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OPTIMIZED PERTURBATION THEORY TO CALCULATING THE
HYPERFINE LINE SHIFT AND BROADENING FOR HEAVY ATOMS IN

THE BUFFER GAS

It is presented review of a new consistent relativistic approach to determination of
collisional shift and broadening hyperfine lines for heavy atoms in an atmosphere of the
buffer inert gas. It is based on the atomic gauge-invariant relativistic perturbation theory
and the exchange perturbation theory. As illustration, consistent approach is applied to
calculating the interatomic potentials, hyperfine structure line collision shift and broadening
for heavy atoms, in particular, atoms of alkali elements — rubidium, caesium, and thallium,
ytterbium, in an atmosphere of the buffer inert gas.

1 Introduction

The broadening and shift of atomic spectral
lines by collisions with neutral atoms has been
studied extensively since the very beginning of
atomic physics, physics of collisions etc [1-5].
High precision data on the collisional shift and
broadening of the hyperfine structure lines of
heavy elements (alkali, alkali-earth, lanthanides,
actinides and others) in an atmosphere of the
buffer (for example, inert) gases are of a great in-
terest for modern quantum chemistry, atomic and
molecular spectroscopy, astrophysics and metrol-
ogy as well as for studying a role of weak interac-
tions in atomic optics and heavy-elements chem-
istry [1-10]. As a rule, the cited spectral lines shift
and broadening due to a collision of the emitting
atoms with the buffer atoms are very sensitive to
a kind of the intermolecular interaction. It means
that these studies provide insight into the nature
of interatomic forces and, hence, they provide an
excellent test of theory.

An accurate analysis of the spectral line pro-
files is a powerful technique for studying atomic
and molecular interactions and is often neces-
sary for probing matter in extreme conditions,
such as in stellar atmospheres, ultracold traps
and Bose—Einstein condensates [3,6]. Besides,
calculation of the hyperfine structure line shift
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and broadening allows to check a quality of the
wave functions (orbitals) and study a contribu-
tion of the relativistic and correlation effects to
the energetic and spectral characteristics of the
two-center (multi-center) atomic systems. From
the applied point of view, the mentioned physical
effects form a basis for creating an atomic quan-
tum measure of frequency [10,12,14]. The corre-
sponding phenomenon for the thallium atom has
attracted a special attention because of the pos-
sibility to create the thallium quantum frequency
measure. Alexandrov et al [10] have realized the
optical pumping thallium atoms on the line of
21GHz, which corresponds to transition between
the components of hyperfine structure for the Tl
ground state. These authors have measured the
collisional shift of this hyperfine line in the at-
mosphere of the He buffer gas.

The detailed non-relativistic theory of colli-
sional shift and broadening the hyperfine struc-
ture lines for simple elements (such as light alkali
elements etc.) was developed by many authors
(see, for example, Refs. [1-14]). However, un-
til now an accuracy of the corresponding avail-
able data has not been fully adequate to predict
or identify transitions within accuracy as required
for many applications. It is obvious that correct
taking into account the relativistic and correlation
effects is absolutely necessary in order to obtain



sufficiently adequate description of spectroscopy
of the heavy atoms in an atmosphere of the buf-
fer gases. This stimulated our current investiga-
tion whose goals were to propose a new relativ-
istic perturbation theory approach to calculating
the interatomic potentials and hyperfine structure
line collision shifts and broadening for the alkali
and lanthanide atoms in an atmosphere of the in-
ert gases. The basic expressions for the collision
shift and broadening hyperfine structure spectral
lines are taken from the kinetic theory of spectral
lines [6,7,11,12].

The exchange perturbation theory (the modi-
fied version EL-HAV) has been used to calculate
the corresponding potentials (see details in [1-5]).
Let us note that sufficiently detailed reviews of
the different versions of exchange perturbation
theory are presented, for example, in Refs.[1-9].
It is worth to remind about the known difficulties
of the exchange perturbation theory, associated
with complex structure series, which contain the
overlap integrals and exchange integrals [1]. Due
to the ambiguity of the expansion in the antisym-
metric functions it had been built a number of
different formalisms of an exchange perturbation
theory. Usually one could distinguish two groups
in dependence on the zero-order approximation
of the Hamiltonian. In the symmetry adapted the-
ories the zeroth-approximation Hamiltonian is an
asymmetric, but the zeroth- approximation func-
tions have the correct symmetry. In symmetric
formalisms there is constructed a symmetric ze-
roth-approximation Hamiltonian such as the an-
tisymmetric function is its eigen function. Further
formally standard Rayleigh - Schrodinger pertur-
bation theory is applied. However, this approach
deals with the serious difficulties in switching to
systems with a number of electrons, larger than
two. In addition, the bare Hamiltonian is not her-
mitian.

So the symmetry adapted theories gain more
spreading. In particular, speech is about versions
as EL-HAV (Eisenschitz-London-Hirschfeleder-
van der Avoird), MS-MA (Murrel-Shaw-Musher-
Amos) and others (see details in Refs. [4,5]). The
detailed analysis of advantages and disadvantages
of the exchange perturbation theory different ver-
sions had been performed by Batygin et al (see,
for example, [11,12]) in studying the hyperfine
structure line shift of the hydrogen atom in an

atmosphere of an inert buffer gas. In our work
the modified version of the EL-HAV exchange
perturbation theory has been used to calculate the
corresponding potentials (see details in [4]). On
fact [4] this is the Schrodinger type perturbation
theory for intermolecular or interatomic inter-
actions, using the wave operator formalism. To
include all exchange effects, wavefunctions are
used whose symmetry with respect to permuta-
tions of both electronic and nuclear coordinates
can be prescribed arbitrarily. The interaction en-
ergy is obtained as a series in ascending powers
of the interaction operator. Further van der Avoird
[4] has proved that every term in this series is
real and that the terms of even order are nega-
tive definite for perturbation of the ground state.
It has been also verified that up to and including
third order the results of this theory, if they are
restricted to electron exchange only, agree exactly
with those of the Eisenschitz-London theory (see
other details in Refs. [1-5]).

The next important point is choice of the most
reliable version of calculation for multielectron
atomic field and generating the basis of atomic
orbitals. In Refs. [17-30] a consistent relativistic
energy approach combined with the relativistic
many-body perturbation theory has been devel-
oped and applied to calculation of the energy and
spectroscopic characteristics of heavy atoms and
multicharged ions. This is the relativistic many-
body perturbation theory with the optimized
Dirac-Fock (Dirac-Kohn-Sham) zeroth approxi-
mation and taking into account the nuclear, ra-
diation, exchange-correlation corrections. It is
worth to remind that this approach has been suc-
cessfully used to calculate the b-decay parameters
for a number of allowed (super allowed) transi-
tions and study the chemical bond effect on b-
decay parameters [29]. This approach has been
used in our work to generate a basis of relativis-
tic orbiltals for heavy atoms. Besides, the correct
procedures of accounting for the many-body ex-
change-correlation effects and relativistic orbital
basis optimization (in order to provide a perfor-
mance of the gauge-invariant principle) as well as
accounting for the highly excited and continuum
states have been used.

Earlier it was shown [21-30] that an adequate
description of the energy and spectral characteris-
tics of the multi-electron atomic systems requires
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using the optimized basis of wave functions. In
Ref. [31] a new ab initio optimization procedure
for construction of the optimized basis had been
proposed and based on the principle of minimi-
zation of the gauge dependent multielectron con-
tribution ImdE =~ of the lowest QED perturba-
tion theory corrections to the radiation widths of
atomic levels. The minimization of the functional
ImdE  leads to the Dirac-Kohn-Sham-like equa-
tions for the electron density that are numerically
solved. This procedure has been implemented
into our approach. In result, the numerical data on
the hyperfine line collision shifts and broadening
for some alkali (Rb, Cs), thallium and ytterbium
atoms in atmosphere of the inert gas (such as He,
Ke, Xe) are presented and compared with avail-
able theoretical and experimental data (see, for
example, [1-12]). Besides, new data on the van
der Waals constavts and other parameters for the
studied two-atomic systems are presented too.

2 Optimized atomic perturbation theory
and kinetic theory of spectral lines

In order to calculate a collision shift of the
hyperfine structure spectral lines one can use the
following expression known in the kinetic theory
of spectral lines shape (see Refs. [6,7,11,12]):

g, =2 4]’;:0 T[l + g(R)dw(R)exp(~U(R)/ kTR dR
\ (la)
o (U
g(R)=\3Jz\ *r ) 7 7
0, U >0, (1b)

Here U(R) is an effective potential of intera-
tomic interaction, which has the central symme-
try in a case of the systems 4—B (in our case,
for example, A=Rb,Cs; B=He); T is a tem-
perature, w, is a frequency of the hyperfine
structure transition in an isolated active atom;
dw(R)=Dw(R)/w, is a relative local shift of the
hyperfine structure line; (1+ g(R)) is a tempera-
ture form-factor.

The local shift is caused due to the disposition
of the active atoms (say, the alkali atom and he-
lium He) at the distance R. In order to calculate an
effective potential of the interatomic interaction
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further we use the exchange perturbation theory
formalism (the modified version EL-HAV) [9]).

Since we are interested by the alkali (this atom
can be treated as a one-quasiparticle systems, i.e.
an atomic system with a single valence electron
above a core of the closed shells) and the rare-
earth atoms (here speech is about an one-, two- or
even three-quasiparticle system), we use the clas-
sical model for their consideration. The interaction
of alkali (A) atoms with a buffer (B) gas atom is
treated in the adiabatic approximation and the
approximation of the rigid cores. Here it is worth
to remind very successful model potential simu-
lations of the studied systems (see, for example,
Refs. [32-41)).

In the hyperfine interaction Hamiltonian one
should formally consider as a magnetic dipole
interaction of moments of the electron and the
nucleus of an active atom as an electric quadru-
pole interaction (however, let us remind that, as
a rule, the moments of nuclei of the most (buffer)
inert gas isotopes equal to zero) [6].

The necessity of the strict treating relativ-
istic effects causes using the following ex-
pression for a hyperfine interaction operator
H, . (see, eg., [1,5]):

N
a. xr,
"Zl : 3 ~>
i-1 :

5

2

HHF: R
eh
a=-2u

2mpc

where [ — the operator of the nuclear spin
active atom, a, — Dirac matrices, m — proton
mass, u# - moment of the nucleus of the active
atom, expressed in the nuclear Bohr magnetons.
Of course, the summation in (2) is over all
states of the electrons of the system, not be-
longing to the cores. The introduced model of
consideration of the active atoms is important
to describe an effective interatomic interac-
tion potential (an active atom — an passive
atom), which is centrally symmetric (J,='/))
in our case (the interaction of an alkali atom
with an inert gas atom).

Let us underline that such an approximation
is also acceptable in the case system “thallium
atom — an inert gas atom” and some rare-earth
atoms, in spite of the presence of p-electrons
in the thallium (in the case of rare-earth at-
oms, the situation is more complicated).



Next, in order to determine a local shift
within the consistent theory it should be used
the expression obtained in one of versions of
the exchange perturbation theory, in particular,
EL-HAV version (see [1-5,8,9]). The relative
local shift of the hyperfine structure line is de-
fined with up to the second order in the po-
tential V of the Coulomb interaction of the
valence electrons and the cores of atoms as
follows:

Gl 2 1
& (R)= 0 +Q,——2%
(B —s R6(E+E +EB]
Eoo=(I,,+E,, )2 ()

Here S is the overlapping integral; C, is the
van der Waals coefficient; / is the potential of ion-
ization; £, , is the energy of excitation to the first
(low-lying) level of the corresponding atom. The
values W , W_ in Eq. (3a) are the first order non-
exchange and exchange non-perturbation sums
correspondingly. These values are defined as fol-
lows:

2 . <q)0(1) ‘H}iF ‘(D}c(l)>Vk0

0=
1 N(I_SO)PO k E,-E, (4a)

_ 2 Z 1)‘H.;—IF ‘(D;c(l)>Uk0

’ (1 So)po E,-E, (4b)

where | = [@%7l.

" is the transformed op-
erator of the hyperfilie interaction; [axr]. is
Z component of the vector product; Z - quanti-
zation axis directed along the axis of the quasi-
molecule; N is the total number of electrons,
which are taken into account in the calculation;
E f0) () F, ()¢k (2 N) are an energy and a non-
symmetrlzed wave function of state k = =1k .k, }
for the isolated atoms 4 and B.

The non-exchange matrix element of the
Coulomb interatomic interaction is as:

Vie=<®' (1) | V()| Dp(1)> (5a)

Correspondingly the exchange matrix ele-

ment is as follows:

N

= 2(@

i=2

L)@, i)) (5b)

The operator V (i) (for example, in a case
of the system Rb(a)-He(b)) can be presented as
follows:

. 1
V(’) =Uger (’”as )"’ User (Va4 )_ 2Wer (R)"' P

b

where U, () is the self-conjunctive field, cre-
ated by an active atom core.

The useful expressions for approximating the in-
teraction potential and shift are presented in Refs.
[11,12]:

(6)

U,s(R)=U"_,—C,/R, (7)

& h(R)=—— (;c”(R) 2 E (R +(Q) +01) 857
®)
where the overlap integrals S , , are determined

by the standard expressions, and the potential U} ,
is calculated in the framework of the exchange per-
turbation theory [12]:
U=(V,,- U,)/(1-S,). 9)
It should also be noted that as a rule, in the al-
ternative non-relativistic theories of [6-9] the com-
mutator technique [11] is used when calculating
the sums of the type (4). Earlier the reason of us-
ing actually approximate non-relativistic methods
was the lack of reliable information on the wave
functions of the excited states of the complex at-
oms. Starting approximations in alternative theo-
ries [11,12] were rather simple approximations
for the electronic wave functions of both active
and passive atoms. In particular, in Refs. [11] the
electronic wave functions were approximated by
simple Slater expression (the approximation of
the effective charge = Z-approximation ) or sim-
ple analytical approximation formulas by Lowdin
(L- approximation) and Clementi-Roothaan (C
- approximation) [42] in studying the shift and
broadening the hyperfine lines for such atoms as
He, Rb, Cs etc. In Refs. [12] the wave functions
had been determined within the Dirac-Fock ap-
proximation, however, these authors had used
the approximate non-relativistic expressions to
describe the interatomic interaction potential.
Besides, determination of the polarizabilities and
the van der Waals constants has been performed
with using the following London’s expressions
[6,12]:
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where f'is the oscillator strength, other nota-
tions are the standard. However, sufficiently large
error in definition of the van der Waals constants
could provide a low accuracy of calculating the in-
teratomic potentials. It is worth to note that the
authors of the cited works indicate on the suffi-
ciently large error (~ 50% ) in the calculation of
the collision shifts.

Let us return to consideration of the van der
Waals coefficient C, for the interatomic 4-B inter-
action. The van der Waals coefficient may be writ-
tenas [13,43,44]:

L(L+1) O (10)
6 2
(2L—-1)(2L+3)

where C, (L) is the isotropic component of
the 1nteract10n and C_, (L) is the component cor-
responding to the P (cosq) term in the expansion
of the interaction in Legendre polynomials, where
the angle specifies the orientation in the space-
fixed frame.

The dispersion coefficients C | (L) and C, (L)
may be expressed in terms of the scalar and tensor
polarizabilities ,(L;iv) and a,(L; iw) evaluated
at imaginary frequencies [13]. In particular, one
may write in the helium case as follows:

Co(L, M) =C, (L )—

6 (L) = E a,(L;iw)a,, (iw)dw,
T

(11)

O'—;S

where ay. is the dynamic polarizability of
He. The polarizabilities at imaginary frequencies
are defined in atomic units by the following for-
mula:

(E,-E,)|<LM|Z|L,M, >

a,(L,M;iw)=2
H( ) z (E;/_EL)ZJFWZ

7.M,

(12)
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where E, is the energy of the electronically
excited state |LgMg > and the z axis lies along the
internuclear axis.

Obviously, generally speaking, the calculation
of the dynamic polarizability and the resulting
van der Waals constants is connected with a sum-
mation over infinite number of intermediate states
(the states of the discrete spectrum and integrat-
ing over the states of the continuous spectrum).

On the other hand, it is known that the space
of functions of the atomic states can be stretched
over the space of the Sturm orbitals, which is both
discrete and countable [6,35,43]. Thus, it allows
to eliminate a problem of accounting the continu-
ous spectrum within the formally exact approach.

Naturally, the set of Sturm orbitals should be
introduced with specially prescribed asymptotics
that is crucial for the convergence of the spectral
expansion, including a spectral expansion of the
corresponding Green’s functions.

3 Relativistic many-body perturbation
theory with the Kohn-Sham zeroth
approximation and the Dirac-Sturm method

3.1 Relativistic many-body perturbation
theory with the Kohn-Sham zeroth
approximation

As it is well known (see also Refs. [1,7]), the
non-relativistic Hartree-Fock method is mostly
used for calculating the corresponding wave func-
tions. More sophisticated approach is based on
using the relativistic Dirac-Fock wave functions
(first variant) [15,16]. Another variant is using
the relativistic wave functions as the solutions of
the Dirac equations with the corresponding den-
sity functional, i.e within the Dirac-Kohn-Sham
theory [45-48]. In fact, the theoretical models in-
volved the use of different consistency level ap-
proximations led to results at quite considerable
variance.

It is obvious that more sophisticated relativis-
tic many-body methods should be used for cor-
rect treating relativistic, exchange-correlation
and even nuclear effects in heavy atoms. (includ-
ing the many-body correlation effects, intershell
correlations, possibly the continuum pressure etc
[21-30]). In our calculation we have used the
relativistic functions, which are generated by the



Dirac-Kohn-Sham Hamiltonian [18,27-30]. In a
number of papers it has been rigorously shown
that using the optimized basis in calculating the
atomic electron density dependent properties has
adecisive role. This topic is in details discussed in
many Refs. (see, for example, [6,15,28-32,49]).

As usual, a multielectron atom is described
by the Dirac relativistic Hamiltonian (the atomic
units are used):

H =3 )+ 3V (1)
i i>j (13)

Here, h(r) is one-particle Dirac Hamiltonian
for electron in a field of the finite size nucleus and
V' is potential of the inter-electron interaction. In
order to take into account the retarding effect and
magnetic interaction in the lowest order on pa-
rameter a* (the fine structure constant) one could
write [18]:

V(1) =exp i, ) i) ’

fr

(14)

where w, is the transition frequency; a, ,a, are
the Dirac matrices. The Dirac equation potential
includes the electric potential of a nucleus and
electron shells and the exchange-correlation po-
tentials. The standard KS exchange potential is as
follows [45]:
Ve (r) =~/ m3a° p(r)]”. (15)
In the local density approximation the relativ-
istic potential is [45]:

SE[p(r)]

, 16
Ip(r) (16

VX[p(r)zr]:

where E,[p(r)]is the exchange energy of the mul-
tielectron system corresponding to the homoge-
neous density p(r), The corresponding correla-
tion functional is [6, 28]:
V.[p(r),r]=—-0.0333-b-In[1+18.3768 - p(r)*1,  (17)

where b is the optimization parameter (for de-
tails see Refs. [6,31,32]).

As it has been underlined, an adequate de-
scription of the multielectron atom characteris-

tics requires using the optimized basis of wave
functions. In our work it has been used ab initio

optimization procedure for construction of the
optimized basis of the relativistic orbitals. It is
reduced to minimization of the gauge dependent
multielectron contribution /mdE  of the lowest
QED perturbation theory corrections to the radia-
tion widths of atomic levels.

The minimization of the functional ImdE
leads to the Dirac-Kohn Sham-like equations for
the electron density that are numerically solved.
According to Refs. [31], the gauge dependent
multielectron contribution can be expressed as
functional, which contains the multi-electron
exchange-correlation ones. From the other side,
using these functionals within relativistic many-
body perturbation theory allows effectively to
take into account the second —order atomic per-
turbation theory (fourth-order QED perturbation
theory) corrections. In our work the correspond-
ing functionals of Ref. [34] have been used. As a
result one can get the optimal perturbation the-
ory one-electron basis. In concrete calculations
it is sufficient to use more simplified procedure,
which is reduced to the functional minimization
using the variation of the correlation potential pa-
rameter b in Eq. (16).

The differential equations for the radial
functions F' and G (components of the Dirac
spinor) are:

aa—F+(1+;()£—(g+m—V)G:0,

r r
oG G
5+(1—;{)7+(8—m—V)F=0, (18)

where F, G are the large and small components
respectively; c is the quantum number.

Atlarge c, the functions F'and G vary rapidly at
theorigin;wehave F(r),G(r)= ™, y =y’ —a’2’
. This creates difficulties in numerical integration
of the equations in the region »— 0. To prevent
the integration step from becoming too small it
is usually convenient to turn to new functions
isolating the main power dependence: f = Fr'
,g =Gr'M  The Dirac equations for F and G com-
ponents are transformed as follows [18]:

S'==H 2 DS Ir—aZVg—(aZE, +2/aZ)g,

g'=(x-lxhglr-aZlf+aZE, f. (19)
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Here E  is one-electron energy without the
rest energy. The boundary values are defined by
the first terms of the Taylor expansion:

g=(V(0)-E, )raz/(2x+1); f=1 ot
x<0,
_ 252 ) _,at
f=(V(0)-E,~2fa’Z*)az; g=1 20)
x>0

The condition f, g®0 at r® o« determines the
quantified energies of the state E . The system
of equations (19) is numerically solved by the
Runge-Kutta method. The details can be found in
Refs. [21-30].

2.2 The Dirac-Sturm approach

The basic idea of the Dirac-Sturm approach is
as follows [6,9,35,43]. In the usual formulation as
basis functions used system of eigenfunctions of
the generalized eigenvalue problem for the family
of operators:

(H,—£)®, =A g0, @1
where H —unperturbed Hamiltonian of a system,
g 1s a weighting operator, generally speaking, do
not commute with the operator H; A,,®, - ei-
genvalues and eigenfunctions of equation (21). A
weighting operator in Eq. (21) is usually chosen so
that unlike a spectrum of H, the spectrum of (21)
is a purely discrete. Using the orthogonality and
completeness conditions, it is easy to show that
the Green operator of the unperturbed problem is
diagonal in a representation, defined by a set of
functions @, and the corresponding expansion is
as follows:

Gole)=Y|®, = @, |/A,(e) (22)

and contains only a single summation over the
quantum numbers {n}. As the operator H, we use
the Dirac-Kohn-Sham Hamiltonian. The Dirac-
Kohn-Sham equation can be written in the next
general form [9]:

s (X) — &, ], (x) =0 (23)
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Along with discrete spectrum (e=e fe,)
there is a continuous spectrum of the eigen-
values (e>e,), corresponding to the Dirac-
Kohn-Sham virtual orbitals. In the Sturmian
formulation of the problem one should search
for the eigen-values and eigen-functions of
the equation:

[hDKS (‘x) - S]Q)V = ﬂ’vp(‘x)¢)v (24)

where N-1
e=E-) ¢, (25)

k=1

When e<0 equation (24) has a purely dis-
crete spectrum eigenvalues 1 =1 (e).

As the weight of the operator there are
commonly used operators, proportional to
a part or even all potential energy in the
Hamiltonian H,. Further, it is easily to under-
stand that the Fourier-image of the one-particle
Green’s function in the Dirac-Kohn-Sham ap-
proximation can be represented as an expansion
on the eigenfunctions of (24) [6,9]:

(+) _ 1. _ 5\/ (x)aj (x')
GV =(x,x"s¢) = ZV:—/lv(g)—l ,

where @, (x)is the Sturm designed function:

(26)

N
P, (D=0, (0= u, N<u, lp,> (27
k=1
In the case of the single-particle perturbed op-
erator, say, N
Wix)=D W (x) (28)
a=1
the second-order correction to an energy of the
atom is determined by the standard expression of
the following type:

N
SE® == "< u, |wG* (s, wlu, >=

k=1

=22 0<@, | wlu, > [14,(5,)-1]
k=1 v (29)

and it actually contains only the summation over
the occupied states (core) and virtual orbitals of
the Dirac-Kohn-Sham-Sturm type relating to a
purely discrete spectrum.

If the operator w,(x) is an interaction with an
external electric field, the expression (29) deter-
mines the many-electron atom polarizability. Let



us illustrate the specific numerical implementation
of relativistic method of the Sturm expansions on
the example of the rubidium atom. Calculation of
the static polarizability is actually reduced to two
stages. In the first stage one should solve the sys-
tem of relativistic Dirac-Kohn-Sham equations
with respect to the Dirac radial functions and the
Lagrange diagonal parameters e*,e*, e* etc. In
the second stage of the calculation procedure the
system of equations equivalent to (24) is solved
numerically:

(iacV+Vy (r)+0V.(r)+V,(r|b)—¢)p, =0

(30)
where, as above, V, is the potential of the elec-
tron-nuclear interaction, V. is a mean-field po-
tential generated by the other electrons; ¥ is the
Kohn-Sham potential.

Two parameters e, d, correspond to each or-
bital “i” of a real or Sturmian state. The param-
eter d, =1 for orbitals of the real states. It is also
important to emphasize that all orbitals of the
Sturmian supplement of the Eq. (26) have an ex-
ponential asymptotic behavior as ¥®¥, which co-
incides with the asymptotic behavior of the last
real state orbitals in the corresponding basis of
the real state orbitals. In each case, the functions
of the accounted real states represent a reduced
spectral expansion of the Green's function G. The
residual part decreases as exp[-r(-2e)’?] for r®¥
(e 1is the eigen energy of the explicitly accounted
last real state). All orbitals of the Sturm supple-
ment have absolutely the same asymptotic in the
corresponding basis. This fact is very significant
in terms of convergence of the method. Number
of explicitly accounted real state functions is de-
termined by concrete numerical application of
method to computing studied atomic characteris-
tics. Other details can be found in Refs. [6,9,35].

4 Shift and broadening of the hyperfine
spectral line for multielectron atoms in an
atmosphere of the buffer gas

4.1 Shift and broadening of the thallium and
ytterbium hyperfine line in an atmosphere of
the inert gas

At first, let us consider the thallium atom in
atmosphere of the inert gas. Its studying is of a

great interest as this atom a sufficiently heavy. In
contrast to more simple alkali atoms (look below)
the thallium atom contains p-electrons outside
closed shells and has a nuclear charge Z = 81.
In Table 1 the theoretical values of the van der
Waals constants ( in atomic units ) respectively,
for atom TI1 (TI - He, Kr, Xe) are listed. There are
presented our results (*) obtained from our rela-
tivistic calculation by the optimized Dirac-Kohn-
Sham method combined with the Dirac-Sturm
approach, the calculation results by Batygin et al,
based on the approximation formulas (10a)-(10c),
the Hartree-Fock data by Penkin et al, as well as
experimental data (from refs. [8,9,10-13]).

It is noteworthy sufficiently large error for
values of the van der Waals constants, obtained
during calculating on basis of formula (10), and
standard Hartree-Fock method.

Table 1

Theoretical values of the van der Waals

constants ( in atomic units ) respectively, for atom
Tl (T1- He, Kr, Xe); see explanations in the text.

TI— | TI- | TI- | TI-

He Ar | Kr | Xe

C/ (10a) 17.5 | 129 | 180 | 291

C" (10b) 20.5 | 148 | 212 | 318
C" (10c) 20.33 | 133 | 193 | 296

C, (Hartree-Fock) | 6.59 | 48 71 | 111
C, (our data *)° 12.1 | 106 | 157 | 265
C, (our data’)* 14.5 | 119 | 173 | 289
C, (experiment) - 100 | 150 | 260

Note:* — calculation with optimization™; > —
calculation without optimization;

The calculation shows the importance of the
quality of the atomic wave functions (using an op-
timization and correct account for the exchange-
correlation effects and continuum “pressure” etc.)
for an adequate description of the corresponding
constants

In Table 2 there are listed the results of our
calculation of the interatomic interaction poten-
tial U (R) and the values of the local shift dw (R)
( all values are in atomic units ) of the thallium
hyperfine spectral line for different values of the
internuclear distance in the system TI - He. For
comparison, similar results of the calculation of
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the potential U (R) and the local shift 6w (R) with
using the single-configuration Dirac-Fock meth-
od [12] are presented too.

Table 2
Local shift and interatomic interaction
potential (in atomic units) for the pair TI - He.

Table 4
The collisional shift f_(in Hz/Torr) of the thal-
lium hyperfine line for pairs TI - He, TI - Kr, Tl-
Xe at T=700°K; Experiment and the qualitative
estimate by Choron-Scheps-Galagher (Virginia
group); Theory: A- single-configuration Dirac-
Fock method; B — the optimized Dirac-Fock
method; C- our theory (see text).

In Table 3 we list the results of our calculation
(as all values are given in atomic units) interatom-
ic interaction potential U (R) and the values of the
local shift dw (R) for pairs TI-Kr, TI-Xe.

Table 3
Local shift and interatomic interaction potential
(in atomic units) for the pair TI - K, Xe (see text)

T1-Kr (Our theory) T1-Xe (Our theory)
R [50(R)e10% [UR)*10° [d0(R)e10> [U(R)*10°
5 [-14.30 13.24 |-19,05 18.31
6 |-2.88 6.10 |-8.22 5.95
T |-1.44 1.72  |-2.67 2.04
8 1-0.67 0.49 |-1.52 0.65
9 1048 0.06 |-0.74 0.01
10035 -0.03 |-0.48 -0.08
1T 1024 2004 |-037 -0.09

Further in Table 4 we present our theoretical
values (theory C) for the thallium atom hyperfine
line collisional shift at the temperature T = 700K
for a number of the diatomic systems, in particu-
lar, the pairs of TI - He, TI - Kr, Tl-Xe.
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Dirac-Fock method | Our theory [8,9]
[12] System T1-He T1-Kr | TI1-Xe
R | 8a(R)e10% | U (R)*10* |3 (R)e10 % (R) - Experiment | 130 +30 |-490+20] -1000+80
5 4.22 7.6 3,92 6.93 Qualitative estimate - - -5500
6 1.34 2.0 1,21 1.76 Theory A 155.0 | -850.0 | -1420.0
7 0.329 0.44 0.27 0.38 Theory B 139.0 - -
8 0.0788 0.099 0.070 0.085 Theory C 1372 504 -1052
9 0.0032 0.024 0.0025 0.020
10l -00145 20076 | -0.0131 |-0067 Ip Table 5 we pre'sent the theoretical dgta on the
collisional shift f (in Hz/Torr) the thallium atom
11 -0.0119 | -0.008 hyperfine line at different temperatures (T°K)

for the systems TI - He, TI - Kr, Tl-Xe: Theory
A - the single-configuration Dirac-Fock method
Batygina DF et al. [12]; C- our theory [8,9].

As can be seen from the presented data, our
theory provides a physically reasonable agree-
ment with experimental data on the hyperfine line
collisional shifts for the pairs of TI-He, TI-Kr, TI-
Xe.

Table 5

The temperature dependence of the colli-

sional shift f_(in Hz/Torr) for pairs TI- He, TI

- Kr, Tl-Xe; Theory: A- single-configuration
Dirac-Fock method; C- our theory;

Pair |T1—He |T1—He |[T1—Kr |T1—Xe
T,K |Theory A|Theory C [Theory C |Theory C
700 155 137,2 -504 -1052
750 ]153.0 135,3 -461 -964

800 |151 134,1 -422 -899

850 |149 133,3 -391 -841

900 |147.5 1314 -362 =794

950 |146 129,1 -330 751

1000 |143 126,2 -308 =713




For comparison, in this table there are also
listed the results of calculation on the basis of the
single-configuration Dirac-Fock method Batygina
DF et al. [12] (theory A), the optimized DF-like
method [8] (theory B), as well as experimen-
tal data Choron-Scheps-Galagher ( the Virginia
group) . The qualitative estimate from Ref. [10]
has been listed as well. In Table 6 we present our
calculated values for adiabatic broadening I'/p
(in Hz / Torr) of the thallium atom hyperfine line
at different temperatures for the TI — He pair: C
- our theory; A theory [12]. In Table 7 we list the
similar theoretical data on the Tlatom hyperfine
line adiabatic broadening of I /p (in Hz / Torr) for
the pairs TI - Kr, TI-Xe.

Table 6

Adiabatic broadening I' /p (in Hz / Torr)
for the TI - He: Theory A- single-configura-
tion Dirac-Fock method; C- our theory.

T, K TI—He TI—-He
Theory A Theory C
700 2.83 2.51
800 2.86 2.54
900 2.90 2.58
1000 2.89 2.56
Table 7

Adiabatic broadening I /p (in Hz / Torr)
for the TI — Kr, YI-Xe (our theory).

T,K TI- Kr TI- Xe
700 6.81 17.3
800 5.89 14.6
900 5.26 12.9
1000 5.24 11.5

It is easily to estimate that the ratio values
(I'/p) / fp ~ 1/50 for the system TI - He,
(I'/p) /]?3 ~ 1/70 for the system TI - Kr and
(I/p)/f,~1/60 for the TI-Xe. These estimates
(at first it had been noted in Ref.[12] ) show that
well-known in the theory of optical range spec-
tral line broadening Foley law I' ~|A| ( see, for
example, [6] ) is incorrect for the spectral lines of
transitions between components of the hyperfine

structure. At least this fact is absolutely obvious
for the thallium atom.

In any case we suppose that more detailed
experimental studying are to be very actual and
important especially a light of availability of the
theoretical data on temperature dependences of
the thallium hyperfine line collisional shift and
broadening. Obviously, this is also very actual
from the point of view of the construction the
thallium quantum frequency measure, as well as
studying a role of the weak interactions in atomic
physics and physics of collisions (see, for exam-
ple, [6,10]).

Now let us consider the pair ‘Yb-He”. The
ground configuration for the ytterbium atom is:
[Xe]4/6s* ( term: 'S). Further we present our
results for the scalar static polarizability a, (in
units of a’, a, is the Bohr radius) and isotropic
dispersion coefficient C (in units of E, xa
, E, 1s the Hartree unit of energy). Our data are
as follows [9]: C6,0= 45.2 and a,=169.3. For com-
parison let us present the corresponding data by
Dalgarno et al [13]: C =39.4, a;=157.3 and by
Buchachenko et al [44]: C; =44.5.

In table 8 we present our calculation results
for the observed /. (in Hz/Torr) shift for the sys-
tem of Yb-He.

Table 8
The observed f_(in, Hz/Torr) shift for the
system Yb-He (see text)

7.K /,

700 148.1
750 146.0
800 143.8
850 141.5
900 1389

It is obvious that the pair Yb-He is more com-
plicated system in comparison with the pair of TI-
He or “alkali atom-He”. Until now there are no
any experimental or theoretical data for this
system. So, we believe that our data may be
considered as the first useful reference
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4.2 Shift and broadening of the alkali atom
hyperfine line in an atmosphere of the inert gas

Here we present the results of our studying
hyperfine line collisional shift for alkali atoms
(rubidium and caesium) in the atmosphere of the
helium gas. In Table 9 we present our data on the
van der Waals constants in the interaction poten-
tial for alkali Rb, Cs atoms with inert gas atoms
Ne, Kr, Xe, and also available in the literature ex-
perimental data [10,11]. In Table 10 we list the
results of our calculating (in atomic units) inter-
atomic potentials, local shifts dw(R) for the pair
Cs-He. Noteworthy is the fact that an accuracy of
the experimental data for the van der Waals con-
stants does not exceed 10 % for heavy alkali at-
oms. Calculation has shown that the optimization
of the relativistic orbitals basis and accounting for
the exchange-correlation effects seem to be very
important for obtaining adequate accuracy of the
description of the constants.

Table 9

The van der Waals constants (in atomic

units.) for alkali atoms, interacting with inert
gas atoms Ne, Kr, Xe (see text).

In Table 11 and 12 we present our theoretical
results for the hyperfine line observed shift ]; (1/
Torr) in a case of the Rb-He and Cs-He pairs. The
experimental and alternative theoretical results by
Batygin et al [11] for ]; are listed too. At present
time there are no precise experimental data for a
wide interval of temperatures in the literature.

Table 11

The observed f (10 1/Torr) shifts for the

systems of the Cs-He and corresponding theo-
retical data (see text).

T,K |Experi- |Our  |Theory® |Theory® |Theory®
ment |y |11 [11] [11]

223 |- 178 164 142 169

323 |135 137|126 109 129

423 |- 123 111 96 114

523 |- 112|100 85 103

623 |- 105 |94 78 96

723 |- 98 - - -

823 |- 92 - - -

Note:* —calculation with using the He wave
functions in the Clementi-Rothaane approxima-

Pair of atoms Our theory | Experiment | tjon; b — calculation with using the He wave
Rb-He 42 41 functions in the Z-approximation;
Rb —Kr 484 470 ¢ —calculation with using the He wave func-
Rb —Xe 758 - tions in the Lowdin approximation;
Cs-He 52 50 Table 12
Cs-Kr 582 570 The observed f (10~ 1/Torr) shifts for the
Cs-Xe 905 - systems of Rb-He and corresponding theo-
retical data (see text).
Table 10. The interatomic potential (10°)
and lf)cal fico(R) shift (10°) for Cs-He pair (in T,K |Experi- |Our Theory | Theory | Theory
atomic units; see text) ment theory |* b c
R S (R) U(R) 1] |1y |
8 4280 610
9 2845 336 223 |- 113 79 67 81
10 1890 169 323 |105 101 73 56 75
11 955 71 423 |- 89 62 48 64
12 482 32 523 |- 80 55 43 56
13 251 12.8 623 |- 73 50 |38 |50
14 113 4.1 723 |- 71 47 |36 |47
15 59 1.9 823 _ 69 _ _ _

32




Note:* —calculation with using the He wave
functions in the Clementi-Rothaane approxima-
tion; ° — calculation with using the He wave
functions in the Z-approximation;

¢ —calculation with using the He wave func-
tions in the Lowdin approximation;

The theoretical data from Refs. [11] are ob-
tained on the basis of calculation within the ex-
change perturbation theory with using the He
wave functions in the Clementi-Rothaane ap-
proximation [42] (column: Theory?), and in the
Z-approximation (column: Theory®), and in the
Lowdin approximation (column: Theory®).

The important feature of the developed opti-
mized perturbation theory approach is using the
optimized relativistic orbitals basis, an accurate
accounting for the exchange-correlation and con-
tinuum pressure effects with using the effective
functionals [18,34].

The difference between the obtained theoreti-
cal data and other alternative calculation results
can be explained by using different perturbation
theory schemes and different approximations for
calculating the electron wave functions of heavy
atoms. It is obvious that the correct account for
the relativistic and exchange-correlation and con-
tinuum pressure effects will be necessary for an
adequate description of the energetic and spectral
properties of the heavy atoms in an atmosphere of
the heavy inert gases (for example, such as Xe).

5 Conclusion

In this chapter a brief review of the experi-
mental and theoretical works on the hyperfine
structure line collision shifts for heavy atoms in
an atmosphere of the buffer inert gases is given.
A new, consistent relativistic perturbation theory
combined with the exchange perturbation the-
ory, is presented and applied to calculating the
interatomic potentials, van der Waals constants,
hyperfine line collision shift and broadening for
some heavy atoms in an atmosphere of the buffer
inert gases. It should be noted that the presented
approach can be naturally generalized in order to
describe the energy and spectral characteristics of
other atomic systems and buffer mediums.

The calculation results on the hyperfine line
collision shift and broadening for the alkali (Rb,

Cs), thallium, and ytterbium atoms in an atmo-
sphere of the inert gas (He, Kr, Xe) are listed and
compared with available alternative theoretical
and experimental results. The obtained data for
the ( I'/p) / ]:7 ratio allowed to confirm that the
well-known Foley law I' ~ fin the theory of op-
tical range spectral line broadening is incorrect
for the spectral lines of transitions between com-
ponents of the hyperfine structure of the heavy
multielectron atoms.

The studying hyperfine structure line collision
shifts and widths for different heavy atomic sys-
tems in the buffer gases opens new prospects in
the bridging of quantum chemistry and atomic and
molecular spectroscopy and physics of collisions.
These possibilities are significantly strengthened
by a modern experimental laser and other tech-
nologies [10,50-56]. Really, new experimental
technologies in physics of collisions may provide
a measurement of the atomic and molecular colli-
sion spectral parameters with very high accuracy.

References

1. 1L.G. Kaplan, Theory of intermolecu-
lar interactions (Nauka, Moscow,
1995), p.1-380; I.G. Kaplan and O.B.
Rodimova, Phys.-Uspekhi. 126, 403
(1997).

2. E.E. Nikitin, Semiempirical methods
of calculation of interatomic interac-
tion potentials. Series: Structure of
molecules and chemical bond, vol. 4,
ed. by E.E.Nikitin and S.Ya. Umansky
(VINITI, Moscow, 1990), p.1-220;
A.L. Devdariani, Chemistry of plas-
ma, vol. 15, ed. by B.M. Smirnov,
A.L.Devdariani and A.L. Zagrebin
(Nauka, Moscow, 1989), p.44.

3. LM. Torrens, Interatomic potentials
(Academic Press, , N-Y., 1992), p.1-
390; A.J. Freeman and R.H. Frankel,
Hyperfine interactions (Plenum, N.-Y.,
1997), p.1-360; J. Weiner, V.S. Bagnato,
S. Zilio, and P.S. Julienne, Rev. Mod.
Phys. 71, 1 (1999).

4. R.Eisenschitz and F. London, Zs.Phys.
60, 491 (1930); J.O.Hirschfelder,
Chem. Phys. Lett. 1,325, 363 (1997);

33



34

10.

11.

12.

Ad van der Avoird, J.Chem.Phys. 47,
3649 (1997);

J.N. Murrel, G. Shaw, J. Chem. Phys.
46, 1768 (1967); J.I.Musher and A.T.
Amos, Phys. Rev. 164, 31 (1997).

LI. Sobel’man, Introduction to theory of
atomic spectra (Nauka, Moscow, 1997),
p.1-380; A.V. Glushkov, Relativistic
and correlation effects in theory of
atomic spectra (Astroprint, Odessa,
20006), p.1-450.

G. Grim, Broadening spectral lines in
plasmas (Acad. N.-Y., 1994), p.1-480;
E. Oks, Int. Journ. of Spectr. 10, 852581
(2010); A. Unsold, The New Cosmos
(Springer-Verlag, Berlin, 1977), p.169.

O.Yu.Khetselius, A.V. Glushkov, A.V.
Loboda, E.Gurnitskaya, E. Mischenko,
T.A.Florko, D.E. Sukharev, Spectral
Line Shapes. 15, 231 (2008); A.V.
Glushkov,  O.Yu.Khetselius, A.V.
Loboda, E.Gurnitskaya, E.Mischenko,
Theory and  Applications of
Computational Chemistry (AIP) 1113,
131 (2009);

S.V.Malinovskaya, A.V. Glushkov,
O.Yu. Khetselius, A.A. Svinarenko,
E.V. Mischenko and T.A. Florko, Int.
Journ. of Quant.Chem. 109, 3325
(2009); O.Yu. Khetselius, T.A. Florko,
A.A. Svinarenko and T.B.Tkach, Phys.
Scripta. T153, 014037 (2013);

B. Cheron, R. Scheps and A. Gallagher,
J. Chem. Phys. 65, 326 (1976);
Photonic, Electronic, Atomic Collisions.
Ed by F.Aumar and H. Winter (World
Scientific, Singapore:, 1997), 630p;
D. Turner, C. Baker, A.Baker and
C.Brunrile, Molecular Photoelectron
Spectroscopy (Wiley, N.-Y., 1997), p.1-
540;

V.V. Batygin, Yu.V.Guzhva, B.Matisov
and [N.Toptygin, JETP. 47, 2414
(1997); V. Batygin, M.B. Gorny,
A.N.Ivanov and B.G.Matisov, J.Techn.
Phys. 47, 2414 (1977); V.V. Batygin,
M.B. Gorny and B.M. Gurevich,
J.Techn.Phys. 48, 1097 (1998).

V.V. Batygin and B.G.Matisov, J.Techn.
Phys. 46,221 (1996); E.B. Alexandrov,

13.

14.

15.

16.

17.

18.

19.

V.I. Popov, N.N. Yakobson, Opt.
Spectr. 46, 404 (1999); V.V. Batygin,
.M. Sokolov, Opt. Spectr. 55,30 (1993).
N.P.Penkin, V.P.Ruzov and
L.N.Shabanova, Opt. Spectr. 35, 601
(1993); X. Chi, A. Dalgarno, G.C.
Groenenborn, Phys. Rev. A. 75, 032723
(2007); M.J. Jamieson, G.W.F.Drake
and A.Dalgarno, Phys.Rev. A. 51, 3358
(1995);

A.V. Glushkov, Relativistic quantum
theory. Quantum mechanics of atomic
systems (Astroprint, Odessa, 2008),
700p.; O.Yu. Khetselius, Hyperfine
structure of atomic spectra: New
methods and applications (Astroprint,
Odessa, 2008), 240p.

L.P. Grant, Relativistic Quantum Theory
of Atoms and Molecules, Theory and
Computation, Springer Series on
Atomic, Optical, and Plasma Physics,
vol. 40 (Springer, Berlin, 2007), p.1-
587; I.P. Grant and H.M. Quiney, Int. J.
Quant. Chem. 80, 283 (2000).

S. Wilson, Recent Advances in
Theoretical Physics and Chemistry
Systems, Series: Progress in Theoretical
Chemistry and Physics, vol. 16, ed. by
J. Maruani, S. Lahmar, S.Wilson, and
G. Delgado-Barrio (Springer, Berlin,
2007), p. 11.

A.V. Glushkov, S.V. Ambrosov,
O.Yu. Khetselius, A.V. Loboda, E.P.
Gurnitskaya, in Recent Advances in
the Theory of Chemical and Physical
Systems Series: Progress in Theoretical
Chemistry and Physics, vol. 15, ed.
By J.-P. Julien et al, (Springer, Berlin,
2006), p. 285.

A.V. Glushkov, O.Yu. Khetselius, E.P.
Gurnitskaya, A.V. Loboda, T.A. Florko,
D.E. Sukharev, L. Lovett, in Frontiers
in Quantum Systems in Chemistry and
Physics Series: Progress in Theoretical
Chemistry and Physics, vol. 18, ed.
by S.Wilson, P.J.Grout, J. Maruani, G.
Delgado-Barrio, P. Piecuch (Springer,
Berlin, 2008), p. 505.

A.V.Glushkov, S.V. Malinovskaya, A.A.
Svinarenko, and Yu.G. Chernyakova,



20.

21.

22.

23.

24.

25

26.

27.

28.

. A.V.Glushkov,

Int. Journ. Quant. Chem. 99, 889
(2004).

A.V. Glushkov, S.V. Ambrosov, A.V.
Loboda, E.P. Gurnitskaya and G.P.
Prepelitsa, 104, 562 (2005).

A.V. Glushkov, S.V. Ambrosov,
O.Yu. Khetselius, A.V. Loboda, Yu.G.
Chernyakova, A.A. Svinarenko, Nucl.
Phys.A.7348S, 21 (2004); A.V.Glushkov,
O.Yu. Khetselius, L. Lovett,
E.P.Gurnitskaya, Yu.V. Dubrovskaya
and A.V. Loboda, Int.J. Mod.Phys. A:
Particles and Fields, Nucl.Phys. 24, 611
(2009).

O.Yu. Khetselius, Int.J.Quant.Chem.
109, 3330 (2009); O.Yu. Khetselius,
Phys.Scripta. T135, 014023 (2009).
O.Yu. Khetselius, J. of Physics: C Ser.
397, 012012 (2012).

A.V. Glushkov, S.Ambrosov, A.Loboda,
G. Prepelitsa, E. Gurnitskaya, Int. Journ.
Quant.Chem. 104,562 (2005);
S.V.Malinovskaya,
O.Yu.Khetselius, Yu.V. Dubrovskaya,
E.P. Gurnitskaya, J. Phys.CS. 35, 425
(2006);

S.V.  Malinovskaya, A.V.Glushkov,
O.Yu. Khetselius, A.A.Svinarenko,
A.V.Loboda, Yu.M. Lopatkin,
L.V.Nikola, Int. Journ. of Quant.Chem.
111, 288 (2011).

A.V. Glushkov, O.Yu. Khetselius and
S.V. Malinovskaya, in Frontiers in
Quantum Systems in Chemistry and
Physics, Series: Progress in Theoretical
Chemistry and Physics, vol. 18, ed.
by S.Wilson, P.J.Grout, J. Maruani, G.
Delgado-Barrio, P. Piecuch (Springer,
Berlin, 2008), p. 523; Europ.Phys.
Journ. ST 160, 195 (2008); Molec.
Phys. 106, 1257 (2008).

A.V. Glushkov, O.Yu. Khetselius, A.V.
Loboda, A.A. Svinarenko, in Frontiers
in Quantum Systems in Chemistry
and Physics, Progress in Theoretical
Chemistry and Physics, vol. 18, ed. by
S. Wilson, P.J. Grout., J. Maruani, G.
Delgado-Barrio, P. Piecuch (Springer,
Berlin, 2008), p. 541; A.V. Glushkov,
A.V. Loboda, E.P. Gurnitskaya, A.A.

29.

30.

31.

32.

33.

34.

35.

36.

Svinarenko, Phys.
014022 (2009).
A.V. Glushkov, O.Yu. Khetselius, L.
Lovett, L., in: Advances in the Theory
of Atomic and Molecular Systems
Dynamics,  Spectroscopy,  Clusters,
and Nanostructures. Series: Progress
in Theoretical Chemistry and Physics,
vol. 20, ed. by P.Piecuch, J. Maruani, G.
Delgado-Barrio, S. Wilson (Springer,
Berlin, 2009), p.125-172.

A.V. Glushkov, O.Yu. Khetselius, A.A.
Svinarenko, in: Advances in the Theory
of Quantum Systems in Chemistry and
Physics. Series: Progress in Theoretical
Chemistry and Physics, vol. 22, ed.
by P.Hoggan, E.Brindas, G. Delgado-
Barrio, P.Piecuch (Springer, Berlin,
2012), p.51-70.

A.V. Glushkov, L.N. Ivanov and E.P
Ivanova, Autoionization Phenomena
in Atoms, (Moscow University Press,
Moscow, 1996), p.58; A.V. Glushkov
and L.N. Ivanov, Phys. Lett. A. 170, 33
(1992).

A.V.Glushkov, JETP Lett. 55,97 (1992);
Opt. Spectr. 84, 670 (1998); Russian
Journ. of Struct. Chem. 39, 220 (1998);
A.  Glushkov, S.V.Malinovskaya,
Russian Journ. of Phys. Chem. 62, 100
(1988).

L.N. Ivanov and E.P. Ivanova, Atom.
Data Nucl .Data Tabl. 24, 95 (1979).
E.P. Ivanova, L.N. Ivanov, A.V.
Glushkov, A. Kramida, Phys. Scripta
32,512 (1985); A.Glushkov, E.Ivanova,
J. Quant. Spectr. Rad. Transfer. 36, 127
(1986).

L.N. Ivanov, E.P. Ivanova, L. Knight,
Phys. Rev. A 48, 4365 (1993); E.P.
Ivanova, L.N. Ivanov, E.V. Aglitsky,
Phys. Rep. 166, 315 (1988); E.P.
Ivanova, L.N. Ivanov, JETP 83, 258
(1996); E.P. Ivanova, I.P. Grant, J. Phys.
B 31, 2871 (1998).

L.N. Ivanov, V.S. Letokhov, Com. Mod.
Phys. D 4, 169 (1985); A.V.Glushkov,
L.N.Ivanov, V.S. Letokhov, Preprint of
Inst. for Spectroscopy of USSR Acad.
of Sci. (ISAN), AS-5 (Moscow, 1991).

35

Scripta T 135,



36

37.

38.

39.

40.

41.

42.

43.

44.

E. Vidolova-Angelova, L.N. Ivanov, and
D.A. Angelov, J.Phys.B: At. Mol. Opt.
Phys. 21, 3877 (1998); E. Vidolova-
Angelova, E.P. Ivanova, and L.N.
Ivanov, Opt. Spectr. 50, 243 (1981); G.I.
Bekov, E. Vidolova-Angelova, L.N.
Ivanov, V.S. Letokhov, and V.I. Mishin,
Soviet-JETP. 80, 866 (1991).
A.Nemukhin and N.Stepanov, Herald of
Moscow State Univ. Ser. Chem. 18, 282
(1984); D. Kupriyanov and S.Sokolov,
Sov. Chem.Phys. 5, 1160 (1986);

M. Aubert , M.Bessis and G.Bessis,
Phys.Rev.A. 10, 51 (1974); 10, 61
(1994); L. Bellomonte, P. Cavaliere
and G. Ferrante, J.Chem.Phys. 61, 3225
(1994);

J. Aguilar and H. Nakamura, Chem.
Phys. 32, 115 (1976); F. Masnou, N.
Philips, P. Valiron, Phys.Chem.Lett. 41,
395 (1978).

W.-T. Luh and J.T. Bahns, J.Chem.
Phys. 88, 2235 (1988); M. Frauss and
W.J. Stevens, J.Chem.Phys. 93, 4236
(1990);

E. Clementi and C.C.J. Roothaan and
M. Yoshimine, Phys.Rev. 127, 1618
(1992); P.O. Lowdin, Phys. Rev. 30,
120 (1993).

P.F.Gruzdev, S.Solov’eva, A.Sherstyuk,
Russian Phys. Journ. 29 (N1), 73
(1988);  A.Glushkov, A.Kivganov,
V.Polischuk, V.Khokhlov, T.Buyadzhi,
L.Vitavetskaya G.Borovskaya, Russian
Phys. Journ. 41 (N3), 36 (1998);

A.A. Buchachenko, M.M. Szczesniak,
and G. Chalazinski, J.Chem.Phys.
124, 114301 (2006); M.J. Jamieson, A.
Dalgarno, M. Aymar and J. Tharamel, J.
Phys. B: At. Mol. Opt. Phys. 42, 095203
(2009);

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

W. Kohn, L.J. Sham, Phys. Rev. A 140,
1133 (1964); P. Hohenberg, W. Kohn,
Phys. Rev. B 136, 864 (1994);

X. Chu and Shin-I Chu, Phys.Rev.A.
63, 013414 (2000); 63, 023411 (2001);
E.G. Gross, W. Kohn, Exchange-
Correlation Functionals in Density
Functional Theory (Plenum, New York,
2005).

The Fundamentals of Electron Density,
Density Matrix and Density Functional
Theory in Atoms, Molecules and
the Solid State, Series: Progress in
Theoretical Chemistry and Physics
, vol. 14, eds. N. Gidopoulos and S.
Wilson (Springer, Berlin, 2004), p.1.
M.D. Krunisz, Acta Phys. Pol. A62, 285
(1982);

A.Glushkov, O.Khetselius, A.
Svinarenko Phys.Scr. T153, 014029
(2013).

V. Horvatic, D. Veza, M.Movre, K.
Niemax, C.Vadla, Spectroch.Acta.Part
B. 63, 652 (2008).

M. Kétteritzsch, W. Gries and A.Hese, J.
Phys. B: At. Mol. Opt.. 25, 913 (1992).
E.Ehrlacher, J. Huennekens, Phys.
Rev.A. 46, 2642 (1992);

K.Singer, M.Reetz-Lamour, T. Amthor,
L.Marcassa and M. Weidemuller, Phys.
Rev. Lett. 93, 163001 (2004).
C.Hancox, S.Doret, M.Hummon,
L.Luo, J. Doyle, Nature (London). 431,
281 (2004); C.Hancox, S.Doret, M.
Hummon, R.Krems, J. Doyle, Phys.
Rev.Lett. 94, 013201 (2005).

O.Yu. Khetselius, in: Quantum Systems
in Chemistry and Physics: Progress
in Methods and Applications. Series:
Progress in Theoretical Chemistry and
Physics, vol. 26, ed. by K.Nishikawa et
al (Springer, 2012), p.217-230.

This article has been received within 2014



UDC 539.184
O. Yu. Khetselius

OPTIMIZED PERTURBATION THEORY TO CALCULATING THE HYPERFINE LINE SHIFT AND
BROADENING FOR HEAVY ATOMS IN THE BUFFER GAS

Abstract

It is presented review of a new consistent relativistic approach to determination of collisional
shift and broadening hyperfine lines for heavy atoms in an atmosphere of the buffer inert gas. It is
based on the atomic gauge-invariant relativistic perturbation theory and the exchange perturbation
theory. As illustration, consistent approach is applied to calculating the interatomic potentials, hyper-
fine structure line collision shift and broadening for heavy atoms, in particular, atoms of alkali ele-
ments — rubidium, caesium, and thallium, ytterbium, in an atmosphere of the buffer inert gas.

Key words: Relativistic many-body perturbation theory, hyperfine line collision shift

YJIK 539.184
0. 1O. Xeyenuyc

ONTUMM3UPOBAHHS TEOPHS BO3MYIIEHUM JIsI ONPEAEJEHUS CABUTA U YIIUPEHUS
JUHUA CBEPXTOHKOM CTPYKTYPBI B TSIAKEJIBIX ATOMAX B BY®EPHBIX FA3AX

Pesrome

[IpencraBien 0630p HOBOTO MOCIENOBATEIBHOTO PENSTUBUCTCKOTO MOAXOAA K OINPENEICHUIO
CTOJIKHOBUTEJIBHOI'O C/IBUTA U YIIUPEHUS JIMHUU CBEPXTOHKOM CTPYKTYPBI TSXKEJIBIX aTOMOB B aTMOC-
depe OydhepHBIX HHEPTHBIX ra30B. MeTon OCHOBaH Ha aTOMHOW KaarOpPOBOYHO-WHBAPHAHTHOM TEO-
pYHY BO3MYIIIEHUI U OOMEHHOW TeopuH BO3MYIICHHH. B kadecTBe WiLTIOCTpaliiy MpUBENIEH IPUMEp
pacuera MeXaTOMHBIX MMOTEHIIMAJIOB, CTOJIKHOBUTEIBHOIO C/IBUTa U YIIUPEHHUS! CBEPXTOHKUX JIMHUN
JUISL TSKEJIBIX aTOMOB, B YaCTHOCTH, aTOMOB IIIE€JIOYHBIX 3JIEMEHTOB, TaJUIHsL, UTTepOusl B atMmocdepe
Oy(epHBIX HHEPTHBIX T'a30B.

KiroueBble ciioBa: pesiTUBUCTCKAsl TEOPHUsI BO3MYIIEHUM, CTOJTKHOBUTEIbHBIN CIBUT JUHUMN
CBEPXTOHKOU CTPYKTYPBI

YJIK 539.184
0. IO. Xeyeniyc

ONITUMI3ZOBAHA TEOPISI 35YPEHbD JIJISI BASHAYEHHS 3CYBY TA YIIUPEHHS JITHIA HAJITOHKOI
CTPYKTYPHU Y BAXKKKUX ATOMAX B BYOEPHUX I'A3AX

Pesrome

ITpencraBieHo omIsA HOBOI'O MOCIIAOBHOTO PEIATUBICTCHKOIO MiAXOAY 10 BU3HAYECHHS 3CYBY Ta
YIIMPEHHS JIiHIT HAITOHKOT CTPYKTYPH Ba)KKOTO atoMa B atMocdepi OydhepHux iHepTHHUX ra3iB. Meron
0a3yeTbCsl Ha aTOMHIN KaniOpyBanbHO-1HBapiaHTHIN Teopii 30ypeHb Ta 0OMiHHIN Teopii 30ypeHb. Ak
UTFOCTpAIlisi HaBEeEHO MPUKIIAJl PO3paxyHKy MIKAaTOMHHUX TOTEHIIIaliB, 3CyBy Ta YIIMPEHHS 3a pa-
XYHOK 31TKHEHb HAJITOHKHX JIHIN JUIS BOXKKHX aTOMIB, 30KpeMa, aTOMIB JYKHHX €JI€MEHTIB, TaJlTis,
iTTepOist B arMocdepi OydepHuX iHepTHUX ra3iB.

KirouoBi ciioBa: pensTuBicTChbKa Teopis 30ypeHb, 3CyB 3a paXyHOK 31TKHEHbB JIIHIH HaJTOHKOT
CTPYKTYpH
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