data set and mean values of the surrogate 
data sets as well as for one surrogate realization. 
Saturation value of the correlation exponent, i.e. 
correlation dimension of attractor, for the ampli-
tude level series is about 3.5 and occurs at the 
embedding dimension value of 6. The low, non-
integer correlation dimension value indicates the 
existence of low-dimensional chaos in the vibra-
tions dynamics of the autogenerators. The dimen-
sion of the embedding phase-space is equal to the 
number of variables present in the evolution of 
the system dynamics. Our study indicate that to 
model the dynamics of process resulting in the 
amplitude level variations the minimum number 
of variables essential is equal to 4 and the number 

results obtained by the correlation integral analy-
sis, we use surrogate data method. It is method 
that makes using substitute data generated in ac-
cordance to probabilistic structure underlying the 
original data.

-
ponent and embedding dimension for vibrations 
amplitude level data for original time series (line 
1), mean values of surrogate data sets (line 2), 
and one surrogate realization (line 3). Error bars 
indicate minimal values of correlation exponent 

among all realizations of surrogate data.
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The surrogate data possess some of the prop-
erties, such as the mean, the standard deviation, 
the cumulative distribution function, the power 
spectrum, etc., but are otherwise postulated as 

-
relation exponent are computed for each embed-

the statistic indicate that the null hypothesis (the 

rejected and hence the original data might have 
come from a nonlinear process. Figure 3 displays 
the percentage of false nearest neighbours that 
was determined for the amplitude level series, for 
phase-spaces reconstructed with embedding D 
from 1 to 20. 

a b

values of correlation dimension and embed-

estimation by false nearest neighbour method 
for amplitude level data for original t series 
(line 1), mean values of surrogate data sets (2), 

min % of false nearest neighbour among all re-
alizations of surrogate data.

The percentage drops to almost zero at 4 or 5. 
This indicates that a 4- or 5-D phase-space is nec-
essary to represent the dynamics (or unfold the 

percentage of false nearest neighbours computed 
for the surrogate data sets decreases steadily but 

close agreement with that was obtained from the 
correlation integral analysis, providing further 
support to the observation made.

3.2. Non-linear analysis of chaotic self-oscil-
lations in a laser system with absorbing cell

Here we consider a chaotic dynamics of a 
single-mode laser with the nonlinear absorption 
cell. This system can be used for the experimen-
tal observation of dynamic chaos. We consider a 
theoretical model of a single-mode laser resona-
tor in which the reinforcement is placed along 
with a nonlinear absorbing medium. Each of the 
environments consists of identical two-level at-
oms. The gain and absorption lines are uniformly 
broadened and their centers align and coincide 
with one of the frequencies of the cavity. Such a 

-
ential equations [31]:

Here, the index 1 refers to intensify, and the 
e, , ,

are the dimensionless variables, e is an ampli-
is a polarization

in the environment,  is the difference between 
and dk

are, respectively, the longitudinal and transverse 
relaxation rate, related to the half-width of the 
resonator /2, is the difference be-
tween the populations of the working levels in 
the absence of generation ( <0, >0 -the

-
t= /2 is the di-

mensionless time. Attractor of the system can be 
as invariant with respect to this change (let’s call 

are two attractor into each other after this change. 
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a b c d

e f g h

Figure 4. Projections of the phase trajecto-
ries for different values   of the parameter h: a 

1.8500, f - 1.8800, g - 1.9000, h – 1.9500

Strange attractors occur as a result of the se-

stationary solutions with zero intensity of 
bifurcation occurs when

, if 
< . Our analysis shows that the Hopf bifur-

cation occurs at moderate values   , if the rela-
tive width of the absorption line  is quite small, 
and the relative width of the gain line    is quite 
large.  The numerical calculation shows that in 
order to get the chaotic lasing it is necessary the 
following: to saturate the absorber should be sat-

 the limit cycles generated from the stationary 
solutions with the zeroth intensity is stable up to 
very large values   of . In table 1 we present the 
computed values of the LE l1-l6 in the descending 

. Another
important illustration is non-linear analysis of the 
chaotic self-ocsillations in the backward wave 
tube (device for generating electromagnetic vi-

In Refs.[2] there have been presented the tem-
poral dependences of the output signal amplitude, 

chaos arising via period-doubling cascade of self-
modulation and for developed chaos at large val-
ues of the dimensionless length parameter. 

Table 1 
Numerical parameters of the chaotic regimes 

l1-l6 are 
the Lyapunov exponents in descending order, 
K – Kolmogorov entropy (our data)

Regime 1 2 3

Weak 
chaos

0.175 -0.0001 0.0003

Strong
chaos

0.542 0.203 -0.0001

Regime 4 5 6

Weak 
chaos

0.244

Strong
chaos

0.0004 0.067 0.188

4. Conclusions

Here we present the results of computing non-
linear chaotic dynamics of some  quantum and 
laser systems with using advanced techniques 
[8-17,30]. The correlation dimension method 
provided a low fractal-dimensional attractor thus 
suggesting a possibility of the existence of cha-
otic behaviour. The method of surrogate data, for 

-
ferences in the correlation exponents between the 
original data series and the surrogate data sets. 

It has 
been shown that the systems exhibit a nonlinear 
behaviour with elements of a low-dimensional 
chaos. The LE analysis does support this conclu-
sion.

In conclusion the author would like to thank  
Prof. A. Glushkov for very helpful discussions 
and advices. 
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NONLINEAR DYNAMICS OF QUANTUM AND LASER SYSTEMS WITH ELEMENTS OF 
A CHAOS

Abstract  Nonlinear chaotic dynamics of the quantum and laser systems is studied with using ad-
vanced techniques such as a wavelet analysis, multi-fractal formalism, mutual information approach, 
correlation integral analysis, false nearest neighbour algorithm, the Lyapunov exponent’s analysis, 
and surrogate data method.  The detailed  analysis of the oscillations in a grid of two autogenerators 
and single-mode laser with the nonlinear absorption cell shows that the systems exhibit a nonlinear 
behaviour with elements of a low-dimensional chaos.
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