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SIMULATION CHAOTIC DYNAMICS OF COMPLEX SYSTEMS AND
DEVICES WITH USING CHAOS THEORY, GEOMETRIC ATTRACTORS, 
AND QUANTUM NEURAL NETWORKS

Nonlinear simulation and forecasting chaotic evolutionary dynamics of complex systems  
can be effectively performed using the concept of compact geometric attractors.  We are 
developing a new approach to analyze and forecasting complex systems evolutionary 
dynamics based on the concept of geometric attractors, chaos theory methods and algorithms 
for quantum neural network simulation.

In recent years a considerable number of works, 
including an analysis from the perspective of the 
theory of dynamical systems and chaos, fractal 
sets, is devoted to time series analysis of dynami-
cal characteristics of physics and other systems 
[1-11]. In a series of papers [10-20] the authors 
have attempted to apply some of these methods 
in a variety of the physical, geophysical, hydro-
dynamic problems. In connection with this, there 
is an extremely important task on development of 
new, more effective approaches to the nonlinear 
modelling and prediction of chaotic processes in 
different complex systems. 

In this work nonlinear simulation and forecast-
ing chaotic evolutionary dynamics of complex 
systems  are carried out using the concept of com-
pact geometric attractors [17-20].  We are devel-
oping a new approach to analyze complex system 
dynamics based on the concept of geometric at-
tractors, chaos theory methods and algorithms for 
quantum neural network simulation

The basic idea of the construction of our ap-
proach to prediction of chaotic processes in com-
plex systems is in the use of the traditional concept 
of a compact geometric attractor in which evolves 
the measurement data, plus the implementation of 
neural network algorithms. The existing so far in 

the theory of chaos prediction models are based 
on the concept of an attractor, and are described 

From a mathematical point of view, it is a 
fact that in the phase space of the system an or-
bit continuously rolled on itself due to the action 
of dissipative forces and the nonlinear part of the 
dynamics, so it is possible to stay in the neighbor-
hood of any point of the orbit  other points 
of the orbit r , which come 
in the neighborhood  in a completely differ-
ent times than . Of course, then one could try 
to build different types of interpolation functions 
that take into account all the neighborhoods of the 
phase space and at the same time explain how the 
neighborhood evolve from  to a whole fam-
ily of points about . Use of the informa-
tion about the phase space in the simulation of 

process in time can be regarded as a fundamental 
element in the simulation of random processes. 

In terms of the modern theory of neural sys-
-

cess of modelling the evolution of the system 
can be generalized to describe some evolutionary 
dynamic neuro-equations (miemo-dynamic equa-

-



161

plex system as the evolution of a neural network 
with the corresponding elements of the self-study, 
self- adaptation, etc., it becomes possible to sig-

dynamics of a chaotic system. Considering the 
neural network with a certain number of neurons, 
as usual, we can introduce the operators ij synap-
tic neuron to neuron ui uj, while the corresponding 
synaptic matrix is reduced to a numerical matrix 
strength of synaptic connections: W = | | wij | |. 
The operator is described by the standard activa-
tion neuro-equation determining the evolution of 
a neural network in time:
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where 1<i<N. 
From the point of view of the theory of chaotic 

dynamical systems, the state of the neuron (the 
chaos-geometric interpretation of the forces of 

currents in the phase space of the system and its 
the topological structure is obviously determined 
by the number and position of attractors. To de-
termine the asymptotic behavior of the system it 
becomes crucial a information aspect of the prob-
lem, namely, the fact of being the initial state to 
the basin of attraction of a particular attractor. 

Modelling each physical attractor by a re-
cord in memory, the process of the evolution of 
neural network, transition from the initial state 

the reconstruction of the full record of distorted 
information, or an associative model of pattern 
recognition is implemented.  The domain of at-
traction of attractors are separated by separatrices 
or certain surfaces in the phase space. Their struc-
ture, of course, is quite complex, but mimics the 
chaotic properties of the studied object. Then, as 
usual, the next step is a natural construction pa-
rameterized nonlinear function F a , which 
transforms:

y(    y( F(y( a

and then to use the different ( including neural 

program is in considering the original local neigh-
-

ring in the neighborhood, at the neighborhood 
and by combining together these local models, 
designing on a global nonlinear model. The latter 
describes most of the structure of the attractor. 

Although, according to a classical theorem 
by Kolmogorov-Arnold -Moser, the dynamics 
evolves in a multidimensional space, the size and 
the structure of which is predetermined by the ini-
tial conditions, this, however, does not indicate a 
functional choice of model elements in full com-
pliance with the source of random data. One of 
the most common forms of the local model is the 
model of the Schreiber type [3] (see also [17-20

Nonlinear modelling of chaotic processes can 
be based on the concept of a compact geometric 
attractor, which evolve with measurements. Since 
the orbit is continually folded back on itself by the 
dissipative forces and the non-linear part of the 
dynamics, some orbit points yr( r
can be found in the neighbourhood of any orbit 
point y( yr(
neighbourhood of y(
than . Then one could build the different types 
of interpolation functions that take into account 
all the neighborhoods of the phase space, and ex-

the information about the phase space in model-
ling the evolution of the physical process in time 
can be regarded as a major innovation in the mod-
elling of chaotic processes.

This concept can be achieved by construct-

then using different criteria for determining the 
parameters a. Further, since there is the notion of 
local neighborhoods, one could  create a model 
of the process occurring in the neighborhood, 
at the neighborhood and by combining together 
these local models to construct a global nonlinear 
model that describes most of the structure of the 
attractor.

As shown Schreiber [3], the most common 
form of the local model is very simple:
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where  n - the time period for which a forecast . 
)(k

ja , may be determined 
by a least-squares procedure, involving only 
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points ( within a small neighbourhood around 

amounts to solving (
the ( -
ters , several problems are encountered that seem 

the nonlinear properties of the system. If the sys-
tem is low-dimensional, the data that can be used 

dimensions but only a subspace, typically. There-
fore, the linear system of equations to be solved 

presence of noise the equations are not formally 
ill-conditioned but still the part of the solution 
that relates the noise directions to the future point 
is meaningless .Other modelling techniques are 
described, for example, in [3,10, 17-20].

Assume the functional form of the display is 
selected, wherein the polynomials used or other 

to the data and determines how accurately match 

deterministic error:

           D( y( F(y( a

The cost function for this error is called W (
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Furthermore, formally the neural network al-

gorithm is launched, in particular, in order to make 
training  the neural network system equivalent to 
the reconstruction and interim forecast the state 

of the neural network (respectively, adjusting the 

formal knowledge of the time series of the main 
dynamic parameters of a chaotic system, and 
then to identify the state vector of the matrix of 
the synaptic interactions ||wij|| etc. Of course, the 

the process of learning neural network to simulate 
the complete process of change in the topological 
structure of the phase space of the system and use 
the output results of the neural network to adjust 

Further we consider implemetatiom of the 
quantum neural networks algorithm into general 
scheme of studying chaotic dynamics. The basic 
aspects of theory of the photon echo based neural 
networks are stated previously (see, for example, 

essential elements. Photon echo is a nonlinear 
optical effect, in fact this is the phenomenon of 
the four wave interaction in a nonlinear medium 
with a time delay between the laser pulses. One 
promising approach to the realization of an quan-
tum  neural network is proposed in refs. [11,18]. 
We have used a  software package for numeri-
cal modeling of the dynamics of the photon echo 
neural network, which imitates evolutionary dy-
namics of the complex system.  It has the fol-
lowing key features: multi-layering, possibility 
of introducing training, feedback and controlled 
noise. There are possible the different variants of 
the connections matrix determination and binary 

model neurons. In order to imitate a tuition pro-
cess we have carried out numerical simulation of 
the neural networks  for recognizing a series of 
patterns (number of layers  =5, number of im-
ages

where  for im-
age  and  is the trained image  for output 

 is determined from a procedure of minimi-

As neuronal function there is used function of 
the form: )]exp(1/[1)( xxf . In our calculation 

4] too. 
The result of the PC simulation (with using our 

,
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dynamics of the quantum multilayer neural net-
works with the input sinusoidal pulses is listed in 

the dynamics of multilayer neural network for the 
case of noisy input sequence. The input signal was 
the Gaussian-like  pulse with adding a noise with 
intensity D. At a certain value of the parameter D 

training process and signal playback is optimal. 
The optimal value of D is 0.0017 . A coherency 
of input and output is optimal for the indicated 
optimal noise level. Thus, a stochastic resonance 
effect is in fact discovered in our PC experiment. 
In our view, this phenomenon is apparently typi-
cal for the neural network system. Obviously, 
one should search for the same effect for human 
tuition process. Analysis of the PC experiment re-

high-quality processing the input signals of very 
different shapes and complexity by a photon echo 
based neural network.

Fig. 1. The results of modeling the dynamics 

input pulse.

The most fundamental feature of the approach 
in development is combined using elements of of 
a  chaos theory, concept of a compact geometric 
attractor, and one of the neural network algo-

-
ter is precisely the application of neural network 
to simulate the evolution of the attractor in phase 
space, and training most neural network to pre-

of the parametric form of functional display. Us-
ing phase space information on the evolution in 

time and results of the of quantum neural network 
modelling techniques can be considered as one of 
the fundamentally approaches in forecasting cha-
otic dynamics of the really very complex systems.

Fig. 2. The results of modeling the dynamics 
of multilayer neural for the case of noisy input 
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SIMULATION CHAOTIC DYNAMICS OF COMPLEX SYSTEMS AND DEVICES WITH 
USING CHAOS THEORY, GEOMETRIC ATTRACTORS, AND QUANTUM NEURAL NET-
WORKS

Abstract
Nonlinear simulation and forecasting chaotic evolutionary dynamics of complex systems  can be 

effectively performed using the concept of compact geometric attractors.  We are developing a new 
approach to analyze and forecasting complex systems evolutionary dynamics based on the concept 
of geometric attractors, chaos theory methods and algorithms for quantum neural network simulation

 geometric attractor conception, quantum neural networks, chaotic dynamics
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