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LUMINESCENCE OF NANOSCALE TIN DIOXIDE. REVIEW

The article presents a brief review of luminescence in nanoscale tin dioxide. The luminescence caused by its 
intrinsic defects, the luminescence associated with impurities, the mechanisms of luminescence in tin dioxide are 
considered. The results of research by various authors presented in this review show the promising use of tin dioxide 
in optoelectronics and LED technology.

Introduction
Requirements for modern electronic display 

devices stimulate the search for new luminescent 
materials. Nanoscale forms of compounds that 
are not classical phosphors help in solving new 
electronics’ problems. One of these compounds 
is tin dioxide. In recent years, studies of the lu-
minescence of various nanoscale forms of pure 
and doped SnO2, as well as composite com-
pounds and heterojunctions using it, have been 
activated. This interest is due to the promising 
use of such materials as phosphors [1], in LED 
applications [2], in solid-state optical amplifiers 
and tunable lasers [3], etc. Thermoluminescence 
of tin dioxide doped by Europium [4] is used as 
a detection phenomenon for dosimetry purposes. 
Stannates of calcium, barium and strontium with 
a perovskite-like structure have attracted the at-
tention of researchers to create IR phosphors as 
an alternative to expensive phosphors. [5].

Low-temperature luminescence of crystal-
line tin dioxide was described in 1979 [6]. In the 
ultraviolet spectrum region (~ 350-355 nm), the 
intrinsic luminescence band of SnO2 is located. 
In the visible range, at low temperatures, wide 
photoluminescence (PL) bands in the range of 
2 and 2.5 eV [7, 8] are observed in bulk sam-
ples of tin dioxide, which are associated with 
electron transitions in the interstitial tin/oxygen 
vacancy. With increasing temperature, the in-
tensity of such a PL decreases, the PL becomes 
almost invisible at room temperature. The PL 

spectra of nanoscale samples of tin dioxide dif-
fer from the spectra of the bulk material, which 
was shown by a number of researchers [9]. Pho-
toluminescence in nanoscale SnO2 is increas-
ingly observed at higher temperatures [10-12].

A brief review of luminescence in nanoscale 
tin dioxide will be presented in this paper. 

Luminescence in nanoscale forms of tin 
dioxide

Glow due to its intrinsic defects. The edge lu-
minescence of tin dioxide nanoscale forms was 
recorded by researchers in the ultraviolet region 
of the spectrum. For example, in [13] it was ob-
served in transparent conductive thin films at 4.18 
eV (~ 300 nm), and in [14] - at 333 nm. The dif-
ferences in values are explained by the difference 
in the sizes of the nanocrystallites that form the 
film – the smaller it is, the greater is the energy of 
the peak of the edge luminescence.

In addition to the main UV peak of its intrin-
sic luminescence, the researchers report a whole 
set of radiation peaks in the visible region. As a 
rule, researchers observe bands in the blue-vio-
let and orange-red regions of the spectrum. For 
example, Meier and colleagues [9] observed a 
PL peak at a wavelength of 625 nm (E = 2 eV) in 
SnOx nanoparticles at liquid nitrogen tempera-
ture. Korean researchers [11] observed in thin 
films of SnO2 PL in the region of 2.5 eV, Bonu 
and colleagues [12] observed at 2.54 eV and 2.42 
eV and about 1.96 eV in SnO2 nanoparticles. In 
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[15], photoluminescence measurements in thin 
SnO2 films at room temperature with excita-
tion at 280 nm show two broad emission peaks 
(400 and 430 nm). In thin undoped tin dioxide 
films on silicon substrates in [3], a broad emis-
sion peak at 395 nm was observed. The behavior 
of the peak at 590 nm depending on the diam-
eter of tin dioxide nanowires was investigated 
in [16]. In addition to the edge luminescence at 
333 nm, the authors of [14] observed a band of 
480 nm at 13 K in thin SnO2 films deposited by 
the MOCVD method on α-Al2O3 substrates. In 
[17], luminescence in the visible region (577 
nm and 642 nm) of nanosized tin dioxide films 
was detected at room temperature. Violet (371-
382) nm and blue (400-415 and 430-470 nm) 
luminescence bands in nanorods and tin dioxide 
nanocrystals were studied in [18].

Luminescence associated with impurities. 
The luminescence was often observed by re-
searchers in tin dioxide with various additives, 
as well as in complex compounds, ceramics 
and heterojunctions with its use. For example, 
[19] found a violet photoluminescence band of 
about ~ 404 nm and weak red emission of about  
700 nm in fluorine-doped films of tin dioxide 
deposited by spray pyrolysis on glass substrates. 
The SnO2 quantum dots doped by Mn obtained 
using the solution combustion synthesis show 
the emission of orange radiation at about 590 
nm [20]. The effect of doping by Mn and Ce on 
the luminescence associated with oxygen va-
cancies (400 nm) was studied in [21]. The prop-
erties of the intense peak of ultraviolet lumines-
cence about 392 nm observed in SnO2:Sb films 
at room temperature were studied in detail [22]. 
The use of nanoscale tin dioxide as a doping 
luminescent material used to enhance radiation 
in conjunction with other additives in glass or 
other similar structures has been reported in the 
literature. In [23], strontium phosphate glasses 
were doped with SnO2 and Gd2O3, and they de-
tected enhanced blue emission at 421 nm. The 
authors of [24] used tin dioxide nanocrystals to 
enhance the fluorescence of Eu3+ in SiO2 glass 
by more than 150 times. The luminescence of 
SnO2 was modified in [25] by doping with Cr. 

The normalized emission spectra from [25] are 
shown in Fig. 1. In the doped Cr nanostruc-
tures, a new emission with a center of 1.5 eV 
was detected; Cr doping also contributes to the 
enhancement of luminescence associated with 
oxygen vacancies (1.94 eV).

Fig 1. The normalized emission spectra SnO2 and 
SnO2: Cr.[25]

Luminescence mechanisms in tin dioxide. 
The variety of radiation centers provides the 
possibility of widespread use of the material, but 
it causes difficulties in unambiguous associating 
of bands with specific defects and luminescence 
mechanisms.

The authors of [26] attributed the PL peak 
to approximately 3.307 eV (at 10 K) to the do-
nor – acceptor transition in high quality tin ox-
ide nanowires. The observed by Chen and col-
leagues phonon replicas of this band indicated 
a high crystallinity of the samples. With an in-
crease of temperature, donor energy of 32 meV 
was observed and the nature of the luminescence 
changed to recombination of a free electron on an 
acceptor with a shift in the emission maximum 
towards lower energies. They also observed an 
emission band with a maximum of 3.355 eV, the 
nature of which the authors attributed to radia-
tive recombination on neutral donors. The rela-
tive intensity of this band decreases faster and 
disappears completely at about 70 K, which is 
the characteristic behavior of excitons associ-
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Luminescence mechanisms in tin dioxide. 

The variety of radiation centers provides the 
possibility of widespread use of the material, 
but it causes difficulties in unambiguous 
associating of bands with specific defects and 
luminescence mechanisms. 

The authors of [26] attributed the PL peak 
to approximately 3.307 eV (at 10 K) to the 
donor – acceptor transition in high quality tin 
oxide nanowires. The observed by Chen and 
colleagues phonon replicas of this band 
indicated a high crystallinity of the samples. 
With an increase of temperature, donor energy 
of 32 meV was observed and the nature of the 
luminescence changed to recombination of a 
free electron on an acceptor with a shift in the 
emission maximum towards lower energies. 
They also observed an emission band with a 
maximum of 3.355 eV, the nature of which the 
authors attributed to radiative recombination 
on neutral donors. The relative intensity of this 
band decreases faster and disappears 
completely at about 70 K, which is the 
characteristic behavior of excitons associated 
with neutral donors and their transition to a 
free state with increasing temperature. At 
room temperature (300 K) all PL bands form a 
broad emission band at 3.18 eV. 
Unfortunately, the authors did not associate 
the observed luminescence with specific 
defects — interstitial tin, dangling bonds, or 
oxygen vacancies. 
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ated with neutral donors and their transition 
to a free state with increasing temperature. At 
room temperature (300 K) all PL bands form a 
broad emission band at 3.18 eV. Unfortunately, 
the authors did not associate the observed lumi-
nescence with specific defects — interstitial tin, 
dangling bonds, or oxygen vacancies.

Radiation in the region of about 400 nm has 
several explanations in the literature. Thus, in 
[27], a broad peak of about 396 nm (~ 3.14 eV) 
was reported in thin SnO2 films, the origin of 
which was associated with the nanodimension 
of crystallites and defects in the film. The radia-
tion at 400 nm [28] was explained by an electron 
transition to the levels of defects in the band gap, 
such as oxygen vacancies. At the same time, 
they considered three different charge states of 
oxygen vacancies in the oxide: Vo

0, Vo
+ and Vo

++. 
The model of visible radiation at 400 nm thin 
SnO2 films included the formation of an exciton 
upon photoexcitation. After tunneling deep into 
the film previously trapped on the surface or 
on the center of Vo

+ hole, recombination occurs 
with an electron in a deep trap with the forma-
tion of center Vo

++:

Vo
+ + h → Vo

++
 
Thereafter, the visible emission at 400 nm 

can appear due to the recombination of a con-
duction band electron with the Vo

++ center:

Vo
++ + e → Vo

+ + hν

A decrease in the peak intensity of 400 nm 
with the annealing temperature increase is in 
favor of this mechanism, since it increases the 
size of the films’ crystallites. As a result, the 
ratio of surface to volume, and the number of 
surface defects and the number of oxygen va-
cancies decreases as a result of their recombina-
tion with oxygen diffusing into the film volume. 
In another paper, these authors [21] successfully 
proposed to introduce Ce3+ and Mn2+ ions into 
particles of tin dioxide to increase the number 
of oxygen vacancies and to increase the lumi-
nescence intensity.

In [29], in the photoluminescence spectra 
of cubic SnO2 nanocrystals, a double peak was 
observed in the violet region between 360 and 
400  nm. The energy separation between the two 

sub- peaks increased with the size of the nano-
crystals. According to the authors, this is due to 
the edge recombination of the strip caused by 
different depths of oxygen vacancies. The con-
ducted Density functional theory calculations 
showed that changes in the depth of oxygen va-
cancies lead to splitting of the peak of the va-
lence band, which leads to the observed splitting 
and shift of the double peak[29].

In [30], the photoluminescence of the 417 nm 
band of a SnO2 nanocrystalline powder obtained 
by direct chemical deposition was studied. The 
emission was associated with the recombination of 
electrons on oxygen vacancies with photoexcited 
holes of the valence band. With an increase in the 
annealing temperature, red mixing and a decrease 
in the luminescence intensity were observed, due 
to a decrease in the number of oxygen vacancies 
with an increase in the crystallite size from 9 to 43 
nm. As we see, in this case, and in the case of 400 
nm luminescence in thin nanoscale films of tin di-
oxide [28], the reason for the decrease in intensity 
is the same – a decrease in the number of oxygen 
vacancies in the samples. 

Meier and colleagues [9] detected the PL 
peak of nanosized tin dioxide particles at liquid 
nitrogen temperature at a wavelength of 625 nm 
(E = 2 eV). The radiation wavelength did not 
depend on the particle size, which indicates the 
group defect responsible for it, according to the 
authors, associated with oxygen vacancies. In-
terestingly, the PL intensity increased with an 
increase in the size of nanoparticles from 5 to 20 
nm and as the samples approached stoichiom-
etry from SnO1.5 to SnO1.7 (Fig. 2).

Fig. 2. The results of PL measurements for particles of 
various sizes and degrees of oxidation [9].
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This fact correlated with the observation of 
a high density of electronic states inside the 
band gap from absorption measurements pre-
sented by the researchers there. The authors 
of this work associate this increase in intensity 
with a low rate of nonradiative recombination 
in SnO1.7 due to the low total density of defects. 
Obviously, ideally, in a defect-free SnO2 crystal, 
there are no defects providing PL. If the number 
of oxygen vacancies increases, the PL intensity 
will increase until nonradiative recombination 
processes dominate, as in the case of SnO1.5.

The PL observed in nanostructured tin di-
oxide films obtained using polymers [31] was 
detected at room temperature. The authors also 
associated a peak at 647 nm (1.9 eV) with oxy-
gen vacancies in samples whose PL results are 
shown in Fig. 3.

 

Fig. 3. The photoluminescence spectrum of SnO2 films 
with different concentrations of the precursor (0.05% 

PVA) at room temperature.

The difference in the energy values of the lu-
minescence peaks in the films obtained by the 
authors [9] and [31] may be due to both different 
temperatures during the experiments and differ-
ences in the structure of the samples studied by 
different authors. The authors of [31] also made 
the assumption that the band groups 2.17-2.2 eV 
in the films correspond to the luminescence cen-
ters representing interstitial tin atoms or clusters 
of these atoms, since it is known from reference 
data [32] that the free singly charged Sn atom 
has the spectrum band is 579 nm (2.15 eV). The 
presence of metal clusters in SnO2 films was 
previously established by the authors of [33], 

and their significant contribution to the electri-
cal conductivity and adsorption activity of SnO2 
layers was noted. In addition, it was shown in 
[34] that, at T = 723 K, at least 3 substances ex-
ist in films of tin dioxide: Sn, SnO, SnO2.

The authors from Korea [11] also associated 
their observed peaks in thin SnO2 films deposited 
by using CVD techniques in the 2.5-eV region 
with oxygen vacancies. Bonu and colleagues 
[12] also explained their observed luminescence 
at 2.54 eV and 2.42 eV with oxygen defects, 
namely in-plane and bridging ‘O’ vacancies. 
The authors observed a broad luminescence 
peak at about 1.96 eV in SnO2 nanoparticles, 
the authors associate with OH– hydroxyl groups 
on the surface of the particles. In work [35], the 
wide luminescence bands observed in the re-
gion of 350–550 nm were associated with defect 
states on the surface of SnO2 nanoparticles. As 
we see, surface states play an important role in 
the luminescence of tin dioxide nanoforms.

Radiation at 421 nm was explained by the 
authors [23] as the Sn band. Moreover, the addi-
tion of Gd2O3 to the strontium phosphate glasses 
doped with tin dioxide they studied increases the 
Sn2+/Sn4+ ratio, which contributes to enhanced 
blue emission of SnO2-such doped glasses. The 
band at 430 nm in [28] was explained by the 
contribution of interstitial tin.

Based on experimental results, Indian re-
searchers [18] proposed a schematic model for 
various relaxation processes in SnO2 nanocrys-
tals during photoexcitation (Fig.4). Visible ra-
diation of SnO2 nanocrystals was attributed by 
the authors to the transition of an electron from 
a level close to the edge of the conduction band 
to a deeply trapped hole in the volume (V0

++) 
of SnO2 nanocrystals. It was also shown that 
surface defects are more noticeable in smaller 
nanocrystals than in nanorods. It was found that 
the PL emission time and the decay time strong-
ly depend on the shape of the nanocrystals.

Studying the cathode luminescence of tin di-
oxide nanowires, [36] found that the CL bands 
centered at 1.90 and 2.20 eV belong to the sur-
face oxygen vacancies coordinated with tin at-
oms at an angle of 100°, and the CL bands cen-
tered at 2.37 and 2,75 eV, are associated with 
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vacancies on the surface of oxygen, coordinated 
at 130°. The model of radiative transitions in the 
tin dioxide nanosized forms studied in [37] also 
takes into account the participation of coordi-
nated oxygen vacancies in photoluminescence 
(Fig. 5). 

Fig. 4. A schematic model for various relaxation pro-
cesses in SnO2 nanocrystals upon photoexcitation [18].

Fig. 5. Generalized scheme of levels and radiative 
transitions in photoluminescence of SnO2 [37].

The results of research by various authors, 
presented in this review, allow us to consider tin 
dioxide not only one of the most popular and 
promising materials in sensorics, but also hav-
ing wide applications in optoelectronics and 
LED technology.
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LUMINESCENCE OF NANOSCALE TIN DIOXIDE. REVIEW

Summary
The article presents a brief review of luminescence in nanoscale tin dioxide. The luminescence 

caused by its own defects, the luminescence associated with impurities, the mechanisms of lumi-
nescence in tin dioxide are considered. The results of research by various authors presented in this 
review show the promising use of tin dioxide in optoelectronics and LED technology.

Key words: tin dioxide, nanoscale, luminescence.
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Л. М. Філевська 

ЛЮМІНЕСЦЕНЦІЯ НАНОРОЗМІРНОГО ДІОКСИДУ ОЛОВА. ОГЛЯД

Резюме
У статті подано короткий огляд люмінесценції в нанорозмірному диоксиде олова. 

Розглядається світіння, обумовлене його власними дефектами, люмінесценція, пов’язана з 
домішками, механізми люмінесценції в діоксиді олова. Результати досліджень різних авторів, 
представлені в цьому огляді, показують перспективність застосування двоокису олова для 
широке застосування в оптоелектроніці і світлодіодним техніці.

Ключові слова: діоксид олова, нанорозмір, люмінесценція

PACS 73.61.Le, 73.63.Bd

Л. Н. Филевская

ЛЮМИНЕСЦЕНЦИЯ НАНОРАЗМЕРНОГО ДИОКСИДА ОЛОВА. ОБЗОР

Резюме
В статье представлен краткий обзор люминесценции в наноразмерном диоксиде олова. 

Рассматривается свечение, обусловленное его собственными дефектами, люминесценция, 
связанная с примесями, механизмы люминесценции в диоксиде олова. Результаты иссле-
дований различных авторов, представленные в этом обзоре, показывают перспективность 
применения двуокиси олова в оптоэлектронике и светодиодной технике.

Ключевые слова: диоксид олова, наноразмер, люминесценция
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