УДК 681.326.74.06
Човнюк Ю.В., к.т.н. ${ }^{1,2}$; Діктерук М.Г., к.т.н. ${ }^{2}$;
Комоцька С.Ю., асистент ${ }^{2}$
${ }^{1}$ Національний університет біоресурсів і природокористування
України
${ }^{2}$ Київський Начіональний університет будівництва і архітектури

ДИСКРЕТНО-КОНТИНУ АЛЬНЕ МОДЕЛЮВАННЯ ТА ДИНАМІКА СТРІЧКОВИХ КОНВЕЄРІВ У ПРОЦЕСАХ ПУСКУ. I.

Анотаціл. Розглянуті хвильові процеси у пусковий період у натягнутій конвеєрній стрічиі, як у довгому пружному стрижні, що визначають навантаження у ній. Розв'язок хвильового рівняння, що описує поздовжні коливання пружного стрижня, здійснений із врахуванням прямих, відбитих і заломлених хвиль. Отриманий доволі прийнятний інженерний розв'язок задачі щодо визначення динамічних зусиль у стрічиі у пусковий період для конвеєрів з абсолютно піддатливим й жорстким натяжним пристроєм.

Ключові слова: дискретність, континуальність, моделювання, динаміка, пуск, стрічка, конвеєр.

Аннотация. Рассмотренья волновые процессьы в пусковой период в натянутой конвейерной ленте, как в длинном упругом стержне, которые определяют нагрузки в ней. Решение волнового уравнения, которое описывает продольные колебания упругого стержня, получено с учетом прямых, отраженных и преломленных волн. Получено вполне приемлемое инженерное решение задачи определения динамических усилий в ленте в пусковой период для конвейеров с абсолютно податливым и жестким натяжным устройством.

Ключевые слова: дискретность, континуальность, моделирование, динамика, пуск, лента, конвейер.

Annotation. Wave processes in the starting period in a stretched conveyor belt are considered, as in a long elastic rod, which determine the loads in it. The solution of the wave equation, which describes the longitudinal vibrations of the elastic rod, is obtained taking into account direct, reflected and refracted waves. A completely acceptable engineering solution was obtained for the task of determining dynamic forces in the belt during the starting period for conveyors with an absolutely compliant and rigid tensioning device.

Key words: Discreteness, continuum, modeling, dynamics, start, tape, conveyor.

Постановка проблеми.

Не зважаючи на тривалий період роботи транспортуючих машин, їх приводи та конструкції, як правило, знаходяться під впливом змінних динамічних навантажень, особливо при великих швидкостях (ланцюгові й стрічкові конвеєри, елеватори тощо). Деякі типи машин (наприклад, вібраційні конвеєри, котрі застосовуються широко у гірничій справі) за принципом роботи відносять до динамічних коливних систем.

Робота швидкісних конвеєрів (зі швидкістю стрічки (3...9) м/с) спряжена з динамічними процесами як у перехідних, так й в усталених режимах роботи. У конвеєрах з гнучким тяговим органом джерелом великих динамічних навантажень є також спосіб завантаження стрічки, особливо, коли на неї спадають великі маси вантажу, у результаті чого може відбутись руйнування стрічки, роликів та інших елементів конвеєра.

У конвеєрі з піддатливим натяжним пристроєм (із вантажним натяжним барабаном біля привода) при прикладанні до стрічки силового імпульсу від привода вподовж робочої ії гілки розповсюджується хвиля деформації, котра збільшує натяг стрічки. Коли хвиля обійде весь контур стрічки, вона відбивається від натяжного пристрою й повертається до приводного барабана. Хвиля деформації, котра зменшує натяг у холостій гілці, згасає завдяки ході натяжного барабану. Аналогічні явища відбуваються у конвеєрах з жорстким натяжним пристроєм при прикладанні до стрічки силового імпульсу від привода вподовж робочої ії гілки розповсюджується хвиля деформації, яка збільшує натяг, а вподовж холостої гілки - хвиля деформації, що зменшує натяг. Зустрічні хвилі накладаються одна на одну, обходять весь контур, відбиваються від привода й від границі робочої та холостої гілок стрічки і т.д.

Задля визначення динамічних зусиль у стрічці необхідно дослідити у пусковий період процеси просторово-хвильової еволюції збуджень, користуючись методами теорії хвиль у середовищах дискретно-континуальної структури (тобто у середовищах, які моделюються як пружні механічні системи, наприклад, стрижні, що мають зосереджені й розподілені параметри).

Аналіз публікацій по темі дослідження. У роботі [1] наведені розрахунки транспортуючих машин (стрічкових, скребкових, вібраційних, гвинтових та інших конвеєрів), проте розглянутий вплив лише прямих хвиль, що виникають у стрічці конвеєра у пусковий період. Автори [2] розглядають механічні явища, пов’язані з нестаціонарним розповсюдженням пружних хвиль у стрижнях й вивчають закономірності формування хвильових полів у пружних вироджених системах (стрижнях) змінної геометрії, з’ясовують фізичний зміст й проводять енергетичний аналіз розв’язків задач

нестаціонарної динаміки. У літературі для розв'язку нестаціонарних задач хвильової динаміки стрижнів часто використовується інтегральне перетворення Лапласа, теорія котрого викладена у [3, 4]. Проте, головна перешкода, яка виникає при застосуванні інтегральних перетворень - обчислення інтегралів обернення, може бути здолана за допомогою методів, розвинутих у [5, 6]. Серед інших підходів до обчислення оригіналів перетворених функцій можна згадати метод, заснований на використанні теореми про згортку, який приводить до інтегрального рівняння Вольтерра відносно оригіналу шуканої функції [7]. Рівняння поздовжніх коливань стрижня може бути отримане шляхом асимптотичного аналізу точного розв’язку рівнянь теорії пружності для циліндра [8]. Хвильові процеси та явища у циліндричних стрижнях вивчались у $[5,8,9]$.

Результати цитованих вище робіт будуть у подальшому використані для аналізу динамічних процесів у стрічкових конвеєрах (у межах моделі пружного неоднорідного стрижня).

Мета роботи полягає у обгрунтуванні методів та підходів для аналізу просторово-часової еволюції силових навантажень (силових імпульсів) у стрічкових конвеєрах у межах моделі пружного (неоднорідного) стрижня.

Виклад основного змісту дослідження.

1. Рівняння поздовжніх коливань й характеристики розповсюдження імпульсів у стрічкових конвеєрах (у межах моделі пружного стрижня).
У момент вмикання привода конвеєра рух віддалених ділянок стрічки починається тільки через деякий проміжок часу, за який хвиля від барабана пройде до розглядуваного перерізу стрічки (для довгих конвеєрів цей час складає кілька секунд).
При дії на стрічку поздовжнього силового імпульсу у ній виникають хвилі деформації, котрі розповсюджуються зі швидкістю:

$$
\begin{equation*}
C=\sqrt{\frac{E}{\rho}} \tag{1}
\end{equation*}
$$

де E - модуль пружності (Юнга) матеріалу стрічки, а ρ - його щільність.

Розглядаючи хвильові процеси у пусковий період у натягнутій конвеєрній стрічці, як у довгому пружному стрижні, можна визначити динамічні навантаження у ній. Рівняння поздовжніх коливань пружного стрижня записують у виді:

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{C^{2}} \cdot \frac{\partial^{2} u}{\partial t^{2}} \tag{2}
\end{equation*}
$$

де: $u(x, t)$ - поздовжнє переміщення (вподовж горизонтальної вісі стрічки), яке є функцією часу t й координати (горизонтальної) x.
(Слід відрізняти швидкість розповсюдження хвиль C та швидкість руху частинок стрічки $v=\partial u / \partial t(v \ll C$, зазвичай $)$). У [1] $u(x, t)$ називають переміщення перерізу стрічки або абсолютну деформацію під дією силового імпульсу у точці набігання стрічки на барабан (або $u=R \cdot \varphi$, де φ - кут повороту барабана за час, протягом якого не вся стрічка набуває власного руху), а x - абсциса (спрямована вподовж стрічки).
Розв'язок рівняння (2) для різноманітних конструктивних схем конвеєра із врахуванням прямих, відбитих та заломлених хвиль поданий нижче.

Хвильовому рівнянню (2) задовольняє вираз виду:

$$
\begin{equation*}
u(x, t)=f(C t-x)+g(C t+x) \tag{3}
\end{equation*}
$$

де f й g - довільні неперервні функції.
Будь-який розв’язок рівняння (2) можна звести до виду (3). Вираз (3) представляє собою найбільш загальний розв’язок одновимірного хвильового рівняння.

Розглянемо перший доданок у (3). Припустимо, що функція $f(\alpha), \alpha=C t-x$, відмінна від нуля на проміжку $0<\alpha<a$ (рис. 1, a). Тоді $f(C t-x)$ буде відмінна від нуля при $C t-a<x<C t$ або ж при $x<C t<x+a$. У першому запису для будь-якого обраного значення t можна побудувати $f(C t-x)$ як функцію x (рис.1, б), у другому - для фіксованого x як функцію t (рис.1, в). Таким чином, імпульс $f(C t-x)$ представляє собою незмінний розподіл переміщень, котрі рухаються зі швидкістю C у бік збільшення x.

Розглянемо, яку енергію має такий імпульс, що розповсюджується у стрижні (моделі стрічкового конвеєра). Щільність кінетичної енергії у одиниці об’єму стрижня визначається величиною:

$$
\begin{equation*}
T=\frac{1}{2} \cdot \rho \cdot\left(\frac{\partial u}{\partial t}\right)^{2} \tag{4}
\end{equation*}
$$

щільність потенціальної енергії дорівнює:

$$
\begin{equation*}
U=\frac{1}{2} \cdot \sigma \cdot \varepsilon \tag{5}
\end{equation*}
$$

де $\varepsilon=\partial u / \partial x$, а $\sigma=E \cdot \varepsilon$, тоді:

$$
\begin{equation*}
U=\frac{1}{2} E \cdot\left(\frac{\partial u}{\partial x}\right)^{2} . \tag{6}
\end{equation*}
$$

Рисунок 1. Просторово-часовий опис одновимірної хвилі
Оскільки u відмінне від нуля на проміжку $c t-a<x<c t$, тоді повні енергії матимемо інтегруванням по об'єму збуреної частини стрижня:

$$
\begin{equation*}
\bar{T}=\frac{1}{2} \rho \cdot S \cdot \int_{c t-a}^{c t}\left(\frac{\partial u}{\partial t}\right)^{2} d x, \bar{U}=\frac{1}{2} E \cdot S \cdot \int_{c t-a}^{c t}\left(\frac{\partial u}{\partial x}\right)^{2} d x \tag{7}
\end{equation*}
$$

Підставляючи у останні рівності $u=f(c t-x)$ й здійснюючи заміну змінної $c t-x=\alpha$, із врахуванням виразу для $c(l)$ матимемо:

$$
\begin{equation*}
\bar{T}=\bar{U}=\frac{1}{2} E \cdot S \cdot \int_{0}^{a}\left[f^{\prime}(\alpha)\right]^{2} d \alpha \tag{8}
\end{equation*}
$$

Зі співвідношення (8) випливає: 1) кінетична й потенційна енергія імпульсу рівні; 2) ці величини не змінюються з плином часу, оскільки права частина залежить тільки від форми імпульсу. Аналогічним чином можна розглянути імпульси, які рухаються у бік зменшення x й

подані другою складовою (3). Все зазначене вище переноситься без змін й на такі імпульси.

Наприклад, при значенні функції $f(\alpha)$:

$$
\begin{equation*}
f(\alpha)=u_{0} \cdot \sin \left(\frac{\pi \alpha}{a}\right) \tag{9}
\end{equation*}
$$

де u_{0} - амплітуда силового імпульсу, що розповсюджується у вигляді переміщення вподовж стрижня, маємо:

$$
\begin{equation*}
\bar{T}=\bar{U}=\frac{E \cdot S \cdot u_{0}^{2}}{a} \cdot \frac{\pi^{2}}{4}- \tag{10}
\end{equation*}
$$

1. Хвильові процеси у напівнескінченому й складному стрижні.

Зазвичай інженерний розв’язок задачі щодо визначення динамічних зусиль у стрічці конвеєра у пусковий період розшукують для останнього з абсолютно піддатливим й жорстким натяжним пристроєм [1].

У конвеєрі з піддатливим натяжним пристроєм (з вантажним натяжним барабаном біля привода) при прикладанні до стрічки силового імпульсу від привода вподовж робочої ї гілки розповсюджується хвиля деформації, котра збільшує натяг стрічки. Після обходу всього контуру стрічки, хвиля відбивається від натяжного пристрою й повертається до приводного барабану. Хвиля деформації, яка зменшує натяг у холостій гілці, спадає за рахунок ходи натяжного барабана. У конвеєрі 3 жорстким натяжним пристроєм при прикладанні до стрічки силового імпульсу від привода вподовж робочої ïї гілки розповсюджується хвиля деформації, яка збільшує натяг, а вподовж холостої гілки - хвиля деформації, яка зменшує натяг. Зустрічні хвилі накладаються одна на одну, обходять весь контур, відбиваються від привода й від границі робочої і холостої гілок стрічки конвеєра і т.д.

Для визначення динамічних зусиль у стрічці, на думку авторів даної роботи, недостатньо розглядати у пусковий період тільки прямі хвилі, як це зроблено у [1]. Слід детально вивчити процеси відбиття й заломлення виникаючих у стрічці конвеєра хвиль, а також на границі між холостою й робочою його гілками. При цьому спочатку методом теорії хвиль розглянемо процеси падіння й відбиття хвиль від вільного й закріпленого торців стрижня (стрічки конвеєра).

Розглянемо стрічку у вигляді напівнескінченого стрижня $0<x<\infty$. Нехай у ньому якимось способом збуджений пружний імпульс з переміщенням $u=f(c t+x)$, який падає з нескінченності. На кінці $x=0$ задана одна з двох умов: або $u=0$ (закріплений кінець), або $\sigma=0$, тобто $\partial u / \partial x=0$ (кінець вільний від напружень).

У випадку закріпленого кінця повне хвильове поле (падаюче

плюс відбите) має вид:

$$
\begin{equation*}
u=f(c t+x)-f(c t-x) \tag{11}
\end{equation*}
$$

і дає $u=0$ при $x=0$ й довільному t. Диференціюючи по x, знайдемо деформації і напруження:

$$
\begin{equation*}
\varepsilon=f^{\prime}(c t+x)+f^{\prime}(c t-x), \sigma=E\left[f^{\prime}(c t+x)+f^{\prime}(c t-x)\right] . \tag{12}
\end{equation*}
$$

Порівнюючи (11) й (12), бачимо, що на відміну від переміщень деформації і напруження при відбитті не змінюють знак. Якщо, наприклад, деформації (а відповідно, і напруження) у падаючому імпульсі були стискаючими, то й у відбитому вони мають той самий характер. Точнісінько так імпульс розтягу відбивається від закріпленого кінця стрижня у вигляді імпульсу розтягу.

Розглядаючи по аналогії відбиття від вільного кінця стрижня, можна впевнитись, що умові $\left.\sigma\right|_{x=0}=0$ задовольняє розв'язок:

$$
\left\{\begin{array}{l}
u=f(c t+x)+f(c t-x), \varepsilon=f^{\prime}(c t+x)-f^{\prime}(c t-x) \tag{13}\\
\sigma=E \cdot\left\{f^{\prime}(c t+x)-f^{\prime}(c t-x)\right\}
\end{array}\right.
$$

Тобто тепер переміщення не змінюють знака, а деформації i напруження змінюють знак при відбитті. Імпульс стискування відбивається від вільного кінця стрижня у вигляді імпульсу розтягу, а імпульс розтягу - у вигляді імпульсу стискування.

Розглянемо далі задачу про проходження імпульсу через границю розділу матеріальних властивостей стрічки конвеєра (тобто між холостою й робочою гілками). Для цього використаємо наступну модель стрижня.

Стрижень щільності ρ_{1} (навантажена / робоча гілка конвеєра), котрий має модуль пружності E_{1}, займає область $x<0.3$ ним жорстко з'єднаний стрижень з параметрами ρ_{2}, E_{2} (холоста гілка конвеєра). Швидкості поздовжніх хвиль дорівнюють відповідно c_{1} й (рис. 2, a). У першому стрижні у напрямку границі розділу (робочої c_{2} та холостої гілок конвеєра) розповсюджується хвильовий імпульс $u_{i}=f\left(c_{1} t-x\right)$. Що відбувається 3 ним після зустрічі з границею розділу $x=0$? У першому стрижні крім падаючої хвилі з’явиться відбита $u_{r}=F\left(c_{1} t+x\right)$, а у другому - хвиля, що пройшла через границю, $u_{2}=g\left(c_{2} t-x\right)$, котра розповсюджується, відповідно, зі швидкістю c_{2}.

б
Рисунок 2. Проходження імпульсу через границю розділу матеріальних властивостей конвеєрної стрічки (границя між робочою й холостою гілками): a - падаючий імпульс; $б$ - відбитий й імпульс, котрий пройшов через границю (заломлений), $\rho_{1}=\rho_{2}, c_{1}=2 c_{2}$.

Вимагаючи на границі $x=0$ неперервності переміщень та напружень:

$$
\begin{equation*}
\left.u_{1}\right|_{x=0}=\left.u_{2}\right|_{x=0},\left.E_{1} \cdot \frac{\partial u_{1}}{\partial x_{1}}\right|_{x=0}=\left.E_{2} \cdot \frac{\partial u_{2}}{\partial x}\right|_{x=0} \tag{14}
\end{equation*}
$$

матимемо систему рівнянь:

$$
\left\{\begin{array}{l}
f\left(c_{1} \cdot t\right)+F\left(c_{1} \cdot t\right)=g\left(c_{2} \cdot t\right) \tag{15}\\
-E_{1} \cdot f^{\prime}\left(c_{1} \cdot t\right)+E_{1} \cdot F^{\prime}\left(c_{1} \cdot t\right)=-E_{2} \cdot g^{\prime}\left(c_{2} \cdot t\right)
\end{array}\right.
$$

Помножимо друге рівняння на $c_{1} \cdot d t$ й про інтегруємо по t від нуля до деякого поточного значення t. Оскільки переміщення на фронтах хвиль перетворюються у нуль, тоді, вважаючи $f(0)=g(0)=F(0)=0$, матимемо:

$$
\left\{\begin{array}{l}
F\left(c_{1} \cdot t\right)-g\left(c_{2} \cdot t\right)=-f\left(c_{1} \cdot t\right), \tag{16}\\
E_{1} \cdot F\left(c_{1} \cdot t\right)+E_{2} \frac{c_{1}}{c_{2}} \cdot g\left(c_{2} \cdot t\right)=E_{1} \cdot f\left(c_{1} \cdot t\right)
\end{array}\right.
$$

Звідки:

$$
\begin{equation*}
F\left(c_{1} \cdot t\right)=\frac{\left(\chi_{1}-\chi_{2}\right)}{\left(\chi_{1}+\chi_{2}\right)} \cdot f\left(c_{1} \cdot t\right), g\left(c_{2} \cdot t\right)=\frac{2 \chi_{1}}{\left(\chi_{1}+\chi_{2}\right)} \cdot f\left(c_{1} \cdot t\right), \tag{17}
\end{equation*}
$$

де $\chi_{1}=\rho_{1} \cdot c_{1}, \chi_{2}=\rho_{2} \cdot c_{2}$ - величини, які називаються хвильовими опорами першого та другого середовища, відповідно.

Остаточний розв'язок поставленої задачі має вид:

$$
\left\{\begin{array}{l}
U_{1}=f\left(c_{1} \cdot t-x\right)+\frac{\left(\chi_{1}-\chi_{2}\right)}{\left(\chi_{1}+\chi_{2}\right)} \cdot f\left(c_{1} \cdot t+x\right) \tag{18}\\
U_{2}=\frac{2 \chi_{1}}{\left(\chi_{1}+\chi_{2}\right)} \cdot f\left[\frac{c_{1}}{c_{2}} \cdot\left(c_{2} \cdot t-x\right)\right]
\end{array}\right.
$$

У тому, що (18) задовольняє граничним умовам (14) можна впевнитись безпосередньою перевіркою. На рис. 2,б зображений розподіл переміщень у стрижні для випадку $\rho_{1}=\rho_{2}, c_{1}=2 c_{2}, \chi_{1}=2 \chi_{2}$.

Перейдемо до аналізу отриманого розв'язку. При $\chi_{1}=\chi_{2}$ відбита хвиля не виникає: хвильове поле у цьому випадку має вид:

$$
\begin{equation*}
u_{1}=f(c t-x), u_{2}=f\left[\frac{c_{1}}{c_{2}} \cdot\left(c_{2} t-x\right)\right] \tag{19}
\end{equation*}
$$

Таким чином, якщо виконується рівність $\rho_{1} \cdot c_{1}=\rho_{2} \cdot c_{2}$ (середовища узгоджені по величині хвильових опорів), відбитих хвиль не існує i хвильова енергія повністю перейде від одного середовища до іншого. У найбільш загальному випадку виникає як відбита хвиля, так і та, що пройшла у інше середовище. Позначимо коефіцієнти у правій частині (18):

$$
\begin{equation*}
R=\frac{\left(\chi_{1}-\chi_{2}\right)}{\left(\chi_{1}+\chi_{2}\right)}=\frac{1-k}{1+k}, T=\frac{2}{1+k}, k=\frac{\chi_{2}}{\chi_{1}}=\frac{\rho_{2} \cdot c_{2}}{\rho_{1} \cdot c_{1}} . \tag{20}
\end{equation*}
$$

Величини R й T відповідно коефіцієнтом відбиття й проходження за амплітудою.

Обчислимо за формулами, отриманими вище, повні енергії падаючого, відбитого й заломленого (того, що пройшов у інше середовище) імпульсів, вважаючи, що первісний імпульс U_{1} має просторову протяжність a. Для енергії падаючого імпульсу у відповідності з (8) маємо:

$$
\begin{equation*}
W_{i}=\bar{T}_{i}+\bar{U}_{i}=E_{1} \cdot S \cdot \int_{0}^{a}\left[f^{\prime}(\alpha)\right]^{2} d \alpha \tag{21}
\end{equation*}
$$

Енергія відбитого імпульсу дорівнює:

$$
\begin{equation*}
W_{r}=\left(\frac{1-k}{1+k}\right)^{2} \cdot W_{i} \tag{22}
\end{equation*}
$$

Дещо складніше можна знайти енергію заломленого імпульсу.

Зазначимо, що у відповідності до (18) він матиме довжину $\frac{c_{2}}{c_{1}} \cdot a$
Тому його енергія обчислюється за формулою:

$$
\begin{equation*}
W_{2}=E_{2} \cdot S\left(\frac{2}{1+k}\right)^{2} \cdot \int_{0}^{\left(c_{2} / c_{1}\right) \cdot a}\left[f^{\prime}\left(\frac{c_{1}}{c_{2}} \cdot \alpha\right)\right]^{2} d \alpha=\frac{4 k}{(1+k)^{2}} W_{i} . \tag{23}
\end{equation*}
$$

Перевіркою можна показати, що $W_{r}+W_{2}=W_{i}$ сума енергій заломленого і відбитого імпульсів дорівнює енергії падаючого.

Для завершення з'ясуємо коефіцієнти відбиття й проходження за енергією:

$$
\begin{equation*}
R^{*}=\frac{W_{r}}{W_{i}}=\left(\frac{1-k}{1+k}\right)^{2}, T^{*}=\frac{W_{2}}{W_{i}}=\frac{4 k}{(1+k)^{2}}, \tag{24}
\end{equation*}
$$

як функції відношення хвильових опорів k.
При $k=0$ маємо $R^{*}=1, T^{*}=0$, тобто вся енергія відбивається у перше середовище, причому у відбитій хвилі переміщення мають той самий знак. Зрозуміло, що цей граничний випадок відповідає відбиттю від вільного торця. При збільшенні k зростає частка енергії, яку переносить у друге середовище заломлена хвиля, і зменшується енергія відбитої хвилі до тих пір, поки при $k=1$ відбита хвиля взагалі не зникне. При подальшому збільшенні k величина R^{*} прямує до одиниці, а $T^{*} \rightarrow 0$. Однак тепер переміщення у відбитій хвилі протилежне за знаком тому, що було у падаючій хвилі, як у випадку відбиття від закріпленого торця.

Нижче, на графіку (рис. 3) подані залежності коефіцієнтів відображення $R(k) \quad$ i проходження $T(k)$ хвилі зміщення від хвильового імпедансу k. На графіку (рис. 4) подані залежності коефіцієнтів відображення $R^{*}(k)$ і проходження $T^{*}(k)$ енергії, яку переносять хвиля зсуву від хвильового імпедансу k.

Крім того, за формулами (18) на графіках (рис. 5, 6) подані залежності U_{1} й U_{2} як функції t при $L=100$ м (довжина робочої / холостої гілки конвеєра) при наступних значеннях параметрів:

Рисунок 3. Залежності коефіцієнтів відображення $R(k) \quad$ i проходження $T(k)$ хвилі зміщення від хвильового імпедансу k

Рисунок 4. Залежності коефіцієнтів відображення $R^{*}(k)$ i проходження $T^{*}(k)$ `енергії, яку переносять хвиля зсуву від хвильового імпедансу k
a) навантажена/робоча гілка $-c_{1}=42,9 \mathrm{~m} / \mathrm{c} ; \rho_{1}=5,44 \cdot 10^{3} \mathrm{\kappa г} / \mathrm{m}^{3}$;
б) холоста гілка $-c_{2}=70,7 \mathrm{~m} / \mathrm{c} ; \rho_{2}=2 \cdot 10^{3} \mathrm{\kappa г} / \mathrm{m}^{3}$. Слід зазначити, що ширина стрічки конвеєра $b=1$ м, а її товщина -8×10^{-3} м.

У якості профілю падаючої хвилі обрана наступна залежність:

$$
\begin{equation*}
U_{1}(t)=U_{0} \cdot \sin \left[\frac{\pi}{a}\left(c_{1} t-L\right)\right]+\left(\frac{k-1}{k+1}\right) U_{0} \cdot \sin \left[\frac{\pi}{a}\left(c_{1} t+L\right)\right], \tag{25}
\end{equation*}
$$

для амплітуди 0,1 м й протяжності падаючого імпульсу (хвильового) у просторі $a=\left\{10^{-1} ; 1\right\}$ м. Для відбитого хвильового імпульсу обрана наступна залежність (у часі t) при $x=L$:

$$
\begin{equation*}
U_{2}(t)=\frac{2 k}{(1+k)} \cdot U_{0} \cdot \sin \left[\frac{\pi}{a} \cdot \frac{c_{1}}{c_{2}}\left(c_{2} t-L\right)\right] . \tag{26}
\end{equation*}
$$

При цьому у формулах (25) й (26) $k=1,65$ (для введених вище параметрів $\left.\rho_{1}, c_{1}, \rho_{2}, c_{2}\right)$.

Рис. 5. Зсув при падінні на межу розділу при $U_{0}=0.01 \mathrm{~m}, \quad a=0.1 \mathrm{~m}$:
a) - навантажена гілка; б) - холоста гілка

Рис. 6. Зсув при падінні на межу розділу при $U_{0}=0.1 \mathrm{~m}, a=1 \mathrm{~m}$:
a) - навантажена гілка; б) - холоста гілка

Висновки.

1. У роботі обгрунтована дискретно-континуальна модель для динамічного аналізу хвильових процесів, які виникають у стрічкових конвеєрах у моменти їх пуску.
2. Досліджені хвильові процеси, які виникають у робочій та холостій гілках конвеєра при проходженні силового імпульсу через їх границю розділу, а також детально вивчені закони, які визначають повне хвильове поле (падаючого + відбитого хвилеутворень) від закріпленого й вільного кінців стрижня (моделі стрічкового конвеєра) й значення деформацій та напружень для кожного з цих випадків. Зокрема, встановлено, що при взаємодії хвилі з закріпленим торцем стрічки деформації та напруження не змінюють свого знаку, а переміщення - змінює у процесі відбиття імпульсу. При взаємодії хвилі з вільним торцем стрічки, навпаки, деформації та напруження змінюють свій знак у процесі відбиття (хвилі), а переміщення -ні.
3. Визначені залежності коефіцієнтів відбиття (R) й проходження (T) хвилі по амплітуді від $k=\frac{\chi_{2}}{\chi_{1}}=\frac{\rho_{2} c_{2}}{\rho_{1} c_{1}}$, тобто від відношення хвильових опорів робочої $\left(\chi_{1}\right)$ й холостої $\left(\chi_{2}\right)$ гілок конвеєра, а також залежності $R^{*}(k), T^{*}(k)$, які визначають коефіцієнти відбиття $\left(R^{*}\right)$ та проходження $\left(T^{*}\right)$ по енергії хвильового імпульсу, що виникає у стрічці конвеєра у процесі його пуску.
4. Отримані у роботі результати можуть бути у подальшому використані для уточнення й вдосконалення існуючих інженерних методів розрахунку стрічкових конвеєрів у процесах їх пуску, котрі враховують виникаючі у таких системах хвильові процеси (хвилеутворення).

ЛІТЕРАТУРА

1. Иванченко Ф. К. и др. Расчеты грузоподъемных и транспортирующих машин /Ф. К. Иванченко и др. - К.: Вища школа, 1978. - 576 с.
2. Жарий О.Ю. Введение в механику нестационарных колебаний и волн / О.Ю. Жарий, А.Ф. Улитко. - К.: Вища школа, 1989.-184 c.
3. Деч Г. Руководство к практическому применению преобразования Лапласа и Z - преобразования / Г. Деч.- М.: Наука, 1971.-288 с.
4. Слепян Л. И. Интегральные преобразования в нестационарных задачах механики / Л.И. Слепян, Ю.С. Яковлев. - Л.: Судостроение, 1980. - 343 с.
5. Харкевич А.А. Неустановившиеся волновые явления / А.А. Харкевич. - М.; Л.: ГИТТЛ, 1950. - 202 с.
6. Pao Y.H. Determination of transient responses of a thick-walled spherical shell by the ray theory / Y.H. Pao, A.N. Ceranoglu // Transactions of ASME. Journal of applied mechanics. - 1978. - V. 45, №1. - p. 114 - 122.
7. Kromm A. Zur ausbreitung von stobwellen in krei-sloscheiben / A. Kromm//Z. Angew. Math. Mech. - 1948. - V. 48, Nr. 4 - S.104-114.
8. Кольский Г. Волны напряжения в твердых телах / Г. Кольский. М.: Изд-во иностр. лит., 1955. - 192 с.
9. Бреховских Л.М. Введение в механику сплошных сред / Л.М. Бреховских, В.В. Гончаров. - М.: Наука, 1982. - 335 с.
