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ON DETERMINATION OF RADIATIVE TRANSITIONS PROBABILITIES IN RELATIVISTIC 
THEORY OF DIATOMIC MOLECULES: NEW SCHEME 

On the basis of new gauge-invariant  scheme in the relativistic energy approach combined with the multi-
body perturbation theory for diatomic molecules it is formulated a new theoretical scheme for calculating the 
probabilities of radiative transitions of molecules. It is analysed the possible way to take into account for the 
inter-electron correlation and correspondingly the non-gauge-invariant contributions in relativistic molecular 
theory.

1. The experimental and theoretical study-
ing of the radiation transition characteristics of a 
whole number of many-electron systems such as 
atoms and diatomic molecules is of a great im-
portance and interest from the point of view of as 
the quantum electronics and atomic physics as at-
mosphere, plasma physics and plasma diagnostics 
science [1-33]). The traditional problem of any 
theory of the multielectron systems is determina-
tion of the radiation transition probabilities (os-
cillator strengths). Naturally to present time there 
are many well developed methods in a relativistic 
theory of atoms and ions and non-relativistic the-
ory of molecular systems [1-16]. The well known 
multi-configuration Hartree-Fock method (the 
relativistic effects are often taken into account 
in the Pauli approximation or Breit Hamiltonian 
etc) allowed to obtain the useful spectral data on 
light and not heavy systems. The multi-configura-
tion  Dirac-Fock (DF) method is the most reliable 
version of calculation for systems with a large 
number of electrons. In these calculations the ef-
fects are taken into account practically precisely 
[1-18]. The calculation program of Desclaux (the 
Desclaux program, Dirac package) is compiled 
with proper account of the one- and two-particle 
relativistic, a finiteness of the nucleus size etc. It 
should be given special attention to two very gen-

eral and important computer systems for relativ-
istic calculations of atomic and molecular prop-
erties developed in the Oxford group and known 
as GRASP (“GRASP”, “Dirac”; “BERTHA”, 
“QED”, “Dirac”) (see [1-5] and references there). 
Besides, the well known density functional theory 
(DFT), relativistic coupled-cluster approach and 
model potential approaches in heavy atoms and 
ions should be mentioned too [1-15]. 

Nevertheless, as a rule, detailed description of 
the method for studying role of the relativistic, 
gauge-invariant contributions, for molecular sys-
tems is lacking. Serious problems are connected 
with correct definition of the high-order correla-
tion corrections etc. The further improvement of 
this method is connected with using the gauge 
invariant procedures of generating the electron 
orbitals basis’s and more correct treating the cor-
relation effects [1-5,16-21]. 

In refs. [5,17-22] it has been performed an 
analysis of approaches to description of the rela-
tivistic many-electron systems with accurate con-
sistent treating the relativistic, exchange-correla-
tion and other, based on the relativistic perturba-
tion theory (PT) formalism. 

In the relativistic theory of heavy diatomic 
molecules a main problem of using the Dirac 
equation as a zero approximation in molecular 
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calculations associated with the non-ability to 
divide the variables in difference of the standard 
non-relativistic Schrödinger equation. 

In this paper  on the basis of new gauge-invar-
iant  scheme in the relativistic energy approach 
combined with the multi-body perturbation theo-
ry for diatomic molecules it is formulated a new 
theoretical scheme for calculating the probabili-
ties of radiative transitions of molecules. It is ana-
lysed the possible way to take into account for the 
inter-electron correlation and correspondingly the 
non-gauge-invariant contributions in relativistic 
molecular theory.

Naturally, one of the effective ways in relativ-
istic molecular theory is in using the Breit-Pauli 
approximation [3-5]. 

2. Let us describe in brief the important mo-
ment of our theoretical approach. As usually, the 
wave functions zeroth basis is found from the 
Schrodinger (Dirac in the consistent version) 
equation solution with potential, which includes 
the core ab initio potential, electric potentials of 
nuclei and possibly exchange-correlation one-
particle potentials. The last potential in part takes 
into account for contribution of the correlation 
corrections of the PT second and high orders 
(electrons screening, particle-hole interaction 
etc.) are accounted for. 

For arbitrary diatomic molecule in the per-
turbation theory zeroth approximation the  two-
center centre Schrodinger equation is written in 
spheroidal coordinates, l,m,j 

( ( ) Rrr BA +=l , ∞<l≤1 , 

( ) Rrr BA -=µ , 11 ≤µ≤- , p≤µ≤ 20 )

and after a number of transformations results in 
the following form (look,for example, [5]):

( ) +-
-

-







∂
∂

-
∂
∂ 22

2

2
2

1
1[ l

ll
l

l
pm     

( ) ( ) 0]2 =Λ×+-++ - lll AeZZR kR
BA

( ) -+
-

-







∂
∂

-
∂
∂ 22

2

2
2

1
1[ µ

µµ
µ

µ
pm

    ( ) ( ) 0] =×--- µµ MAZZR BA
      

                                                                 (3)

where A is a constant separation. The wave func-
tion is represented as:                                     

( ) ( ) ( ) ( ) ( ) ϕ±µlΛ=ϕµlΛ=ϕµlψ imeGM ,,, .              (4)

and the one-electron energy: 222 RpE -=

The perturbation theory operator is as follows:                                                      
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where d,i,j are the summation indexes corre-
spondingly at nuclei and electrons.

In [5] it was constructed for the perturbation 
theory formalism for secular operator matrix and 
there are analyzed the diagrams summation tools 
for secular operator matrix. The terms of this set 
are represemted as contributions on of the Feyn-
man diagrams, which are usually classified on 
number of the end lines. According to such a clas-
sification the matrix element of the secular opera-
tor has a form [5]:

         
,)(...)1()0( iMMMM ξη++ξη+ξη=ξµ                 (6)

where i is a total number of valence  particles, 
М(0) – the vacuum diagrams contribution (without 
the end lines) М(1)  – a contribution of the 1-par-
ticles diagrams (one pair o the end lines); М(2)-
contribution of the two-particle diagrams (two 
pair of the end lines) and so on. Contribution М(1) 
is equal to a sum of the one-particle energies ei. 
In the first perturbation theory order one should 
compute only the contribution of the two-particle 
diagrams of the first order. In fact this correc-
tion is equal to interaction energy of the particles 

)1(ED  and can be expressed  through the matrix 
elements of the usual type on the wave functions 
of the zeroth approximation. For the Coulomb op-

erator 1
12
-r  one should use  the Neumann expan-

sions on the Legendre polynomials of the first and 
second kind and spherical harmonics. 3. 

3. As the first step, the relativistic block of 
the theory may into account the main relativistic 
effects within the model  based on the perturba-
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the term due to the dependence of mass on ve-
locity (Н1 and h1), Darwin correction (Н2 and h2), 

the spin-orbit term 






43
43

hh
HH  [5]. The further 

simplification is connected with using the Cow-
an-Griffin approximation [13], which  takes into 
account only two first effects in molecular calcu-
lations, in particular, for the s states. 

Let us further examine the multielectron mol-
ecule with one or two quasi-particles (valence 
electrons). In the case of the multi-electron sys-
tem with molecular core of the closed electron 
shells one can use the model potential method 
namely the bare two centre potential VN + VC with 
VN describing the electric potential of the nucleue, 
VC, imitating the interaction of the quasi-particle 
with the molecular core. Surely, the core two-cen-
tre potential VC is  related  to  the  core  electron 
density rC in a standard way. The latter fully de-
fines the one electron representation. Moreover, 
all  the  results  of  the approximate calculations 
are the functionals of the density rC(r). The key 
step is determinatiojn of the complex energy of a 
molecule (that is in a relativistic theory). 

According to the energy approach [17-19] the 
probability is directly connected with imaginary 
part of electron energy of the system, which is de-
fined in the lowest order of perturbation theory as 
follows (the a-n transition is studied): 

              ∑
>>

-=D
fn

nn
nVeBE

a

ω
aa
a

p  

2

4
)(Im ,                  (5)

The matrix element in (5) is provided by the 
following determination:

∫∫ -= )()1(
sin

)( 121
12

12
221 r)Ø(rØ

r
r

r)Ø(rØdrdrV *
l2

*
k

*
j1

*
iijkl aa

ωω      

(6)
     The separated terms of the sum in (5) repre-
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Under calculating the matrix elements (5)  one 
could use the angle symmetry of the two-centre 
task and write the expansion for potential sin|w|r12/
r12  on spherical functions as follows [2]. This ex-
pansion is corresponding to usual multipole one 
for probability of radiative decay. 

Obviously that the expression (5) is corre-
sponding to first order of the molecular perturba-
tion theory or second order of the quantum elec-
trodynamical perturbation theory. Corresponding-
ly in the second (fourth) order of the perturbation 
theory there are appeared the exchange-correla-
tion or exchange-polarization  corrections which 
being   under consideration are gauge- dependent 
(dEninv) [19]. 

Surely, all  the  results  of  the exact  calcula-
tion  of  any  physical  quantity  must  be    gauge  
independent . However, even most advanced the-
ories of diatomic molecules can hardly take into 
account all types of exchange-polarization cor-
rections, especially, so called multi-particle ones 
and also continuum pressure etc. In fact their non-
account provides a non-conservation of a gauge 
invariance in molecular calculations.  

The simple way to reconstruct gauge invari-
ance of a theory is to consider the corresponding 
many-particle exchange-polarization  diagrams 
and determine the next corresponding term in an 
expression for the imaginary part of electron ener-
gy of the system (look different schemes in Refs. 
[20-25]). Then the minimization of the functional 
Im dEninv leads to the integro-differential equa-
tion for the rc (the DF or Dirac-Kohn-Sham-like 
equations for the electron density) that should be 
numerically solved. In result there is a possibility 
to obtain the optimal one-particle representation 
and respectively optimal basis of electron orbit-
als, which is further used in calculation of the ra-
diative  transition characteristics. 

Unlike the many-electron atoms in the case 
of diatomic molecules, this approach is natu-
rally much more difficult. However, taking into 
account the substantial progress in the develop-
ment of relativistic molecular theories, including, 
radiative transitions, the problem could be solved 
in a particular in simplifying accompanying ap-
proaches.
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ON DETERMINATION OF RADIATIVE TRANSITIONS PROBABILITIES IN 
RELATIVISTIC THEORY OF DIATOMIC MOLECULES: NEW SCHEME 

Abstract. 
On the basis of new gauge-invariant  scheme in the relativistic energy approach combined with the 

multi-body perturbation theory for diatomic molecules it is formulated a new theoretical scheme for 
calculating the probabilities of radiative transitions of molecules. It is analysed the possible way to 
take into account for the inter-electron correlation and correspondingly the non-gauge-invariant con-
tributions in relativistic molecular theory
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ОБ ОПРЕДЕЛЕНИИ ВЕРОЯТНОСТЕЙ РАДИАЦИОННЫХ ПЕРЕХОДОВ В 
РЕЛЯТИВИСТСКОЙ ТЕОРИИ ДВУХАТОМНЫХ МОЛЕКУЛ: НОВАЯ СХЕМА

Резюме. 
С использованием калибровочно-инвариантной схемы в рамках релятивистского энергети-

ческого подхода и многочастичной теории возмущений для двухатомных молекул сформулиро-
вана новая теоретическая схему определения вероятностей радиационных переходов двухатом-
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ных  молекул. Предложены и проанализированы возможные методики учета обменно-корреля-
ционных и  соответственно, калибровочно-неинвариантных вкладов в вероятность перехода в 
релятивистской  молекулярной теории. 
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ПРО ВИЗНАЧЕННЯ ЙМОВІРНОСТЕЙ РАДІАЦІЙНИХ ПЕРЕХОДІВ У 
РЕЛЯТИВІСТСЬКІЙ ТЕОРІЇ ДВОАТОМНИХ МОЛЕКУЛ: НОВА СХЕМА

Резюме. 
З використанням калібрувально-інваріантної схеми в рамках релятивістського енергетич-

ного підходу і багаточастинкової  теорії збурень для двохатомних молекул сформульована 
нова теоретична схему визначення ймовірностей радіаційних переходів двохатомних молекул. 
Запропонованi та проаналізованi можливі методики урахування обмінно-кореляційних і відпо-
відно, калібрувально- неінваріантних внесків в ймовірність переходу в релятивістській моле-
кулярній теорії.
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