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OPTIMIZED PERTURBATION THEORY TO CALCULATING THE 
HYPERFINE LINE SHIFT AND BROADENING FOR HEAVY ATOMS IN 
THE BUFFER GAS

It is presented review of a new consistent relativistic approach to determination of 

buffer inert gas. It is based on the atomic gauge-invariant relativistic perturbation theory 
and the exchange perturbation theory. As illustration, consistent approach is applied to 

ytterbium, in an atmosphere of the buffer inert gas.

1 Introduction

The broadening and shift of atomic spectral 
lines by collisions with neutral atoms has been 
studied extensively since the very beginning of 

High precision data on the collisional shift and 

heavy elements (alkali, alkali-earth, lanthanides,
actinides

-
terest for modern quantum chemistry, atomic and 
molecular spectroscopy, astrophysics and metrol-
ogy as well as for studying a role of weak interac-
tions in atomic optics and heavy-elements chem-
istry [1-10]. As a rule, the cited spectral lines shift 
and broadening due to a collision of the emitting 
atoms with the buffer atoms are very sensitive to 
a kind of the intermolecular interaction. It means 
that these studies provide insight into the nature 
of interatomic forces and, hence, they provide an 
excellent test of theory.  

An accurate analysis of the spectral line pro-

and molecular interactions and is often neces-
sary for probing matter in extreme conditions, 
such as in stellar atmospheres, ultracold traps 

Besides,

and broadening allows to check a quality of the 
-

tion of the relativistic and correlation effects to 
the energetic and spectral characteristics of the 

the applied point of view, the mentioned physical 
effects form a basis for creating an atomic quan-
tum measure of frequency [10,12,14]. The corre-
sponding phenomenon for the thallium atom has 
attracted a special attention because of the pos-
sibility to create the thallium quantum frequency 
measure. Alexandrov et al [10] have realized the 
optical pumping thallium atoms on the line of 
21GHz, which corresponds to transition between 

ground state. These authors have measured the 
-

mosphere of the He buffer gas. 
The detailed non-relativistic theory of colli-

-
ture lines for simple elements (such as light alkali 

-
til now an accuracy of the corresponding avail-
able data has not been fully adequate to predict 
or identify transitions within accuracy as required 
for many applications.  It is obvious that correct 
taking into account the relativistic and correlation 
effects is absolutely necessary in order to obtain 
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adequate description of spectroscopy 
of the heavy atoms in an atmosphere of the buf-
fer gases. This stimulated our current investiga-
tion whose goals were to propose a new relativ-
istic perturbation theory approach to calculating 

line collision shifts and broadening for the alkali 
and lanthanide atoms in an atmosphere of the in-
ert gases. The basic expressions for the collision 

lines are taken from the kinetic theory of spectral 
lines [6,7,11,12]. 

The exchange perturbation theory (the modi-
fied version L- V

the different versions of exchange perturbation
theory are presented, for example, in Refs.[1-9]. 

of the exchange perturbation theory, associated 
with complex structure series, which contain the 
overlap integrals and exchange integrals [1].  Due 
to the ambiguity of the expansion in the antisym-
metric functions it had been  built a number of 
different formalisms of an exchange perturbation
theory. Usually one could distinguish two groups 
in dependence on the zero-order approximation 
of the Hamiltonian. In the symmetry adapted the-
ories the zeroth-approximation Hamiltonian is an 
asymmetric, but the zeroth- approximation func-
tions have the correct symmetry. In symmetric 
formalisms there is constructed a symmetric ze-
roth-approximation Hamiltonian such as the an-
tisymmetric function is its eigen function. Further 
formally standard Rayleigh - Schrodinger pertur-
bation theory is applied. However, this approach 

systems with a number of electrons, larger than 
two. In addition, the bare Hamiltonian is not her-
mitian.

So the symmetry adapted theories gain more 
spreading. In particular, speech is about versions 
as EL-HAV (Eisenschitz-London-Hirschfeleder- 

MS-MA (Murrel-Shaw-Musher-

detailed analysis of advantages and disadvantages 
of the exchange perturbation theory different ver-
sions had been performed by Batygin et al (see, 

structure line shift of the hydrogen atom in an 

atmosphere of an inert buffer gas.  In our work 
the modified version of the L- V exchange 
perturbation theory has been used to calculate the 

fact [4] this is the Schrödinger type perturbation 
theory for intermolecular or interatomic inter-
actions, using the wave operator formalism. To 
include all exchange effects, wavefunctions are 
used whose symmetry with respect to permuta-
tions of both electronic and nuclear coordinates 
can be prescribed arbitrarily. The interaction en-
ergy is obtained as a series in ascending powers 
of the interaction operator. Further van der Avoird 
[4] has proved that every term in this series is 
real and that the terms of even order are nega-

third order the results of this theory, if they are 
restricted to electron exchange only, agree exactly 
with those of the Eisenschitz-London theory (see 

The next important point is choice of the most 
reliable version of calculation for multielectron 

orbitals. In Refs. [17-30] a consistent relativistic 
energy approach combined with the relativistic 
many-body perturbation theory has been devel-
oped and applied to calculation of the energy and 
spectroscopic characteristics of heavy atoms and 
multicharged ions. This is the relativistic many-
body perturbation theory with the optimized 

-
mation and taking into account the nuclear, ra-
diation, exchange-correlation corrections.  It is 
worth to remind that this approach has been suc-
cessfully used to calculate the b-decay parameters 

-
tions and study the chemical bond effect on b-
decay parameters [29]. This approach  has been 
used in our work  to generate a basis of relativis-
tic orbiltals for heavy atoms.  Besides, the correct 
procedures of accounting for the many-body ex-
change-correlation effects and relativistic orbital 
basis optimization (in order to provide a perfor-

accounting for the highly excited and continuum 
states have been used. 

Earlier it was shown [21-30] that an adequate 
description of the energy and spectral characteris-
tics of the multi-electron atomic systems requires 



24

using the optimized basis of wave functions. In 
Ref. [31] a new ab initio optimization procedure 
for construction of the optimized basis had been 
proposed and based on the principle of minimi-
zation of the gauge dependent multielectron con-
tribution of the lowest QED perturba-
tion theory corrections to the radiation widths of 
atomic levels. The minimization of the functional 

leads to the Dirac-Kohn-Sham-like equa-
tions for the electron density that are numerically 
solved. This procedure has been implemented 
into our approach. In result, the numerical data on 

atoms in atmosphere of the inert gas (such as He, 
-

able theoretical and experimental data (see, for 

der Waals constavts and other parameters for the 
studied two-atomic systems are presented too. 

2 Optimized atomic perturbation theory 
and kinetic theory of spectral lines

In order to calculate a collision shift of the 
hyperfine structure spectral lines one can use the 
following expression known in the kinetic theory 

Here is an effective potential of intera-
tomic interaction, which has the central symme-
try in a case of the systems in our case, 
for example, Rb,Cs He is a tem-
perature, 0 is a frequency of the hyperfine 

0 is a relative local shift of the 
1 g R -

ture form-factor.
The local shift is caused due to the disposition 

of the active atoms (say, the alkali atom and he-
. In order to calculate an 

effective potential of the interatomic interaction 

further we use the exchange perturbation theory 

Since we are interested by the alkali (this atom 
can be treated as a  one-quasiparticle systems, i.e. 
an atomic system with a single valence electron 

earth atoms (here speech is about an one-, two- or 
-

sical model for their consideration. The interaction 

treated in the adiabatic approximation and the 
approximation of the rigid cores. Here it is worth 
to remind very successful model potential simu-
lations of the studied systems (see, for example, 

should formally consider as a magnetic dipole 
interaction of moments of the electron and the 
nucleus of an active atom as an electric quadru-
pole interaction (however, let us remind that, as 

The necessity of the strict treating relativ-
istic effects causes using the following ex-
pression for a hyperfine interaction operator 
HHF

HF=
N
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r
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where
active atom, i Dirac matrices, 
mass,  - moment of the nucleus of the active 
atom, expressed in the nuclear Bohr magnetons. 

states of the electrons of the system, not be-
longing to the cores. The introduced model of 
consideration of the active atoms is important 
to describe an  effective interatomic interac-

J =1/2
in our case (the interaction of an alkali atom 

Let us underline that such an approximation 
is also acceptable in the case system “thallium 

atoms, in spite of the presence of p-electrons 
in the thallium (in the case of rare-earth at-
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Next, in order to determine a local shift 
within the consistent theory it should be used 
the expression obtained in one of versions of 
the exchange perturbation theory, in particular, 

relative 
-

ith up to the second order in the po-
tential V of the Coulomb interaction of the 
valence electrons and the cores of atoms as 
follows:

,12
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Here S0 6 is the 
is the potential of ion-

1
The 

values W1, W2
exchange and exchange non-perturbation sums 

-
lows: 

where '
HFÍ  = 

3
1

1][
r

ra z is the transformed op-
zra ][ 1  is 

-
zation axis directed along the axis of the quasi-

is the total number of electrons, 

NF
bkakk 211 ''  are an energy and a non-

symmetrized wave function of state ={ }
for the isolated atoms  and .

The non-exchange matrix element of the 
Coulomb interatomic interaction is as:

Correspondingly the exchange matrix ele-
ment is as follows:

N

i
kk iiVU

2

'
0

'
0 1

The operator  (for example, in a case 

follows:

bi
SCFaSCFaSCF r

RUrUrUiV 1243

where -
ated by an active atom core. 

The useful expressions for approximating the in-
teraction potential and shift are presented in Refs. 
[11,12]:
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where the overlap integrals S0 -B are determined 
by the standard expressions, and the potential ex

B-AU
is calculated in the framework of the exchange per-
turbation theory [12]: 

=(V00 - 00 0

It should also be noted that as a rule, in the al-
ternative non-relativistic theories of [6-9]  the com-
mutator technique [11] is used when calculating 

-
ing actually approximate non-relativistic methods 
was the lack of reliable information on the wave 
functions of the excited states of the complex at-
oms. Starting approximations in alternative theo-
ries [11,12] were rather simple approximations 
for the electronic wave functions of both active 
and passive atoms. In particular, in Refs. [11] the 
electronic wave functions were approximated by 
simple Slater expression (the approximation of 

-
ple analytical approximation formulas by Löwdin 

He, Rb, Cs etc. In Refs. [12]  the wave functions 
had been determined within the Dirac-Fock ap-
proximation, however, these authors had used 
the approximate non-relativistic expressions to  
describe the interatomic interaction potential. 
Besides, determination of the polarizabilities and 
the van der Waals constants has been performed 
with using the following London’s expressions 
[6,12]:
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where  is the oscillator strength, other nota-

could provide a low accuracy of calculating the in-
teratomic potentials. It  is worth to note that the 

-

the collision shifts.
Let us return to consideration of the van der 

6 for the interatomic  inter-
-

ten as  [13,43,44]:

where C6,0 ( is the isotropic component of 
the interaction and C6,2 (  is the component cor-
responding to the 2( q term in the expansion 
of the interaction in Legendre polynomials, where 

C6,0 ( and C6,2 (
may be expressed in terms of the scalar and tensor 
polarizabilities );(0 iwL  and )(2 L; iw evaluated 
at imaginary frequencies [13]. In particular, one 
may write in the helium case as follows:

where is the dynamic polarizability of 
He. The polarizabilities at imaginary frequencies 

-
mula:

where  is the energy of the electronically 
excited state | > and the  axis lies along the 
internuclear axis. 

Obviously, generally speaking, the calculation 
of the dynamic polarizability and the resulting 
van der Waals constants is connected with a sum-

(the states of the discrete spectrum and integrat-

On the other hand, it is known that the space 
of functions of the atomic states can be stretched 
over the space of the Sturm orbitals, which is both 
discrete and countable [6,35,43]. Thus, it allows 
to eliminate a problem of accounting the continu-
ous spectrum within the formally exact approach. 

Naturally, the set of Sturm orbitals should be 
introduced with specially prescribed asymptotics 
that is crucial for the convergence of the spectral 
expansion, including a spectral expansion of the 
corresponding Green’s functions.

3 Relativistic many-body perturbation 

approximation and the Dirac-Sturm method

3.1 Relativistic many-body perturbation 
theory with the Kohn-Sham zeroth 
approximation

non-relativistic Hartree-Fock method is mostly 
used for calculating the corresponding wave func-
tions. More sophisticated approach is based on 
using the relativistic Dirac-Fock wave functions 

the relativistic wave functions as the solutions of 
the Dirac equations with the corresponding den-
sity functional, i.e within the Dirac-Kohn-Sham 
theory [45-48]. In fact, the theoretical models in-
volved the use of different consistency level ap-
proximations led to results at quite considerable 
variance.

It is obvious that more sophisticated relativis-
tic many-body methods should be used for cor-
rect treating relativistic, exchange-correlation 
and even nuclear effects in heavy atoms. (includ-
ing the many-body correlation effects, intershell 
correlations, possibly the continuum pressure etc 

In our calculation we have used the 
relativistic functions, which are generated by the 

0
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Dirac-Kohn-Sham Hamiltonian [18,27-30]. In a 
number of papers it has been rigorously shown 
that using the optimized basis in calculating the 
atomic electron density dependent properties has 
a decisive role. This topic is in details discussed in 

As usual, a multielectron atom is described 
by the Dirac relativistic Hamiltonian (the atomic 

.i i j
i i j

H h(r ) V r r

Here,  is one-particle Dirac Hamiltonian 

is potential of the inter-electron interaction. In 
order to take into account the retarding effect and 
magnetic interaction in the lowest order on pa-
rameter 2

write [18]:

where ij i are
the Dirac matrices. The Dirac equation potential 
includes the electric potential of a nucleus and 
electron shells and the exchange-correlation po-
tentials. The standard KS exchange potential is as 
follows [45]:

2 1/3( ) (1/ )[3 ( )] .KS
XV r r

In the local density approximation the relativ-
istic potential is [45]:

[ ( )]
[ ( ), ] ,

( )
X

X
E rV r r

r

where [ ( )]XE r is the exchange energy of the mul-
tielectron system corresponding to the homoge-
neous density ( )r , The corresponding correla-
tion functional is [6, 28]:

1/3[ ( ), ] 0.0333 ln[1 18.3768 ( ) ]CV r r b r

where is the optimization parameter (for de-

As it has been underlined, an adequate de-
scription of the multielectron atom characteris-
tics requires using the optimized basis of wave 
functions. In our work it has been used ab initio 

optimization procedure for construction of the 
optimized basis of the relativistic orbitals. It is 
reduced to minimization of the gauge dependent 
multielectron contribution  of the lowest 
QED perturbation theory corrections to the radia-
tion widths of atomic levels. 

The minimization of the functional 
leads to the Dirac-Kohn Sham-like equations for 
the electron density that are numerically solved. 
According to Refs. [31], the gauge dependent 
multielectron contribution can be expressed as 
functional, which contains the multi-electron 
exchange-correlation ones. From the other side, 
using these functionals within relativistic many-
body perturbation theory allows effectively to 

-
turbation theory (fourth-order QED perturbation 

-
ing functionals of Ref. [34] have been used. As a 
result one can get the optimal perturbation the-
ory one-electron basis. In concrete calculations 

which is reduced to the functional minimization 
using the variation of the correlation potential pa-
rameter

     The differential equations for the radial 
functions and  (components of the Dirac 

1 0,F F m V G
r r

1 0,G G m V F
r r

where F,  are the large and small components 
 is the quantum number. 

At large c, the functions F and  vary rapidly at 
1 2 2 2, ,  F r G r r z

of the equations in the region r 0. To prevent 
the integration step from becoming too small it 
is usually convenient to turn to new functions 
isolating the main power dependence: 1f Fr
, 1g Gr . The Dirac equations for F and  com-
ponents are transformed as follows [18]:

' ( | |) / ( 2 / ) ,nf f r ZVg ZE Z g

' ( | |) / .ng g r ZVf ZE f

,i j
i j ij ij

ij

1
V r r exp i

r



28

Here  is one-electron energy without the 

0 2 1 ; 1ng V E r Z f  at
0 ,

2 20 2 ; 1nf V E Z Z g  at                  

0

The condition ®0 at r® determines the 
. The system 

Runge-Kutta method. The details can be found in 
Refs. [21-30].

2.2 The Dirac-Sturm approach

The basic idea of the Dirac-Sturm  approach is 
as follows [6,9,35,43]. In the usual formulation as 
basis functions used system of eigenfunctions of 
the generalized eigenvalue problem for the family 
of operators:

gH )( 0

where 0
g  is a weighting operator, generally speaking, do 
not commute with the operator 0 , - ei-

that unlike a spectrum of H0
is a purely discrete.  Using the orthogonality and 
completeness conditions, it is easy to show that 
the Green operator of the unperturbed problem is 

functions  and the corresponding expansion is 
as follows: 

/||0G

and contains only a single summation over the 
quantum numbers { . As the operator H0 we use 
the Dirac-Kohn-Sham Hamiltonian.  The Dirac-
Kohn-Sham equation can be written in the next 
general form [9]:

0)(])([ xuxh nnDKS

Along with discrete spectrum (e e £eF
there is a continuous spectrum of the eigen-
values (e>eF
Kohn-Sham virtual orbitals. In the Sturmian 
formulation of the problem one should search 
for the eigen-values   and eigen-functions of 
the equation:

)(])([ xxhDKS
where                                  1

1

N

k
nk

E

When e -
crete spectrum eigenvalues ln=ln(e

As the weight of the operator there are 
commonly used operators, proportional to 
a part or even all potential energy in the 
Hamiltonian 0. Further, it is easily to under-
stand that the Fourier-image of the one-particle 
Green’s function in the Dirac-Kohn-Sham ap-
proximation can be represented as an expansion 

1)(
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where )(~ x is the Sturm designed function:
N
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In the case of the single-particle perturbed op-
erator, say, N

a
a xw

1
)(

the second-order correction to an energy of the 
atom is determined by the standard expression of 
the following type: 

and it actually contains only the summation over 

the Dirac-Kohn-Sham-Sturm type relating to a 
purely discrete spectrum. 

If the operator )(xwa  is an interaction with an 
-

mines the many-electron atom polarizability. Let 
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of relativistic method of the Sturm expansions on 
the example of the rubidium atom. Calculation of 
the static polarizability is actually reduced to two 

-
tem of relativistic Dirac-Kohn-Sham equations 
with respect to the Dirac radial functions and the 
Lagrange diagonal parameters e5s,e4p, e4s  etc. In 
the second stage of the calculation procedure the 

numerically:

0))|()()(( iiiXCiN brVrVrVci

where, as above, V   is the potential of the elec-
tron-nuclear interaction, V -

V is the 
Kohn-Sham potential. 

Two parameters e correspond to each or-
bital “i” of a real or Sturmian state. The param-
eter  =1 for orbitals of the real states. It is also 
important to emphasize that all orbitals of the 

-
ponential asymptotic behavior as r®¥, which co-
incides with the asymptotic behavior of the last 
real state orbitals in the corresponding basis of 
the real state orbitals. In each case, the functions 
of the accounted real states represent a reduced 
spectral expansion of the Green's function G. The 
residual  part decreases as exp[ e 2]  for r®¥
(e is the eigen energy of the explicitly accounted 

All orbitals of the Sturm supple-
ment have absolutely the same asymptotic in the 

in terms of convergence of the method. Number 
of explicitly accounted real state functions is de-
termined by concrete numerical application of  
method to computing studied atomic characteris-
tics. Other details can be found in Refs. [6,9,35].

spectral line for multielectron atoms in an 
atmosphere of the buffer gas

4.1 Shift and broadening of the thallium and 

the inert gas

atmosphere of the inert gas. Its studying is of a 

the thallium atom contains p-electrons outside 
closed shells and has a nuclear charge Z = 81. 
In Table 1 the theoretical values   of the van der 

-
tivistic calculation by the optimized Dirac-Kohn-
Sham method combined with the Dirac-Sturm 
approach, the calculation results by Batygin et al, 

the Hartree-Fock data by Penkin et al, as well as 

values of   the van der Waals constants, obtained 

standard Hartree-Fock method. 

Table 1  
Theoretical values   of the van der Waals 

constants ( in atomic units ) respectively, for atom 

TI
He

TI
Ar

TI-
Kr

TI-
Xe

6
I  (10a

6
II (10b

6
III (10c

6

6 (our data a

6 (our datab

6

17.5
20.5
20.33
6.59
12.1
14.5

-

129
148
133
48
106
119
100

180
212
193
71
157
173
150

291
318
296
111
265
289
260

Note:a optimization b

calculation without optimization
The calculation shows the importance of the 

quality of the atomic wave functions (using an op-
timization and correct account for the exchange-

for an adequate description of the corresponding 
constants

In Table 2 there are listed the results of our 
calculation of the interatomic interaction poten-
tial  (  (

internuclear distance in the system TI - He. For 
comparison, similar results of the calculation of 
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the potential  (  (
-

od [12] are presented too. 

Table 2 
Local shift and interatomic interaction 

potential (in atomic units) for the pair TI - He.

Dirac-Fock method 
[12]

Our theory [8,9]

R 102 3 102

103

5 4.22 7.6 3,92 6.93
6 1.34 2.0 1,21 1.76
7 0.329 0.44 0.27 0.38
8 0.0788 0.099 0.070 0.085
9 0.0032 0.024 0.0025 0.020
10 -0.0145 -0.076 -0.0131 - 0.067
11 - 0.0119 -0.008

In Table 3 we list the results of our calculation 
-

ic interaction potential  and the values   of the 
local shift 

Table 3 
Local shift and interatomic interaction potential 

(in atomic units) for the pair TI – Kr, Xe (see text)

R 102 3 102 3

5 -14.30 13.24 -19,05 18.31
6 -2.88 6.10 -8.22 5.95
7 -1.44 1.72 -2.67 2.04
8 -0.67 0.49 -1.52 0.65
9 -0.48 0.06 -0.74 0.01
10 -0.35 -0.03 -0.48 - 0.08
11 -0.24 - 0.04 - 0.37 -0.09

Further in Table 4 we present our theoretical 

line collisional shift at the temperature T = 700K 
for a number of the diatomic systems, in particu-
lar, the pairs of TI - He, TI - Kr, Tl-Xe. 

Table 4 
The collisional shift fr (in Hz/Torr) of the thal-

o

estimate by Choron-Scheps-Galagher (Virginia 

System 1- 1-Kr 1-Xe

Experiment 130  30 -490±20 -1000±80

 Qualitative estimate - - -5500

Theory A 155.0 -850.0 -1420 .0

Theory B 139.0 - -

Theory C 137.2 -504 -1052

In Table 5 we present the theoretical data on the 
collisional shift fr

0

for the systems TI - He, TI - Kr, Tl-Xe: Theory 

As can be seen from the presented data, our 
theory provides a physically reasonable agree-

collisional shifts for the pairs of TI-He, TI-Kr, Tl-
Xe.

Table 5 
The temperature dependence of the colli-

sional shift fr (in Hz/Torr) for pairs  TI - He, TI 

Pair Kr Xe
, K Theory A Theory C Theory C Theory C 

700 155 137,2 -504 -1052
750 153.0 135,3 -461 -964
800 151 134,1 -422 -899

850 149 133,3 -391 -841

900 147.5 131,4 -362 -794
950 146 129,1 -330 -751

1000 143 126,2 -308 -713
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For comparison, in this table there are also 
listed the results of calculation on the basis of the 

-
tal data Choron-Scheps-Galagher ( the Virginia 

has been listed as well. In Table 6 we present our 
calculated values for  adiabatic broadening  

line adiabatic broadening of 
the pairs TI - Kr, TI-Xe. 

Table 6  
Adiabatic broadening /  (in Hz / Torr) 

-

TI He
Theory A

TI He
Theory C

700
800
900
1000

2.83
2.86
2.90
2.89

2.51
2.54
2.58
2.56

Table 7  
Adiabatic broadening /  (in Hz / Torr) 

for the TI – Kr, Yl-Xe (our theory).

TI- Kr TI- Xe

700
800
900
1000

      6.81
      5.89
      5.26
      5.24

      17.3
      14.6

12.9
11.5

It is easily to estimate that the ratio values 
(  ~ 1/50 for the system TI - He, 
(  ~ 1/70 for the system TI - Kr and   
(  ~ 1/60 for the TI-Xe. These estimates 

well-known in the theory of optical range spec-
tral line broadening Foley law 

structure. At least this fact is absolutely obvious 
for the thallium atom. 

In any case we suppose that more detailed 
experimental studying are to be very actual and 
important especially a light of availability of the 
theoretical data on temperature dependences of 

broadening.  Obviously, this is also very actual 
from the point of view of the construction the 
thallium quantum frequency measure, as well as 
studying a role of the weak interactions in atomic 
physics and physics of collisions (see, for exam-

Now let us consider the pair ‘Yb-He”. The 

[Xe]4 146 2 ( term: 1 urther we present our 
results for the scalar static polarizability 0 (in 
units of 0

3
0

C6,0 (in units of  H× 0
6

H
as follows [9]: C6,0= 45.2 and 0=169.3. For com-
parison let us present the corresponding data by 
Dalgarno et al [13]: C6,0= 39.4, 0=157.3 and by 
Buchachenko et al [44]: C6,0= 44.5. 

In table 8 we present our calculation results 
for the observed r (in shift for the sys-

Table 8 
The observed fr (in, Hz/Torr) shift for the 

system Yb-He (see text)

, K

700 148.1

750 146.0

800 143.8

850 141.5

900 138.9

It is obvious that the pair Yb-He is more com-
plicated system in comparison with the pair of Tl-
He or “alkali atom-He”. Until now there are no 
any experimental or theoretical data for this 
system. So, we believe that our data may be 
considered as the first useful reference



32

4.2 Shift and broadening of the alkali atom 

Here we present the results of our studying 

helium gas. In Table 9 we present our data on the 
van der Waals constants in the interaction poten-
tial for alkali Rb, Cs atoms with inert gas atoms  
Ne, Kr, Xe, and also available in the literature ex-
perimental data [10,11]. In Table 10 we list the 

-
atomic potentials, local shifts (
Cs-He. Noteworthy is the fact that an accuracy of 
the experimental data for the van der Waals con-

-
oms. Calculation has shown that the optimization 
of the relativistic orbitals basis and accounting for 
the exchange-correlation effects seem to be very 
important for obtaining adequate accuracy of the 
description of the constants. 

Table 9  
The van der Waals constants (in atomic 

gas atoms Ne, Kr, Xe (see text).

Pair of atoms Our theory Experiment
Rb-He 42 41
Rb 484 470
Rb 758 -
Cs-He 52 50
Cs-Kr 582 570
Cs-Xe 905 -

Table 10.  The interatomic potential (105)
and local (R) shift (105) for Cs-He pair (in 

(
8 4280 610
9 2845 336
10 1890 169
11 955 77
12 482 32
13 251 12.8
14 113 4.1
15 59 1.9

In Table 11 and 12 we present our theoretical 
 (1/

experimental and alternative theoretical results by 
Batygin et al [11] for  are listed too. At present 
time there are no precise experimental data for a 
wide interval of temperatures in the literature. 

Table 11  
The observed fr (10-9 1/Torr) shifts for the 

systems of the Cs-He and corresponding theo-
retical data (see text).

T, K Experi-
ment

Our 
theory

Theory a

[11]
Theory b

[11]
Theory c

[11]

223 - 178 164 142 169

323 135 137 126 109 129

423 - 123 111 96 114

523 - 112 100 85 103

623 - 105 94 78 96

723 - 98 - - -

823 - 92 - - -
Note:a wave

functions in the Clementi-Rothaane approxima-
tion b wave

c wave func-
tions in the Löwdin approximation

Table 12 
The observed fr (10-9 1/Torr) shifts for the 

systems of Rb-  and corresponding theo-
retical data (see text).

, K Experi-
ment

Our  
theory

Theory 
a

 [11]

Theory 
b

[11]

Theory 
c

[11]

223 - 113 79 67 81
323 105 101 73 56 75
423 - 89 62 48 64
523 - 80 55 43 56
623 - 73 50 38 50
723 - 71 47 36 47
823 - 69 - - -
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Note:a wave
functions in the Clementi-Rothaane approxima-
tion b wave

c wave func-
tions in the Löwdin approximation

The theoretical data from Refs. [11] are ob-
tained on the basis of calculation within the ex-
change perturbation theory with using the He 
wave functions in the Clementi-Rothaane ap-
proximation [42] (column: Theorya

Z-approximation (column: Theoryb

Löwdin approximation (column: Theoryc

The important feature of the developed opti-
mized perturbation theory approach is using the 
optimized relativistic orbitals basis, an accurate 
accounting for the exchange-correlation and con-
tinuum pressure effects with using the effective 
functionals [18,34]. 

The difference between the obtained theoreti-
cal data and other alternative calculation results 
can be explained by using different perturbation 
theory schemes and different approximations for 
calculating the electron wave functions of heavy 
atoms. It is obvious that the correct account for 
the relativistic and exchange-correlation and con-
tinuum pressure effects will be necessary for an 
adequate description of the energetic and spectral 
properties of the heavy atoms in an atmosphere of 

5 Conclusion

In this chapter a brief review of the experi-
mental and theoretical works on the 
structure line collision shifts for heavy atoms in 
an atmosphere of the buffer inert gases is given. 
A new, consistent relativistic perturbation theory 
combined with the exchange perturbation the-
ory, is presented and applied to calculating the 
interatomic potentials, van der Waals constants, 

some heavy atoms in an atmosphere of the buffer 
inert gases. It should be noted that the presented 
approach can be naturally generalized in order to 
describe the energy and spectral characteristics of 
other atomic systems and buffer mediums. 

The calculation results
collision shift and broadening for the alkali (Rb, 

-

compared with available alternative theoretical 
and experimental results. The obtained data for 
the (
well-known Foley law ~  in the theory of op-
tical range spectral line broadening is incorrect 
for the spectral lines of transitions between com-

multielectron atoms.
The studying 

shifts and widths for different heavy atomic sys-
tems in the buffer gases opens new prospects in 
the bridging of quantum chemistry and atomic and 
molecular spectroscopy and physics of collisions. 

by a modern experimental laser and other tech-
nologies [10,50-56]. Really, new experimental 
technologies in physics of collisions may provide 
a measurement of the atomic and molecular colli-
sion spectral parameters with very high accuracy.
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OPTIMIZED PERTURBATION THEORY TO CALCULATING THE HYPERFINE LINE SHIFT AND 
BROADENING FOR HEAVY ATOMS IN THE BUFFER GAS

Abstract
It is presented review of a new consistent relativistic approach to determination of collisional 

based on the atomic gauge-invariant relativistic perturbation theory and the exchange perturbation
theory. As illustration, consistent approach is applied to calculating the interatomic potentials, hyper-
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