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THE HYPERFINE STRUCTURE OF HEAVY ELEMENTS ATOMS WITHIN 
RELATIVISTIC MANY-BODY PERTURBATION THEORY

The hyperfine structure and electric quadrupole moment of the mercury isotope   are estimated within the relativistic 
many-body perturbation theory formalism with a correct and effective taking into account the exchange-correlation, 
relativistic, nuclear and radiative corrections. Analysis of the data shows that an account of the interelectron correlation 
effects is crucial in the calculation of the hyperfine structure parameters.  The fundamental reason of physically 
reasonable agreement between theory and experiment is connected with the correct taking into account the inter-
electron correlation effects, nuclear (due to the finite size of a nucleus), relativistic and radiative corrections. The key 
difference between the results of the RHF, RMPT methods calculations is explained by using the different schemes of 
taking into account the inter-electron correlations. 

1.  Introduction
The research on the hyperfine structure char-

acteristics  of the heavy neutral and highly ion-
ized atoms is of a great  fundamental importance 
in many fields of atomic physics (spectroscopy, 
spectral lines theory), astrophysics, plasma 
physics, laser physics and so on  (see, for exam-
ple, refs. [1-37]). The experiments on the defini-
tion of hyperfine splitting also enable to refine 
the deduction of nuclear magnetic moments of 
different isotopes and to check an accuracy of 
the various calculational models employed for 
the theoretical description of the nuclear effects. 
The multi-configuration relativistic Hartree-
Fock (RHF) and Dirac-Fock (DF) approaches 
(see, for example, refs. [1,2]) are the most re-
liable versions of calculation for multi-electron 
systems with a large nuclear charge. Usually, in 
these calculations the one- and two-body rela-
tivistic effects are taken into account practically 
precisely. It should be given the special atten-
tion to three very general and important comput-
er systems for relativistic and QED calculations 
of atomic and molecular properties developed 
in the Oxford and German-Russian groups etc 
(“GRASP”, “Dirac”; “BERTHA”, “QED”, “Di-
rac”) (see refs. [1-4] and references there). 

In the present paper we present the calcu-
lational results for the hyperfine structure and 

electric quadrupole moment of the isotope Ra223
88 , 

estimated within the relativistic many-body per-
turbation theory formalism with a correct and 
effective taking into account the exchange-cor-
relation, relativistic, nuclear and radiative cor-
rections [3,4,10-20]. Analysis of the data shows 
that an account of the interelectron correlation 
effects is crucial in the calculation of the hyper-
fine structure parameters.

2. Relativistic method to computing hyperfine 
structure parameters of atoms and ions

Let us describe the key moments of the ap-
proach (more details can be found in refs. 
[3,4,10-20]). The electron wave functions (the 
PT zeroth basis) are found from solution of the 
relativistic Dirac equation with potential, which 
includes ab initio mean-field potential, electric, 
polarization potentials of a nucleus. The charge 
distribution in the Li-like ion is modelled within 
the Gauss model. The nuclear model used for 
the Cs isotope is the independent particle model 
with the Woods-Saxon and spin-orbit potentials 
(see refa. [3,4]). Let us consider in details more 
simple case of the Li-like ion. We set the charge 
distribution in the Li-like ion nucleus ρ(r) by the 
Gaussian function: 
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1.  Introduction 

The research on the hyperfine structure 
characteristics  of the heavy neutral and 
highly ionized atoms is of a great  
fundamental importance in many fields of 
atomic physics (spectroscopy, spectral lines 
theory), astrophysics, plasma physics, laser 
physics and so on  (see, for example, refs. [1-
37]). The experiments on the definition of 
hyperfine splitting also enable to refine the 
deduction of nuclear magnetic moments of 
different isotopes and to check an accuracy 
of the various calculational models employed 
for the theoretical description of the nuclear 
effects. The multi-configuration relativistic 
Hartree-Fock (RHF) and Dirac-Fock (DF) 
approaches (see, for example, refs. [1,2]) are 
the most reliable versions of calculation for 
multi-electron systems with a large nuclear 
charge. Usually, in these calculations the 
one- and two-body relativistic effects are 
taken into account practically precisely. It 
should be given the special attention to three 
very general and important computer systems 

for relativistic and QED calculations of 
atomic and molecular properties developed in 
the Oxford and German-Russian groups etc 
(“GRASP”, “Dirac”; “BERTHA”, “QED”, 
“Dirac”) (see refs. [1-4] and references 
there).  

In the present paper we present the 
calculational results for the hyperfine 
structure and electric quadrupole moment of 
the isotope Ra223

88
, estimated within the 

relativistic many-body perturbation theory 
formalism with a correct and effective taking 
into account the exchange-correlation, 
relativistic, nuclear and radiative corrections 
[3,4,10-20]. Analysis of the data shows that 
an account of the interelectron correlation 
effects is crucial in the calculation of the 
hyperfine structure parameters. 
 

2. Relativistic method to computing 
hyperfine structure parameters of atoms 

and ions 
 

Let us describe the key moments of the 
approach (more details can be found in refs. 
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Consider the DF type equations. Formally 
they fall into one-electron Dirac equations for 
the orbitals with the potential V(r|R) which in-
cludes the electrical and the polarization poten-
tials of the nucleus; the components of the Har-
tree potential (in the Coulomb units):
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Here ( )irr  is the distribution of the electron 
density in the state | i >, Vex is the exchange in-
ter-electron interaction. The main exchange and 
correlation effects will be taken into account in 
the first two orders of the PT by the total inter-
electron interaction [3,4]. 

A procedure of taking into account the radia-
tive QED corrections is in details given in the 
refs. [4,44]. Regarding the vacuum polarization 
effect let us note that this effect is usually taken 
into consideration in the first PT theory order by 
means of the Uehling-Serber potential. This po-
tential is usually written as follows:
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where g=r/(αZ). In our calculation we use more 
exact approach [3]. The Uehling potential, deter-
mined as a quadrature (6), may be approximated 
with high precision by a simple analytical func-
tion. The use of new approximation of the Ue-
hling potential permits one to decrease the calcu-
lation errors for this term down to 0.5 – 1%. 

A method for calculation of the self-energy 
part of the Lamb shift is based on an idea by 
Ivanov-Ivanova et al [38-41], which generalizes 
the known hydrogen-like method by Mohr and 
radiation model potential method by Flambaum-
Ginges (look details in Refs. [4,44,45]). The ra-
diative shift and the relativistic part of energy in 

an atomic system are, in principle, defined by 
one and the same physical field [38]. One could 
suppose that there exists some universal func-
tion that connects the self-energy correction and 
the relativistic energy.  Its form and properties 
are in details analyzed in Refs.[4,45]. Unlike 
usual purely electronic atoms, the Lamb shift 
self-energy part in the case of a pionic atom is 
not significant and much inferior to the main 
vacuum-polarization effect. 

The energies of electric quadruple and mag-
netic dipole interactions are defined by a stand-
ard way with the hyperfine structure constants, 
usually expressed through the standard radial 
integrals: 

A={[(4,32587)10-4Z2cgI]/(4c2-1)}(RA)-2,                          
                                                                 

B={7.2878 10-7 Z3Q/[(4c2-1)I(I-1)} (RA)-3,      (7)

Here gI  is the Lande factor, Q is a quadruple 
momentum of nucleus (in Barn); (RA)-2, (RA)-3 
are the radial integrals usually defined as fol-
lows:
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The radial parts F and G of  the Dirac func-
tion two components for electron, which moves 
in the potential V(r,R)+U(r,R), are determined 
by solution of the Dirac equations. To define the 
hyperfine interaction potentials U(1/rn,R), we 
use the method by Ivanov et al [11]. The key 
elements of the optimized relativistic energy ap-
proach to computing oscillator strengths are  pre-
sented in [39,41,42,46-53].   Let us remind that 
an initial  general energy formalism combined 
with an empirical model potential method has 
been developed by Ivanov-Ivanova et al [11],  
further more general ab initio gauge-invariant  
relativistic approach has been presented in [42], 
where the calibration of the single model poten-
tial parameter b has been performed on the basis 
of the special ab initio procedure within rela-
tivistic energy approach (see also [4,45]). All 
calculations are performed on the basis of the 
numeral code Superatom-ISAN (version 93).  

[3,4,10-20]). The electron wave functions 
(the PT zeroth basis) are found from solution 
of the relativistic Dirac equation with 
potential, which includes ab initio mean-field 
potential, electric, polarization potentials of a 
nucleus. The charge distribution in the Li-
like ion is modelled within the Gauss model. 
The nuclear model used for the Cs isotope is 
the independent particle model with the 
Woods-Saxon and spin-orbit potentials (see 
refa. [3,4]). Let us consider in details more 
simple case of the Li-like ion. We set the 
charge distribution in the Li-like ion nucleus 
(r) by the Gaussian function:  
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where g=r/(Z). In our calculation we use 
more exact approach [3]. The Uehling 
potential, determined as a quadrature (6), 
may be approximated with high precision by 
a simple analytical function. The use of new 
approximation of the Uehling potential 
permits one to decrease the calculation errors 
for this term down to 0.5 – 1%.  

A method for calculation of the self-
energy part of the Lamb shift is based on an 
idea by Ivanov-Ivanova et al [38-41], which 
generalizes the known hydrogen-like method 
by Mohr and radiation model potential 
method by Flambaum-Ginges (look details 
in Refs. [4,44,45]). The radiative shift and 
the relativistic part of energy in an atomic 
system are, in principle, defined by one and 
the same physical field [38]. One could 
suppose that there exists some universal 
function that connects the self-energy 
correction and the relativistic energy.  Its 
form and properties are in details analyzed in 
Refs.[4,45]. Unlike usual purely electronic 
atoms, the Lamb shift self-energy part in the 
case of a pionic atom is not significant and 
much inferior to the main vacuum-
polarization effect.  
The energies of electric quadruple and 
magnetic dipole interactions are defined by a 
standard way with the hyperfine structure 
constants, usually expressed through the 
standard radial integrals:  
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[3,4,10-20]). The electron wave functions 
(the PT zeroth basis) are found from solution 
of the relativistic Dirac equation with 
potential, which includes ab initio mean-field 
potential, electric, polarization potentials of a 
nucleus. The charge distribution in the Li-
like ion is modelled within the Gauss model. 
The nuclear model used for the Cs isotope is 
the independent particle model with the 
Woods-Saxon and spin-orbit potentials (see 
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3. Results and Conclusions

In this subsection we present experimental 
data and the results of the calculation of the 
HFS constants and the nuclear quadrupole mo-
ment for the radium isotope. In Table 1 we list 
the experimental and calculational  data on the 
magnetic dipole constant HFS A (MHz) for the 

Ra223
88  7s7p 1P1, 

3P1, 
3P2  states. The data are ob-

tained on the basis of  calculations in the frame-
work of the standard uncorrelated DF method, 
MKDF method with taking into account for the 
Breit and standard QED corrections, the relativ-
istic configuration interaction method with  tak-
ing into account for the correlation corrections 
within the random phase approximation (RCI-
RPA) [6], as well as our results (Gaussian model 
for charge distribution in the core) [2,3,6,7].

It is important to note that the key quantita-
tive factor in the agreement of the theory with 
experiment is associated with a correct allow-
ance for interelectronic correlations, an amend-
ment to the finite size of the nucleus, and Breit 
and QED radiation effects [3,4].

Table 1 
The experimental and calculational  data on 
the magnetic dipole constant HFS A (MHz) 

for the Ra223
88  7s7p 1P1, 3P1, 3P2  states (see text) 

Method/
State

1P1 
3P1 

3P2

DF -226.59 803.97 567.22
MCDF

(Breit+QED)
-330.3 1251.9 737.1

RCI-RPA -242.4 - -
Our data -339.1 1209 704.5

Exp. -344.5
(0.9)

1201.1
(0.6)

699.6
(3.3)

The analysis shows that the contribution due 
to the electron – electron correlations to the val-
ues   of the HFS constants is ~ 100–500 MHz for 
various states. This circumstance explains the 
low degree of consistency in accuracy of the 
data provided, obtained in the framework of 

different versions of the DF method. The key 
difference between the results of the calcula-
tion in the framework of our approach and the 
MCDF is due to different methods of taking into 
account the electron-electron correlations. The 
contributions of higher-order QED TV correc-
tions and corrections for the finite core size can 
reach 1–2 tens of MHz, and it seems obviously 
important to consider them more correctly. In 
addition, it is necessary to take direct account of 
nuclear polarization contributions, which can be 
done within the framework of solving the cor-
responding nuclear problem, for example, using 
the shell model with Woods-Saxon and spin-
orbit potentials. Such an approach is outlined in 
Refs [3,4]. 

In Table 2 we present the measured values   
of the nuclear quadrupole moment Q (in barns) 
for the isotope, obtained experimentally by the 
ISOLDE Collaboration group (CERN) based on 
various methods (see [6]). In addition, this table 
presents the calculated values   of the nuclear 
quadrupole moment Q (in barns) for the iso-
tope, obtained on the basis of calculations in the 
framework of the methods of MKDF (including 
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initio procedure within relativistic energy 
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are performed on the basis of the numeral 
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Our final data lie between the latest experi-
mental values of the Wendt group (ISOLDE 
Collaboration), but have less error definitions. 

The fundamental reason of physically rea-
sonable agreement between theory and experi-
ment is connected with the correct taking into 
account the inter-electron correlation effects, 
nuclear (due to the finite size of a nucleus), rela-
tivistic and radiative corrections. 

 The key difference between the results 
of the RHF, RMPT methods calculations is ex-
plained by using the different schemes of taking 
into account the inter-electron correlations. The 
contribution of the PT high order effects and nu-
clear contribution may reach the units and even 
dozens of MHz and should be correctly taken 
into account. So, it is necessary to take into ac-
count more correctly the spatial distribution 
of the magnetic moment inside a nucleus (the 
Bohr-Weisskopf effect), the nuclear-polariza-
tion corrections etc too. These topics require the 
separated accurate treatment.
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THE HYPERFINE STRUCTURE OF HEAVY ELEMENTS ATOMS WITHIN RELA-
TIVISTIC MANY-BODY PERTURBATION THEORY

Summary
The hyperfine structure and electric quadrupole moment of the isotope Ra223

88  are estimated 
within the relativistic many-body perturbation theory formalism with a correct and effective taking 
into account the exchange-correlation, relativistic, nuclear and radiative corrections. Analysis of 
the data shows that an account of the interelectron correlation effects is crucial in the calculation 
of the hyperfine structure parameters.  The fundamental reason of physically reasonable agreement 
between theory and experiment is connected with the correct taking into account the inter-electron 
correlation effects, nuclear (due to the finite size of a nucleus), relativistic and radiative corrections. 
The key difference between the results of the RHF, RMPT methods calculations is explained by 
using the different schemes of taking into account the inter-electron correlations. 

Keywords: Hyperfine structure –Heavy atoms – Relativistic perturbation theory – Correlation, 
nuclear, radiative corrections
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СВЕРХТОНКАЯ СТРУКТУРА ТЯЖЕЛЫХ АТОМОВ В РАМКАХ 
РЕЛЯТИВИСТСКОЙ МНОГОЧАСТИЧНОЙ ТЕОРИИ ВОЗМУЩЕНИЙ

Резюме
Параметры сверхтонкой структуры и электрический квадрупольный момент изотопа ра-

дона рассчитаны на основе релятивистской многочастичной теории возмущений с эффек-
тивным аккуратным учетом обменно-корреляционных, релятивистских, ядерных и радиаци-
онных поправок. Анализ данных показывает, что учет эффектов межэлектронной корреля-
ции имеет критическое значение при вычислении параметров сверхтонкой структуры. Фи-
зически разумное согласие теории и прецизионного эксперимента может быть обеспечено 
благодаря полному последовательному учету межэлектронных корреляционных эффектов, 
ядерных, релятивистских и радиационных поправок. Ключевое различие между результа-
тами расчетов в приближениях Дирака-Фока, различных версиях формализма теории воз-
мущений в основном связано с использованием различных схем учета межэлектронных кор-
реляций. 

Ключевые слова:  Сверхтонкая структура - тяжелый атом - релятивистская теория воз-
мущений - корреляционные, ядерные, радиационные поправки
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НАДТОНКА СТРУКТУРА ВАЖКИХ АТОМІВ В РАМКАХ
РЕЛЯТИВІСТСЬКОЇ БАГАТОЧАСТИНКОВОЇ ТЕОРІЇ ЗБУРЕНЬ

Резюме
Параметри надтонкої структури і електричний квадрупольний момент ізотопу радону роз-

раховані на основі релятивістської багаточастинкової теорії збурень з ефективним акурат-
ним урахуванням обмінно-кореляційних, релятивістських, ядерних і радіаційних поправок. 
Аналіз даних показує, що урахування ефектів міжелектронної кореляції має критичне зна-
чення при обчисленні параметрів надтонкої структури. Фізично розумне узгодження теорії 
і прецизійного експерименту може бути забезпечено завдяки повному послідовному обліку 
міжелектронних кореляційних ефектів, ядерних, релятивістських та радіаційних поправок. 
Ключова відмінність між результатами розрахунків в наближеннях Дірака-Фока, різних вер-
сіях формалізму теорії збурень в основному пов’язано з використанням різних схем обліку 
міжелектронних кореляцій.

Ключові слова: Надтонка структура – важкий атом - релятивістська теорія збурень – ко-
реляційні, ядерні, радіаційні поправки  
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