ВЫБОР ИННОВАЦИОННЫХ ПРОЕКТОВ НА ОСНОВЕ ПАРЕТО – ОПТИМАЛЬНЫХ РЕШЕНИЙ

УДК 338.138:519.8

КОВАЛЕНКО Игорь Иванович

д.т.н., профессор кафедры интеллектуальных информационных систем Черноморского государственного университета им. Петра Могилы **Научные интересы**: методы анализа данных, прикладной системный анализ, теория оптимальных решений, системы поддержки принятия решений.

e-mail: igor.kovalenko@nuos.edu.ua

ЧЕРНОВА Любава Сергеевна

аспирант кафедры «Управление проектами» Николаевский национальный университет имени адм. Макарова. **Научные интересы:** изучение методов, моделей, механизмов диагностики угроз в инновационных программах развития наукоемких производств. **e-mail:** 19chls92@gmail.com

ПОСТАНОВКА ПРОБЛЕМЫ

Важным аспектом анализа инновационных проектов на предконтрактной стадии является вопрос о возможности их инвестирования. К инновационным проектам традиционно относятся те, которые обеспечивают получение новых технологий нового качества, преобразование средств производства, управления производственными процессами и др., что в конечном счете приводит к повышению конкурентоспособности. Высокая стоимость и потенциальная коммерческая ценность научных исследований требуют внимательного отношения не только к выбору научных приоритетов, но и к самому процессу реализации научных разработок, начиная со стадии генерации идей и заканчивая стадией рыночного сопровождения готового продукта [3].

В данной связи важная роль отводится рискообразующим факторам, которые в той или иной мере могут повлиять на решение по финансированию инновационных проектов. В современных публикаци-

ях, посвященных анализу инновационных рисков [1,3,4 и др.], рассматриваются вопросы их общей классификации без конкретного выделения тех из них, которые могут влиять на принятие решений о инвестициях в проекты. Кроме этого математические методы, используемые для решения многокритериальных задач выбора в условиях наличия рискообразующих факторов, как правило, не учитывают ситуации когда такие факторы могут быть независимы по предпочтениям.

АНАЛИЗ ПОСЛЕДНИХ ИССЛЕДОВАНИЙ И ПУБЛИКАЦИЙ

Анализ публикаций последних лет показывает, что в настоящее время получили широкое распространение методы многокритериального принятия решений, основанные на теориях аналитических иерархий (МАИ) и аналитический сетей (МАС) Т.Саати [7]. Наряду с этим активно развивается методология, в основе которой лежит знаменитый принцип Эджворта-Парето, утверждающий, что наилучший выбор всегда следует искать в пределах множества Парето. Среди значимых работ, посвященных развитию этого направления можно отметить работы [2, 5, 6] и целый ряд других. Вместе с тем отмечается, то что во многих многокритериальных задачах множество Парето оказывается довольно широким и конкретный выбор в его пределах не является очевидным [6].

В этой связи возникла проблема сужения множества Парето, связанная с выбором того или иного конкретного парето – оптимального варианта в качестве «наилучшего».

Различные подходы к решению указанной проблемы рассмотрены в указанных публикациях. Таким образом, отмеченное направление решения многокритериальных задач выбора решений представляется перспективным.

Цель статьи состоит в рассмотрении подхода по выбору и обоснованию комплекса рискообразующих факторов(критериев), наиболее ярко отображающих инновационный, финансовый и маркетинговый аспекты инновационных проектов, и парето – оптимального выбора тех из них, в которые могут быть вложены финансовые инвестиции.

ИЗЛОЖЕНИЕ ОСНОВНОГО МАТЕРИАЛА

С учетом сформулированной цели статьи, выберем три критерия (f), и кратко рассмотрим их содержание:

- Инновационный уровень проекта (f₁) определяется степенью готовности инновационных разработок к выполнению проекта, научной новизной, оригинальностью идей и концепций, которые предлагаются; практической ценностью и социально-экономической значимостью, полученного продукта проекта. Кроме этого инновационный уровень проекта должен характеризоваться преимуществами по сравнению с

отечественными и зарубежными аналогами, наличием спроса на рынках сбыта.

- Внутренняя норма доходности проекта (f_2) используется в практике проектного анализа в качестве первого шага для анализа эффективности капиталовложений.

Данный критерий характеризуется так называемой «точкой-безубыточности» и называется еще «внутренней нормой рентабельности» или «внутренней нормой доходности» [1]. Этот показатель для проектов, принятых к финансированию, варьируется в зависимости от отрасли экономики, различных форм собственности и степени риска. Принятой нормой данного критерия, при которой рекомендуются инвестиции в проект, является величина 15-20 % [1].

- <u>Интенсивность конкуренции</u> (f₃) – это степень противодействия конкурентов в борьбе за потребителей и новые рыночные ниши, одна из важнейших характеристик активности конкурентной среды инновационных проектов. Этот показатель невозможно точно определить из-за сложности непосредственной оценки взаимодействия факторов конкурентной среды, тем не менее в работе [8], выделяются следующие факторы, влияющие на него : рентабельность рынка, тип рынка, его объем и характер распределения рыночных долей конкурентов, а также степень концентрации продукции на рынке. Эти факторы, в свою очередь, определяются объемом реализованной продукции заданного ассортимента, выраженным в денежных единицах, количеством предприятий, которые реализуют данную продукцию.

Наличие ряда критериев приводит к задаче многокритериального выбора решений (альтернатив, вариантов, планов, стратегий и т.п.), общая модель которого представляется в следующем виде [5]:

1. Наличие множества возможных (допустимых) решений

$$X = \{x_1, x_2, ..., x_i, ..., x_n\};$$

- 2. Наличие векторного критерия $f = (f_1, f_2, ..., f_m)$, $m \ge 2$, определенного на множестве возможных решений X.
- 3. Отношение предпочтения $>_x$, заданное на множестве возможных решений X (например, $x_1 >_x x_2$).

В конечном итоге задача многокритериального выбора состоит в отыскании множества выбираемых решений С (X), С (X) \in X, с учетом отношения предпочтения $>_{\times}$ на основе заданного векторного критерия f, отражающего набор целей лица, принимающего решения (ЛПР). При этом, если ЛПР ведет себя «разумно», то выбираемые им решения С (х) обязательно должны быть парето-оптимальными, т.е. выбранными из сформированного множества Парето $P_{(\times)}$, $C_{(\times)} \in P_{(\times)}$. Такая процедура может быть представлена следующей схе-

мой
$$X \Rightarrow P(X)_f \Rightarrow C(X)$$
.

В данной связи возникает задача построения множества Парето, представляющего собой множество недоминируемых решений. Для решения такой задачи можно воспользоваться алгоритмами, рассмотренными в работах [5,6]. Приведем их основное содержание. Пусть множество возможных решений X состоит из конечного числа элементов, т.е. $X = X_1 = \{x_1, x_2, ..., x_n\}$.

Тогда первый шаг алгоритма заключается в последовательном сравнении первого решения X_1 со всеми остальными X_2 , ... X_n . Это сравнение заключается в проверке справедливости соотношений $x_1 >_x x_i$ и $x_i >_x x_1$ при каждом i=2,...,n.

В случае истинности для некоторого i первого соотношения $x_1 >_x x_i$ доминируемое решение x_i удаляется из множества X_1 . При выполнении второго соотношения $x_i >_x x_1$ удалению подлежит решение X_1 . Если же ни одно из приведенных соотношений $x_1 >_x x_i$ и $x_i >_x x_1$ не являются истинными, ничего удалять не следует. В том случае, ко-

гда сравнения решения X_1 были проведены со всеми остальными решениями X_{2r} ... x_n , и ни для какого i=2,...,n не оказалось выполненным соотношение $x_i >_x x_1$, первое решение следует запомнить как недоминируемое и удалить его из X_1 . Если после выполнения первого шага во множестве X_1 не осталось ни одного решения (т.е.все оказались удаленными), то алгоритм заканчивает работу. При этом в памяти будет храниться одно недоминируемое решение X_1 . В противном случае (т.е. когда не все решения оказались удаленными), необходимо перейти ко второму шагу алгоритма, который аналогичен первому. Сначала нужно пронумеровать элементы вновь полученного множества X_2 , а после этого провести последовательное сравнение первого решения множества X_2 со всеми остальными его элементами. Такое сравнение закончится либо удалением первого решения множества X_2 , либо такого удаления не произойдет.

Во втором случае это решение следует запомнить как недоминируемое, а затем удалить его из X_2 . Если после этого во множестве X_2 не останется ни одного решения, то вычисления заканчиваются. В противном случае нужно применить третий аналогичный шаг алгоритма и т.д. В конечном итоге будет сформировано множество всех недоминируемых решений.

Однако, как уже отмечалось выше, во многих многокритериальных задачах множество Парето оказывается довольно широким и конкретный выбор в его пределах является достаточно проблемным. По этой причине возникает следующая задача, связанная с сужением такого множества для выбора лучшего решения [2,5,6].

В рамках стратегии компенсации для сужения множества Парето используется подход выявления информации об относительной возможности критериев по-

средством прямого опроса ЛПР. В результате такого опроса выясняется отношение ЛПР, например, к ситуации, когда ради увеличения значения более важного *i-го* критерия на ω_i^* единиц ЛПР готово пожертвовать потерями в ω_i^* единиц по *j-му*

критерию при условии сохранения значений по всем остальным критериям.

При этом вычисляется коэффициент относительной важности $heta_{ij}$, который выражает долю потери относительно суммы потери и прибавки і-го критерия по сравнению с ј-м критерием [5]:

$$\Theta_{ij} = \frac{\omega_i^*}{\omega_i^* + \omega_i^*}, \left(0 < \Theta_{ij} < 1\right) \tag{1}$$

Далее необходимо менее важный *j-й* критерий в общем множестве критериев

 $\{f_1, f_2, ..., f_m\}$ заменить новым, вычисленным по формуле [5]:

$$f_i^* = \theta_{ij} * f_i + (1 - \theta_{ij}) * f_i \tag{2}$$

Таблица 1 Экспортные оценки проектов по каждому из критериев.

Векторы оценок по каждому проекту(n=8)	f_1	f_2	f ₃
y ⁽¹⁾	5	3	4
y ⁽²⁾	4	3	3
y ⁽³⁾	5	3	3
y ⁽⁴⁾	4	3	5
y ⁽⁵⁾	2	4	3
y ⁽⁶⁾	4	3	3

Затем следует найти множество Парето относительно нового векторного критерия. Все остальные «старые» критерии сохраняются.

Рассмотрим пример паретооптимального выбора инновационных проектов с учетом выбранных критериев : f_1 – инновационный уровень проекта; f_2 – внутренняя норма доходности; f_3 – интенсивность конкуренции; n = 6 – вариантов выбираемых проектов; m = 3 – число критериев. Для экспертного оценивания всех критериев используем пятибальную шкалу.

Обозначим множество из шести возможных векторов (оценок) соответствуюпроектов через $Y = \{y^{(1)}, y^{(2)}, y^{(3)}, \dots, y^{(6)}\}$ и положим, что в результате экспертизы проектов были получены оценки, представленные в таблице 1. Положим P(Y) = Y и в соответствии с описанным алгоритмом выполним сравнение указанных векторов.

Сравниваем попарно *y*(1),*y*(2);*y*(1),*y*(3);*y*(1),*y*(4);*y*(1),*y*(5);*y*(1),y(6) на выполнение отношения ≥.

Имеем:
$$y_1^{(1)} > y_1^{(2)}; y_2^{(1)} =$$
 $y_2^{(2)}; y_3^{(1)} < y_3^{(2)};$ $y_1^{(1)} = y_1^{(3)}; y_2^{(1)} = y_2^{(3)}; y_3^{(1)} > y_3^{(3)};$ $y_1^{(1)} > y_1^{(4)}; y_2^{(1)} = y_2^{(4)}; y_3^{(1)} > y_3^{(4)};$ $y_1^{(1)} > y_1^{(5)}; y_2^{(1)} < y_2^{(5)}; y_3^{(1)} > y_3^{(5)};$ $y_1^{(1)} > y_1^{(6)}; y_2^{(1)} = y_2^{(6)}; y_3^{(1)} < y_3^{(6)}.$

Отсюда видно, что пары $y_3^{(1)} > y_3^{(2)}; y_3^{(1)} < y_3^{(4)}; y_2^{(1)} < y_2^{(5)}$ не сравнимы по отношению \geq . Следовательно в целом вектор $y^{(1)}$ является недоминируемым и включается в $P(Y) = \{y^{(1)}\}$.

Выполняем сравнение $y^{(2)}$ с векторами $y^{(3)}, y^{(4)}, y^{(5)}, y^{(6)}$.

$$y_1^{(2)}=y_1^{(3)}; y_2^{(2)}=y_2^{(3)}; y_3^{(2)}=y_3^{(3)}; \ y_1^{(2)}=y_1^{(4)}; y_2^{(2)}=y_2^{(4)}; y_3^{(2)}< y_3^{(4)}; \ y_1^{(2)}>y_1^{(5)}; y_2^{(2)}< y_2^{(5)}; y_3^{(2)}=y_3^{(5)}; \ y_1^{(2)}=y_1^{(6)}; y_2^{(2)}=y_2^{(6)}; y_3^{(2)}>y_3^{(6)}.$$
 Поскольку $y^{(3)}\geq y^{(2)}$, то последний

удаляется, как доминируемый.

3. Сравниваем $y^{(3)}$ с $y^{(4)}$, $y^{(5)}$, $y^{(6)}$. Имеем:

$$\begin{aligned} y_1^{(3)} &> y_1^{(4)}; y_2^{(3)} = y_2^{(4)}; y_3^{(3)} < y_3^{(4)}; \\ y_1^{(3)} &> y_1^{(5)}; y_2^{(3)} < y_2^{(4)}; y_3^{(3)} = y_3^{(5)}; \\ y_1^{(3)} &> y_1^{(6)}; y_2^{(3)} = y_2^{(6)}; y_3^{(3)} < y_3^{(5)}; \end{aligned}$$

ПРОБЛЕМИ ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ

Здесь пары $y_3^{(3)} < y_3^{(4)}; y_2^{(3)} < y_2^{(5)}$ не сравнимы по \geq , следовательно $P(Y) = \{y^{(1)}, y^{(3)}\};$

4. Выполняем сравнение вектора $y^{(4)}$ с $y^{(5)}$, $y^{(6)}$.

Имеем:
$$y_1^{(4)} > y_1^{(5)}$$
; $y_2^{(4)} < y_2^{(5)}$; $y_3^{(4)} > y_3^{(5)}$; $y_1^{(4)} = y_1^{(6)}$; $y_2^{(4)} < y_2^{(6)}$; $y_3^{(4)} > y_3^{(6)}$;

Здесь при сравнении $y^{(4)}$ и $y^{(6)}$ выполняется отношение $y^{(4)} > y^{(6)}$, следовательно $y^{(6)}$ является доминируемым и удаляется из рассмотрения.

5. Сравниваем $y^{(5)}$ и $y^{(6)}$. Поскольку $y^{(6)}$ был удален, как доминируемый, то остается вектор $y^{(5)}$, который не с чем сравнивать. Следовательно, итоговое множество Парето имеет вид : $P(Y) = \{y^{(1)}, y^{(3)}, y^{(5)}\}$ (таблица 2).

В соответствии с этим, именно из первого, третьего и пятого проектов следует выполнить окончательный выбор. Однако для этого необходимо располагать информацией о предпочтениях ЛПР относительно выбранных критериев f_1, f_2, f_3 . Пусть например, ЛПР готов ради увеличения показателя критерия f_2 (внутренняя норма доходности) поступиться значением критерия f_1 (инновационный уровень проекта) на величину $\omega_1^* = \omega_2^* = 0.5$ балла. Тогда коэффициент относительно важности $\Theta_{12} = \frac{\omega_2^*}{\omega_1^* + \omega_2^*} = \frac{0.5}{1} = 0.5$. С учетом этого новые значения оценок по критерию f_2 будут следующие : $f_2^{(1)} = 0.5*5+(1-0.5)*3=4$; $f_2^{(2)} =$

4; $f_3^{(2)} = 0.5 * 2 + (1 - 0.5) * 4 = 3$ (таблица 3). Исходя из значений этой таблицы можно записать следующие отношения : $y_1^{(1)} = y_1^{(3)}; y_1^{(1)} > y_1^{(5)}; y_2^{(1)} = y_2^{(2)}; y_2^{(1)} = y_2^{(5)}; y_3^{(1)} > y_3^{(2)}; y_3^{(1)} > y_3^{(5)}$. Во всех трех случаях $y^{(1)}$ является доминирующим, и при этом выполняется условие транзитивности. Следовательно, единственным и лучшим решением будет выбор 1-го проекта.

Таблица 2

Множество Парето					
	f ₁	f_2	f_3		
y ⁽¹⁾	5	3	4		
y ⁽³⁾	5	3	3		
y ⁽⁵⁾	2	4	3		

Таблица 3

Новые значения t₂						
	f_1	f_2	f_3			
y ⁽¹⁾	5	4	4			
y ⁽²⁾	5	4	3			
y ⁽³⁾	2	3	3			

ВЫВОДЫ

В основе рассмотренного в работе подхода к анализу инновационных проектов лежат следующие два аспекта: выделение из множества рискообразующих факторов, трех наиболее значимых; использование данных факторов в качестве критериев оценки инновационных проектов и последующего парето-оптимального выбора лучшего из них. Данный подход может быть использован как один из «инструментов» качественного анализа инновационных проектов.

ЛИТЕРАТУРА

- 1. Volkov I.M., Gracheva M.V. Proektnyj analiz. M.: JUNITI, 1998. 423 s.
- Zakharov Á.O. Suzhenie mnozhestvá Pareto na osnove vzaimozavisimoj informacii zamknutogo tipa // Iskustvennyj intellekt i prinjatie reshenij, 2011 - № 1 - s 67-74
- 3. Kamenskaja N.JU. Voprosy klassifikacii riskov naukoemkikh proizvodstv pri osuhhestvlenii innovacionnoj dejatel`nosti // Visnik KHmel`nic`kogo nacional`nogo universitetu, 2011. № 2. t.3. s. 237-240.
- 4. Mel`nikov A.D. Finansovye innovacii i problemy upravlenija riskom // Upravlenie riskom. 1997. № 4. s. 34-41.
- 5. Nogin V.D. Prinjatie reshénij pri mnogikh kriterijakh. SPb.: Izd-vo «JUT AS», 2007. 104 s.
- 6. Nogin V.D. Prinjatie reshenij v mnogokriterial`noj srede: kolichestvennyj podkhod. M.: FIZMATLIT, 2004. 176 s.
- 7. Saati T. Prinjatie reshenij pri zavisimostjakh i obratnykh svjazjakh. M. : Izd-vo LKI, 2008. 360 s.
- 8. Selevich T.S. Metody ocenki intensivnosti konkurencii. Ekaterinburg : Izd-vo UGTU UNI, 2007. 336 s.

Рецензент: д.т.н., проф. Шерстюк В.Г. Херсонский национальный технический университет