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NEW QUANTUM APPROACH TO DETERMINATION OF THE MOLECULAR  
SPECTRAL CONSTANTS AND PROBABILITIES FOR COOPERATIVE  VIBRATION-

ROTATION-NUCLEAR TRANSITIONS IN SPECTRA OF DIATOMICS AND THE 
HADRONIC MOLECULES 

It is proposed a new approach to construction of the potential function of diatomic molecules 
as a sum of the known perturbed Morse oscillator function, the Simons-Parr-Finlan molecular 
potential in the middle of the potential curve, function of the -Cn/Rn type at the large internuclear 
distances. Within this approach it is presented  a precise scheme for computing the molecular spectral 
parameters, namely, vibrational, rotational, centrifugal constants for  the electronic states of diatomics. 
As application it was carried out calculation of the of molecular constants (cm-1) for the X1Σ+  B1Π 
states of the KRb dimer and rubidium dimer and performed further comparison with experimental 
data. Within consistent approach to calculation of the electron-nuclear γ transition spectra (set of 
vibration-rotational satellites in molecule) of  molecule there are obtained the estimates for vibration-
rotation-nuclear transition probabilities in a case of the emission and absorption spectrum of nucleus 
127I (Е(0)γ= 203 keV) in the  molecule of H127I for different approximations of the for potential curves: 
the harmonic oscillator, the Dunham model and presented approach.

From physical viewpint it is obvious that any 
alteration of the molecular state must be mani-
fested in the quantum transitions, for example, 
in a spectrum of the g-radiation of a nucleus (see 
for example [1-9]). In result of the gamma nucle-
ar transition in a nucleus of a molecule there is 
arised a set of the electron-vibration-rotation sat-
ellites, which are due to an alteration of the state 
of the molecular system interacting with photon.  
The known example is the Szilard-Chalmers ef-
fect which results to molecular dissociation be-
cause of the recoil during radiating gamma quan-
tum with large energy. 

In series of works [3-9] it has been carried 
out detailed studying the co-operative dynamical 
phenomena due the interaction between atoms, 
ions, molecule electron shells and nuclei nucle-
ons. There have been developed a few advanced 

approaches to description of a new class of dy-
namical laser-electron-nuclear effects in molecu-
lar spectroscopy, in particular, a nuclear gamma-
emission or absorption spectrum of a molecule. A 
consistent quantum- mechanical approach to cal-
culation of the electron-nuclear g transition spec-
tra (set of vibration-rotational satellites in mol-
ecule) of a nucleus in the multiatomic molecules 
has been earlier proposed [5,7] and generalizes 
the well known approach by Letokhov-Minogin 
[4]. Earlier there were have been obtained esti-
mates and calculations of the  vibration-nuclear 
transition probabilities in a case of the emission 
and absorption spectrum of nucleus 191Ir (E(0)

g= 82 
keV)  in the molecule of IrO4  , 

188Os (E(0)
g= 155 

keV in OsO4  and other molecules were  listed. In 
Ref [8] there are firstly presented theoretical data 
on the vibration-nuclear transition probabilities in 
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a case of the emission and absorption spectrum of 
the nucleus of rhenium 186Re (E(0)

g= 186.7 keV) 
in the molecule of ReO4 , estimated on the basis 
of the simplified version [5,7] of the consistent 
quantum-mechanical  approach to cooperative  
electron-g-nuclear   spectra (a set of the vibration-
rotational satellites in a spectrum of molecule) of 
multiatomic molecules.

In this paper we present a genetralization of 
the cited theory of cooparative electron-gamma-
nuclear (vibrational, rotational) transitions in a 
case of the diatomic moleules using new prin-
ciple of construction of the potential curves for 
diatomic, which is in some degree analogous to 
the Smirnov approach [10,11]. Moreover the pro-
posed method allow to determine the molecular 
spectral parameters, that ic checked on the ex-
ample of the some alkali dimers. Besides, we will 
give a short generalization of the theory on a case 
of the exotic hadronic (pionic) molecules. 

It should be noted that the diatomics potential 
function can be obtained on the decision of the 
electronic Schrödinger equation, however, due to 
significant computational difficulties in the pres-
ent, this problem is reliably solving only for the 
case of the simplest diatomics having a small 
number of electrons [10-15]. In this regard, the 
first promising more used semi-empirical meth-
odsy, where the potential curves are determined 
in the adiabatic approach using experimental vi-
brational and rotational spectroscopic constants. 
Some authors have studied solutions of the Sch-
rodinger (or Klein-Gordon) equation with some 
known physical potential models, such as the 
Morse potential, Rosen-Morse potential, Man-
ning-Rosen potential, Poschl-Teller potential, 
Deng-Fan potential, ring-shaped potential, and 
hyperbolic Scarf potential etc (look details for ex-
ample in Ref. [10,16-18]).

Ler us remind shortly a scheme for computing 
the cooperative  on the vibration-nuclear transi-
tion probabilities in a case of the emission and 
absorption spectrum of the nucleus of diatomics 
as the corresponding method is earlier presented 
in details (look [5-8]). The aim is to compute pa-
rameters of the  gamma transitions (a probability 
of transition) or spectrum of the gamma satellites 
because of changing the electron-vibration-rota-

tional states of the molecule under gamma quan-
tum radiation (absorption).   

Our purpose is calculation of a structure of the 
gamma transitions (probability of transition) or 
spectrum of the gamma satellites because of the 
changing the electron-vibration-rotational states 
of diatomic molecules under the gamma quantum 
radiation (absorption). In adiabatic approxima-
tion a wave function of molecule is multiplying 
the electronic wave function and wave function 
of nuclei: y(re)y(R1,R2). Hamiltonian of interac-
tion of the gamma radiation with system of nucle-
ons for the first nucleus can be expressed through 
the co-ordinates of nucleons rn

’ in a system of the 
mass centre of the first nucleus [4,7]:

              )exp()()( 1RikrHrH nn g-′=                 (1)

where kg is a wave vector of the gamma quantum. 
The matrix element for transition from initial 
state “a” to final state “b” is presented as usually:                                          

         •>ΨΨ< )(|)(|)(*
nannb rrHr        

>ΨΨΨΨ<• g- ),()(||),()( 2121
** 1 RRråRRr aea

Rik
beb  (2)

The first multiplier in (1) is defined by the 
gamma transition of nucleus and is not dependent 
upon an internal structure of molecule in a good 
approximation. The second multiplier is a matrix 
element of transition of the molecule from initial 
state “a” to final state “b”:

                  •>ΨΨ=< )(|)(*
eaebba rrM

         >ΨΨ<• g- ),(||),( 2121
* 1 RReRR a

Rik
b        (3)

The expression (7) gives a general formula for 
calculation of the probability of changing internal 
state of molecule under absorption or emitting gam-
ma quantum by nucleus of the molecule  and defines 
an amplitude of the corresponding gamma satellites. 
Their positions are fully determined by the energy 
and pulse conserving laws as follows [2]:

2)0(2
0 )2/1()2/1( MvEEMvEE ba ++±=++± gg    

(4)

MvkMv =± g0                                                

Here M is the molecule mass, v0 and v are ve-
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nucleus with g quantum, Ea and Eb are the ener-
gies of molecule before and after interaction, Eg is 
an energy of nuclear transition. Then an energy of 
the g satellite is as follows):

          )(0
)0(

abîò EERvkEE -±±+= ggg 

       (5)

Here Rom is an energy of recoil: Rom= [(Eg
(o)] 

2/2Mc2. It is well known (c.f.[4,7]) that the practi-
cal interest are presented only transitions between 
vibration-rotational levels of the ground electron 
state, including transitions into continuum with 
further molecular dissociation. The matrix ele-
ment of transition for these transitions is 

 >ΨΨ=< g- ),(||),( 2121
* 1 RReRRM a

Rik
bba          (6)

The values of energy, accepted by vibration 
and rotational degrees of freedom of the molecule 
are as follows:

                 evib»vђw=Rom(m2/m1),                                                       
                  erot»BJ2=Rom(m2/m1).                (7)                                        
The simple adequate model for definition of 

the rotational motion is the rigid rotator approxi-
mation. In this approximation the wave functions 
with definite values of quantum numbers J,K are 
the eigen functions of the angle momentum op-
erator, i.e.:

                 y(R1,R2).=YJ,K(q, j).                (8) 
In a case of the vibration motion the wave func-

tions with definite value of the vibration quantum 
number are numerically found by  

solving the corresponding Schrödinger equa-
tion with potential function, choice of which was 
discussed above. The simple  approximation is 
surely the harmonic oscillator onee. The harmon-
ic oscillator wave functions were used for esti-
mating matrix elements of the vibration-nuclear 
transitions in ref. [4]. In general the matrix ele-
ment of the vibration-rotation-nuclear transition 
can be written as follows:
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new scheme we apply the Simons-Parr-
Finlan molecular potential which looks as 
follows [15]:
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or introducing x= r - r0 :

(12b)

where the coefficients bi are linked with 
corresponding molecular constants [14]. 
Finally, the plot of the potential curve for 
large values of the internuclear distance is 
approximated by the standard function:

(13)
where De - experimental value of dissociation 
energy; Cn – the function parameters (6); n = 
3-8. Let us note that the model (11)-(13) is 
obviously more exact and consistent in 
comparison with a simple harmonic oscillator 
one. As an application it was carried out 
computing the rubidium dimers (Rb2, KRb)  
diatomics spectral parameters. The results of 
calculation of molecular constants (cm-1) for 
the X1Σ+ state of the KRb dimer are 
presented in table 1 tohether with 
experimental data [10,19,20] and theoretical 
data [10,11] obtained with using the Morse-
Rydberg - Klein - Rees (M-RKR) method.  

Table 1. The molecular constants (cm-1) for 
the X1Σ+ state of the KRb dimer:

Experimantal data – Exp; Theory: a- [10]; b-
our data

KRb X1Σ+

Th: a Th: b Exp
ωe 75,846 75,844 75,842
ωexe 0,230 0,230 0,230
ωeye –3,7(–4) –3,8(–4) –3,9(–4)
ωeze –3,7(–6) –3,5(–6) – 3,1(–6)
Be 0,03815 0,03812 0,03813
αe 1,21(–4) 1,20(–4) 1,20(–4)
γe –7,3(–7) –7,3(–7) –7,4(–7)
De 3,85(– 8) 3,85(– 8) 3,86(–8)
He 3,7(–14) 3,7(–14) 3,7(–14)

Table 2 contains the results of calculation of 
molecular constants (cm-1) for the B1Π (b) 
state of the KRb dimer

Table 2. The molecular constants (cm-1) for 
for the B1Π (b) state of the KRb dimer:

Experimantal data – Exp; Theory -our data
KRb B1Π

Theory Exp
ωe 61,258 61,256
ωexe 0,2095 0,2089
ωeye 2,88(– 3) 2,87(– 3)
ωeze –1,034(–4) –1,031(–4)
Be 0,03287 0,03288
αe 7,54(– 5) 7,41(– 5)
γe –1,12(– 5) –1,13(–5)
De 3,75(– 8) 3,79(–8)
He 5,5(– 14) 5,7(–14)

Tables 3 and 4 contains the same data for 
states of the rubidium dimer for the 1Σ+

g and 
(1)1Πu(B)states.

Table 3. The molecular constants (cm-1) for 
the 1Σ+

g state of the Rb2 dimer: Experimantal 
data – Exp; Theory: a- [11]; b- our data

[16] Our data Exp
ωe 31,4883 31,4884 31,4880
ωexe –0,1140(–1) – 0,1142(–1) –0,1144(–1)
ωeye –4,255(–4) – 4,263(–4) –4,269(–4)
ωeze 7,20(–7) 7,31(–7) 7,40(–7)
Be 0,13433(–1) 0,13435(–1) 0,13431(–1)
αe –1,449(–6) – 1,468(–6) –1,485(–6)
γe –4,136(–7) – 4,132(– 7) –4,122(–7)

Table 4. The molecular constants (cm-1) for 
the (1)1Πu(B)state of the Rb2 dimer:

Experimantal data – Exp; Theory: our data
Rb2 Theory Exp
ωe 47,471 47,470
ωexe 0,1431 0,1430
ωeye – 8,351(– 7) -
Be 0,19529(– 1) 0,19523(– 1)
αe 1,02(– 4) 1,00(– 4)
γe 1,564(– 7) 1,561(– 7)

Analsysis of the listed data show a physically 
reasonable agreement beyween thepretical 
and experimental data. Further we present the 

vibrational energy levels. Insit of it in our 
new scheme we apply the Simons-Parr-
Finlan molecular potential which looks as 
follows [15]:

(12a)

or introducing x= r - r0 :

(12b)

where the coefficients bi are linked with 
corresponding molecular constants [14]. 
Finally, the plot of the potential curve for 
large values of the internuclear distance is 
approximated by the standard function:

(13)
where De - experimental value of dissociation 
energy; Cn – the function parameters (6); n = 
3-8. Let us note that the model (11)-(13) is 
obviously more exact and consistent in 
comparison with a simple harmonic oscillator 
one. As an application it was carried out 
computing the rubidium dimers (Rb2, KRb)  
diatomics spectral parameters. The results of 
calculation of molecular constants (cm-1) for 
the X1Σ+ state of the KRb dimer are 
presented in table 1 tohether with 
experimental data [10,19,20] and theoretical 
data [10,11] obtained with using the Morse-
Rydberg - Klein - Rees (M-RKR) method.  

Table 1. The molecular constants (cm-1) for 
the X1Σ+ state of the KRb dimer:

Experimantal data – Exp; Theory: a- [10]; b-
our data

KRb X1Σ+

Th: a Th: b Exp
ωe 75,846 75,844 75,842
ωexe 0,230 0,230 0,230
ωeye –3,7(–4) –3,8(–4) –3,9(–4)
ωeze –3,7(–6) –3,5(–6) – 3,1(–6)
Be 0,03815 0,03812 0,03813
αe 1,21(–4) 1,20(–4) 1,20(–4)
γe –7,3(–7) –7,3(–7) –7,4(–7)
De 3,85(– 8) 3,85(– 8) 3,86(–8)
He 3,7(–14) 3,7(–14) 3,7(–14)

Table 2 contains the results of calculation of 
molecular constants (cm-1) for the B1Π (b) 
state of the KRb dimer

Table 2. The molecular constants (cm-1) for 
for the B1Π (b) state of the KRb dimer:

Experimantal data – Exp; Theory -our data
KRb B1Π

Theory Exp
ωe 61,258 61,256
ωexe 0,2095 0,2089
ωeye 2,88(– 3) 2,87(– 3)
ωeze –1,034(–4) –1,031(–4)
Be 0,03287 0,03288
αe 7,54(– 5) 7,41(– 5)
γe –1,12(– 5) –1,13(–5)
De 3,75(– 8) 3,79(–8)
He 5,5(– 14) 5,7(–14)

Tables 3 and 4 contains the same data for 
states of the rubidium dimer for the 1Σ+

g and 
(1)1Πu(B)states.

Table 3. The molecular constants (cm-1) for 
the 1Σ+

g state of the Rb2 dimer: Experimantal 
data – Exp; Theory: a- [11]; b- our data

[16] Our data Exp
ωe 31,4883 31,4884 31,4880
ωexe –0,1140(–1) – 0,1142(–1) –0,1144(–1)
ωeye –4,255(–4) – 4,263(–4) –4,269(–4)
ωeze 7,20(–7) 7,31(–7) 7,40(–7)
Be 0,13433(–1) 0,13435(–1) 0,13431(–1)
αe –1,449(–6) – 1,468(–6) –1,485(–6)
γe –4,136(–7) – 4,132(– 7) –4,122(–7)

Table 4. The molecular constants (cm-1) for 
the (1)1Πu(B)state of the Rb2 dimer:

Experimantal data – Exp; Theory: our data
Rb2 Theory Exp
ωe 47,471 47,470
ωexe 0,1431 0,1430
ωeye – 8,351(– 7) -
Be 0,19529(– 1) 0,19523(– 1)
αe 1,02(– 4) 1,00(– 4)
γe 1,564(– 7) 1,561(– 7)

Analsysis of the listed data show a physically 
reasonable agreement beyween thepretical 
and experimental data. Further we present the 
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Finally, the plot of the potential curve for large 
values of the internuclear distance is approximat-
ed by the standard function:

                   (13)

where De - experimental value of dissociation en-
ergy; Cn – the function parameters (6); n = 3-8. 
Let us note that the model (11)-(13) is obviously 
more exact and consistent in comparison with a 
simple harmonic oscillator one. As an application 
it was carried out computing the rubidium dimers 
(Rb2, KRb)  diatomics spectral parameters. The 
results of calculation of molecular constants (cm-

1) for the X1Σ+ state of the KRb dimer are pre-
sented in table 1 tohether with experimental data 
[10,19,20] and theoretical data [10,11] obtained 
with using the Morse- Rydberg - Klein - Rees (M-
RKR) method.      

Table 1
The molecular constants (cm-1) for the X1Σ+ 

state of the KRb dimer: Experimantal data – 
Exp; Theory: a- [10]; b- our data

KRb X1Σ+

Th: a Th: b Exp
ωe 75,846 75,844 75,842

ωexe 0,230 0,230 0,230
ωeye –3,7(–4) –3,8(–4) –3,9(–4)
ωeze –3,7(–6) –3,5(–6) – 3,1(–6)
Be 0,03815 0,03812 0,03813
αe 1,21(–4) 1,20(–4) 1,20(–4)
γe –7,3(–7) –7,3(–7) –7,4(–7)
De 3,85(– 8) 3,85(– 8) 3,86(–8)
He 3,7(–14) 3,7(–14) 3,7(–14)

Table 2 contains the results of calculation of 
molecular constants (cm-1) for the B1Π (b) state of 
the KRb dimer

Table 2
The molecular constants (cm-1) for for the B1Π 

(b) state of the KRb dimer: Experimantal 
data – Exp; Theory -our data

KRb B1Π
Theory Exp

ωe 61,258 61,256
ωexe 0,2095 0,2089
ωeye 2,88(– 3) 2,87(– 3)
ωeze –1,034(–4) –1,031(–4)
Be 0,03287 0,03288
αe 7,54(– 5) 7,41(– 5)
γe –1,12(– 5) –1,13(–5)
De 3,75(– 8) 3,79(–8)
He 5,5(– 14) 5,7(–14)

Tables 3 and 4 contains the same data for states 
of the rubidium dimer for the 1Σ+

g and (1)1Πu(B)
states. 

Table 3
The molecular constants (cm-1) for the 1Σ+

g 
state of the Rb2 dimer: Experimantal data – 

Exp; Theory: a- [11]; b- our data

[16] Our data Exp

ωe 31,4883 31,4884 31,4880

ωexe –0,1140(–
1)

– 0,1142(–
1)

–0,1144(–
1)

ωeye –4,255(–4) – 4,263(–4) –4,269(–4)

ωeze 7,20(–7) 7,31(–7) 7,40(–7)

Be 0,13433(–
1)

0,13435(–
1)

0,13431(–
1)

αe –1,449(–6) – 1,468(–6) –1,485(–6)

γe –4,136(–7) – 4,132(– 
7)

–4,122(–7)
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Table 4
The molecular constants (cm-1) for the (1)1Πu(B)
state of the Rb2 dimer: Experimantal data – 

Exp; Theory: our data

Rb2 Theory Exp

ωe 47,471 47,470

ωexe 0,1431 0,1430

ωeye – 8,351(– 7) -

Be 0,19529(– 1) 0,19523(– 1)

αe 1,02(– 4) 1,00(– 4)

γe 1,564(– 7) 1,561(– 7)

Analsysis of the listed data show a physi-
cally reasonable agreement beyween thepretical 
and experimental data. Further we present the 
accurate data on  the probabilities for vibration-
rotation-nuclear transitions from state with va=0, 
Ja=0 and state va=1, Ja=0 in a case of the emis-
sion and absorption spectrum of nucleus 127I (E(0)

g= 203 keV) linked with molecule H127I in the 
ground electron state X1S (molecular parameters: 
Ro=1,61Å, ne=2309 cm-1, B=6,55cm-1 ). The recoil 
energy for this molecule is 0,172 eV. Parameters 
which define excitation of vibrations and rota-
tions for this molecule because of the recoil, are 
as follows: ao=1.30 and eo=5.29×10-2

. It should be 
noted also that a width of the gamma lines are 
corresponding to temperature T=300K. In figure 
1 we present the calculated spectrum of emission 
and adsorption of nucleus 127I in the  H127I .

           
                               (a)

          
(b)

Fig. 1. Computed emission (solid curve) and absorp-
tion spectrum of nucleus 127I (E(0)

g= 203 KeV) in the 
molecule H127I. Initial state of molecule: a). above 

na=0, Ja=0 and b). below  na=1, Ja=0 (our data)

We have made comparison of the correspond-
ing vibration-rotation-nuclear transition parobai-
lities from state with va=0, Ja=0 and state va=1, 
Ja=0 in a case of the emission and absorption 
spectrum of nucleus 127I (E(0)

g= 203 keV) in the 
H127I for different approximations of the for po-
tential curves: the harmonic oscillator [4], the 
Dunham model  [5,7] and presented approach. 
The  values for probabilities, calculated within 
the present approach and Dunham model  for po-
tential curve [7,8], differ from the corresponding 
ones, calculated within the harmonic oscillator 
approximation [1], in average on 5-20%. A direct 
experimental observation of the cooperstive 
electron-ganna-nuclear effects represents a great 
fundamental  interest.  Finally let us note that the 
presented theory is related to usual molecular sys-
tems. At the same time in the last years a great at-
tention is turn to the exotic (hadronic) atomic and 
molecular systems such pionic and kaonic atoms 
and molecules. The difference between the usual 
and exotic molecules at the theoretical level is ob-
viously provided by using the Schrodinger equa-
tion  in a case of usual molecules and the Klein-
Gordon-Fock equation for the pionic and kaonic 
systems. Taking into accout the results of the last 
two decades on succseful solutions of the Klein-
Gordon-Fock equation with the difeerent (for ex-
ample, Morse etc) [18] potentials our theory is 
naturally generalized on a case of exotic diatomic 
molecules. All theoretical positions are remained 
the same. Simulteniuosly it is self-undrestood 
that the relatively quick radiative processes with 
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chartacteristic life less than the negative pion and 
kaon lifetime (~10-8s) are of a direct theoretical 
and practical interest.
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UDC 539.183

A.  S. Kvasikova, V. F. Mansarliysky, A. A. Kuznetsova, Yu. V. Dubrovskaya, E. L Ponomarenko

NEW QUANTUM APPROACH TO DETERMINATION OF THE MOLECULAR  SPEC-
TRAL CONSTANTS AND PROBABILITIES FOR COOPERATIVE  VIBRATION-ROTA-
TION-NUCLEAR TRANSITIONS IN SPECTRA OF DIATOMICS AND THE HADRONIC 

MOLECULES 

Abstract
It is proposed a new approach to construction of the potential function of diatomic molecules as 

a sum of the known perturbed Morse oscillator function, the Simons-Parr-Finlan molecular potential 
in the middle of the potential curve, function of the -Cn/Rn type at the large internuclear distances. 
Within this approach it is presented  a precise scheme for computing the molecular spectral param-
eters, namely, vibrational, rotational, centrifugal constants for  the electronic states of diatomics. As 
application it was carried out calculation of the of molecular constants (cm-1) for the X1Σ+  B1Π states 
of the KRb dimer and rubidium dimer and performed further comparison with experimental data. 
Within consistent approach to calculation of the electron-nuclear g transition spectra (set of vibration-
rotational satellites in molecule) of  molecule there are obtained the estimates for vibration-rotation-
nuclear transition probabilities in a case of the emission and absorption spectrum of nucleus 127I (E(0)

g= 203 keV) in the  molecule of H127I for different approximations of the for potential curves: the 
hadmonic oscillator, the Dunham model and presented approach. 

Key words: electron-g-nuclear transition spectrum, molecules, spectral parameters

УДК 539.183

А. С. Квасикова, В. Ф. Мансарлийский,  А. А. Кузнeцова, Ю. В. Дубровская, Е. Л. Пономаренко

НОВЫЙ КВАНТОВЫЙ ПОДХОД К ОПРЕДЕЛЕНИЮ МОЛЕКУЛЯРНЫХ 
СПЕКТРАЛЬНЫХ КОНСТАНТ И ВЕРОЯТНОСТЕЙ КООПЕРАТИВНЫХ 

КОЛЕБАТЕЛЬНО-ВРАЩАТЕЛЬНО-ЯДЕРНЫХ ПЕРЕХОДОВ В СПЕКТРАХ 
ДВУХАТОМНЫХ И АДРОННЫХ  МОЛЕКУЛ

Резюме
Предлагается новый подход к построению потенциальной функции двухатомных молекул в 

виде суммы известного возмущенной функции осциллятора Морзе, молекулярного потенциала 
Simons-Парра-Finlan в средней части потенциальной кривой, функции типа -Cn/R

n при больших 
межъядерных расстояниях. В рамках этого подхода развита прецизионная схема вычисления 
молекулярных спектральных параметров, а именно колебательных, вращательных, центробеж-
ных постоянных для электронных состояний двухатомных молекул. В качестве приложения 
проведено вычисление молекулярных констант (см-1) для состояний X1Σ+  B1Π димера KRb и 
димера рубидия и выполнено сравнение с экспериментальными данными. В рамках последо-
вательного подхода к расчету спектров электронно-гамма-ядерных  переходов  (набор колеба-
тельно-вращательных спутников в молекуле) в молекуле получены оценки  для колебательно-
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вращательных-ядерных вероятностей переходов в случае испускания и поглощения спектра 
ядро 127I (E(0)

g= 203 keV)) в молекуле H127I для различных приближений для потенциальных 
кривых: модели гармонического осциллятора, модели на основе потенциала Данхэм и пред-
ложенного в работе нового подхода. 

Ключевые слова: спектр электрон- g -ядерных переходов, молекулы, спектральные 
параметры

УДК 539.183

Г.С. Квасикова, В.Ф.Мансарлійський,  А.O. Кузнeцова, Ю.В. Дубровська, О.Л. Пономаренко 

НОВИЙ КВАНТОВИЙ ПІДХІД ДО ВИЗНАЧЕННЯ МОЛЕКУЛЯРНИХ 
СПЕКТРАЛЬНИХ КОНСТАНТ І ІМОВІРНОСТЕЙ КООПЕРАТИВНИХ 

КОЛИВАЛЬНО- ОБЕРТАЛЬНО -ЯДЕРНИХ ПЕРЕХОДІВ У СПЕКТРІ ДВОАТОМНИХ 
І АДРОННИХ МОЛЕКУЛ

Резюме
Пропонується новий підхід до побудови потенційної функції двохатомних молекул у вигляді 

суми відомого обуреної функції осцилятора Морзе, молекулярного потенціалу Simons-Парра-
Finlan в середній частині потенційної кривої, функції типу -Cn / R

n при великих меж’ядерних 
відстанях. В рамках цього підходу розвинена прецизійна схема обчислення молекулярних спек-
тральних параметрів, а саме коливальних, обертальних, відцентрових постійних для електрон-
них станів двохатомних молекул. Як додаток проведено обчислення молекулярних констант 
(см-1) для станів X1Σ+  B1Π димера KRb і димера рубідію і виконано порівняння з експери-
ментальними даними. В рамках послідовного підходу до розрахунку спектрів електронно-
гамма-ядерних переходів (набір колебательно-обертальних супутників в молекулі) в молекулі 
отримані оцінки для колебательно-обертальних-ядерних ймовірностей переходів в разі випу-
скання і поглинання спектра ядро   127I (E(0)

g= 203 keV) в молекулі H127I для різних наближень для 
потенційних кривих: моделі гармонійного осцилятора, моделі на основі потенціалу Данхем і 
запропонованого в роботі нового підходу.

Ключові слова: спектр електрон- g -ядерних переходів, молекули, спектральні параметри
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