ISSN 1817-2997

Процеси механічної обробки в машинобудуванні

УДК 621.762:621.921

М.Л. Хейфец, д.т.н., проф. ГНПО «Центр» НАН Беларуси, Минск А.Г. Колмаков, д.т.н. Институт металлургии и материаловедения им. А.А. Байкова РАН П.А. Витязь, академик, д.т.н., проф. В.Т. Сенють, к.т.н. Объединенный институт машиностроения НАН Беларуси С.А. Клименко, д.т.н., проф. Институт сверхтвердых материалов им. Бакуля НАН Украины

ИСПОЛЬЗОВАНИЕ ФИЗИКО-ХИМИЧЕСКОГО АНАЛИЗА ДЛЯ СОВЕРШЕНСТВОВАНИЯ ТЕХНОЛОГИИ ПОЛУЧЕНИЯ НАНОАЛМАЗНЫХ МАТЕРИАЛОВ

На основе физико-химического анализа фазовой диаграммы состояния углерода исследованы термодинамические условия и определены технологические параметры синтеза алмазных наноматериалов из порошков наноалмазов детонационного синтеза. Согласно рассмотренной топологической модели подтверждается, что синтез алмазных материалов осуществляется по прямому или каталитическому механизмам с возможностью перехода одного механизма на другой. Отмечено, что в случае кристаллов графита и алмаза малых размеров, для которых вклад поверхностной энергии в термодинамический потенииал значителен, условия фазового равновесия графит–алмаз сушественно отличаются om предсказанных принятой фазовой диаграммой состояния углерода. Экспериментально изучены условия и режимы синтеза алмазных поликристаллических материалов на основе частиц наноалмазов, модифицированных неалмазными формами углерода.

В результате термообработки модифицированных наноалмазов получен новый вид сверхтвердых материалов – поликристаллические частицы алмаза субмикронных и микронных размеров с наноструктурой.

Ключевые слова: физико-химический анализ; наноалмазные материалы; фазовая диаграмма; термодинамические условия; углерод.

Введение. Постановка проблемы. Исследовать формирующиеся в процессах синтеза и применения материалов структуры и фазы, определить их количество позволяет физико-химический анализ диаграмм – геометрических образов соотношений: состав – свойство системы [1]. Основой анализа физико-химических диаграмм являются сформулированные Н.С. Курнаковым два принципа – непрерывности и

^{152 &}lt;sup>©</sup> М.Л. Хейфец, А.Г. Колмаков, П.А. Витязь, В.Т. Сенють, С.А. Клименко, 2015

соответствия [2], – а также предложенный Я.Г. Горощенко третий принцип – совместимости [3].

Ввиду неравновесности быстропротекающих процессов синтеза и применения материалов. ИХ диаграммы состояния носят [4]. метастабильный характер Анализ диаграмм состояния усложняется тем, что процессы протекают в короткие промежутки времени, в весьма ограниченных объемах, при высоких градиентах давления и температур, в присутствии активных примесей, зачастую играющих роль катализаторов [5, 6]. Вследствие этого сложно определить на диаграммах состояния не только положения точек и линий, описывающих фазовые переходы, но и их количество, возрастающее в результате образования промежуточных фаз или переходных структур [1]. Поэтому необходимо дополнить основные принципы анализа физико-химических диаграмм для изучения неравновесных процессов формирования структур и фаз материала изделия на макро-, мезо-, микро- и наноструктурном уровнях [1, 7, 8].

Фазовые переходы в углероде в виду их многообразия при быстропротекающих неравновесных или метастабильных процессах синтеза алмаза изучены недостаточно. Для их реализации, как правило, необходимо использование сверхвысоких давлений, что усложняет и удорожает производство алмазных материалов.

Целью настоящей работы является разработка новых подходов и технологических решений при получении алмазных наноструктурных материалов на основе физико-химического анализа фазовой диаграммы состояния углерода.

Фазовая диаграмма состояния углерода. На примере фазовых диаграммах состояния углерода можно рассмотреть процессы синтеза сверхтвердых материалов [5, 9], опираясь на позиции термодинамики открытых неравновесных систем и принципы самоорганизации физико-химических систем [10, 11]. Фазовые диаграммы углерода, построенные Берманом, Банди и Диккинсоном [5], показывают фазовые границы между графитом, алмазом и их ликвидусами (рис. 1). При давлении свыше 60 ГПа имеется участок, свидетельствующий о существовании металлической фазы углерода-3.

a)

б)

Рис. 1. Фазовая диаграмма состояния углерода (а) и соответствующая физико-химической системе

топологическая модель (б): 1 – область каталитического синтеза алмаза из графита; 2 – область прямого перехода графита в алмаз;

3 – область прямого превращения алмаза в графит;

4 – область прямого превращения графита в лонсдейлит

Синтез алмазов из графита (рис. 1, *a*) при высоких статических давлениях (более 4,0 ГПа) и температурах (свыше 1400 К) осуществляется в присутствии катализаторов-растворителей углерода, в качестве которых используются металлы: Ni, Fe, Co, Ru, Rh, Pd, Os, Ir, Pt, Cr, Mn и Ta [5, 12]. Однако определение механизма образования

алмазов в присутствии переходных металлов и их сплавов при высоких статических давлениях длительное время оставалось одной из сложнейших проблем.

Экспериментально установлено, что для каждого типа растворителя можно выделить определенную область давлений и температур (*p*, *T*-условий) образования алмаза.

При рассмотрении ряда металлов-растворителей, построенных в порядке роста температуры плавления эвтектических растворов в них углерода (включая и карбидные эвтектики), очевидна зависимость параметров процесса синтеза от температуры плавления растворов углерода в металлах.

Исследование различных физико-химических систем Ме–С при высоких давлениях показало [12], что алмазы зарождаются и растут в условиях пересыщенного раствора углерода в металле, который в определенный период оказывается пересыщенным в отношении концентрации алмаза, но недосыщенным в отношении концентрации к графиту.

изучении механизма образования При алмаза необходимо рассмотреть процесс зародышеобразования. При синтезе алмаза зародыш кристалла должен иметь определенное строение, размеры и свойства поверхности. При появлении зародыша метастабильная фаза более устойчивую стабильную превращается в фазу. Экспериментальным путем установлено [12], что кристаллиты графита являются источниками центров кристаллизации алмаза. Кристаллиты представляют собой частицы графита с высокой степенью упорядоченности. При растворении металлом эти частицы достигают определенного размера и становятся центрами кристаллизации алмаза.

В дальнейшем рост кристаллов происходит путем транспортировки атомов углерода через расплав, а не посредством притока алмазных частиц. Это подтверждено работой П.Кэннона, в которой показано, что углерод, перешедший в синтетический алмаз, должен был предварительно диссоциироваться на атомы во время процесса диффузии [5, 12].

Следовательно, образование алмаза при статических давлениях в системе, растворяющей углерод, представляет собой рост кристаллов из пересыщенного раствора углерода в расплаве металла, а рост кристаллов осуществляется за счет диффузии атомов углерода через расплавленный металл. При этом источниками центров кристаллизации являются кристаллиты графита [13].

При давлении большем 12 ГПа и температуре выше 4000 К (рис. 1, *а*) происходит прямое превращение мартенситного типа графита в

алмаз. Такой переход происходит при трансформации решетки графита в алмазную без присутствия металла-растворителя углерода. Естественно предположить, что при давлениях и температурах, более низких, чем соответствующие условиям прямого перехода, в присутствии растворителя углерода возможен рост кристаллов за счет диффузии атомов углерода и микрогруппировок графита через расплавленный металл.

Топологическая модель неравновесной системы. На основании приведенных экспериментальных данных [5, 12, 13] по модели, предложенной в [14], с учетом введения дополнительных компонентов и формирования новых связей физико-химической системы при изменении числа степеней свободы, стабильности и равновесности системы, рассмотрим топологию диаграммы состояния углерода (рис. 1, δ). Топологическая модель строилась по фазовой диаграмме состояния (рис. 1, *a*) на основе анализа количества степеней свободы физико-химической системы [14] при метастабильных состояниях, с учетом устойчивости неравновесных процессов при эволюции системы к стационарному состоянию.

Анализ формирования связей на топологической модели (рис. 1, δ) показывает, что дополнение к сингулярной точке (темной) только петли, охватывающей метастабильные состояния (отмечено штриховой линией), предоставляет системе три степени свободы и перспективу перехода к хаотическому состоянию, без возможности стабилизации неравновесных процессов. Стабилизация в одной из точек (светлой) предельного состояния (обозначено штрихпунктирной линией) при введении дополнительного компонента также невозможна. Поэтому, только рассматривая новый узел (светлую точку) как формирование нового химического соединения с добавлением линий, отделяющих его из раствора (пунктирные), можно обеспечить устойчивость системы при ее эволюции к стационарному состоянию.

Таким образом, согласно рассмотренной топологической модели подтверждается, что синтез алмаза проходит двумя путями: прямым и каталитическим; при этом возможно сочетание каталитического и прямого пути (переход с одного на другой).

Следовательно, синтез алмаза из графита, в зависимости от условий формирования кристаллов алмаза, может осуществляться по различным механизмам:

 при экстремальных условиях (условия прямого перехода графита в алмаз без использования растворителей углерода) происходит трансформация графитовой решетки в алмазную (переход мартенситного типа); при синтезе монокристаллов алмаза (при малых пересыщениях) рост кристаллов происходит за счет диффузии атомов углерода через расплавленный металл;

 при синтезе поликристаллических алмазов (при больших пересыщениях) рост кристаллов может осуществляться одновременно за счет диффузии микрогруппировок графита и атомов углерода через расплавленный металл [12, 14].

Однако в случае кристаллов графита и алмаза малых размеров, для поверхностной энергии в термодинамический которых вклад потенциал значителен, условия фазового равновесия графит-алмаз существенно отличаются от предсказанных принятой фазовой диаграммой состояния углерода. Есть подтвержденные расчетами предположения [15], согласно которым при малых размерах наночастиц именно алмаз, а не графит является термодинамически стабильной формой углерода.

Граница области стабильности алмаза в этом случае должна описываться некоторой поверхностью в пространстве «давление– температура–размер кристаллитов» [16]. Примером может служить поверхность фазового равновесия графит–алмаз, построенная с учетом экспериментальных данных в интервале температур 0–3000 К.

При уменьшении размеров кристаллитов менее 10 нм поверхность фазового равновесия заметно отклоняется от плоскости в сторону малых давлений, а при размерах около 1 нм алмаз стабилен и при отсутствии внешнего давления до температур порядка 2000 К. Область размеров, в которой можно ожидать появления кристаллитов со структурой алмаза при «нулевом» давлении, находится в пределах 0,3– 1,5 нм.

Каталитические свойства наноалмазов. Алмаз обладает большой поверхностной энергией, составляющей для разных граней от до 10 Дж/м² [12, 13]. Оценка показывает, 3 что значение поверхностной энергии наноалмазов находится в пределах 1100-3900 кДж/кг. Ha практике используются не отдельные частицы наноалмазов, а агрегаты частиц, размер которых превышает 100 нм и может достигать 1 мкм. Соответственно снижается активная поверхность (для частиц 0,1–0,5 мкм, которые образуются при спекании наноалмазов в условиях высоких давлений, величина поверхности в несколько раз ниже, чем у исходных частиц).

Наноалмазы детонационного синтеза представляют собой одну из наиболее химически активных из известных форм углерода с высокоактивным состоянием поверхности с величиной до 400 м²/г и могут способствовать разрыву

π- связей на поверхности частиц графита в условиях высоких давлений. Каждый кристаллит наноалмазов имеет большое число неспаренных электронов – (3–7)·10¹⁹ спин/см³ и представляет мощный множественный радикал [5, 17].

На поверхности наноалмазов после их химической очистки от примесей и неалмазных форм углерода присутствуют 1-2 замкнутых графеновых слоя [17]. Отжиг наноалмазов в условиях вакуума ведет к увеличению количества графеновых слоев и формированию углеродных глобул с луковичной структурой, подобной структуре фуллеренов. Исследование методом Оже-спектроскопии химического состояния атомов углерода на поверхности наноалмазов показало, что в этом случае реализуется неизвестное ранее химическое состояние атомов углерода, локализованное в графеновом монослое. Подобное состояние реализуется и в графите – $\sigma_s^1 \sigma_p^2 \pi^1$, но в отличие от графита в случае наноалмазов отсутствует перекрытие π-состояний атомов углерода. Данное состояние обуславливает каталитическую активность наноалмазов, в частности, способствует протеканию перехода $sp^2 \rightarrow$ sp³ в частицах графита, находящихся в контакте с кристаллитами наноалмазов, по механизму, который реализуется при использовании фуллеренов [17]. В этом случае перестройка химических связей начинается с поверхности частиц графита.

Поэтому перспективный вариант получения поликристаллических наноструктурных алмазных порошков заключается в использовании наноалмазов с наноструктурным углеродным покрытием [17]. С одной стороны, частицы наноалмазов – готовые центры кристаллизации при синтезе алмаза с применением металлов-катализаторов. С другой в роли активатора, наноалмазы сами могут выступать трансформации графитовых способствующего частиц по мартенситному механизму, в результате чего снижаются температуры и, что более существенно, давление перехода алмаз-графит.

Термобарическая обработка наноалмазов с графитизированной поверхностью. Наиболее предпочтительной представляется схема синтеза, когда углеродный материал непосредственно наносится на поверхность частиц наноалмаза, что, в свою очередь, позволяет:

- увеличить площадь контакта нанодисперсных частиц алмаза и графита (графитоподобного углерода);

- создать условия для когерентного срастания на границе «алмазная частица–графитовая частица»;

 обеспечить непосредственный контакт алмазной поверхности и графита для увеличения вероятности зародышеобразования алмаза вследствие автоэпитаксии; - минимизировать количество примесей в получаемых алмазных частицах.

Ультрадисперсный алмазный агрегат и графит, находящиеся в нанодисперсном состоянии, представляют собой метастабильную систему, обладающей повышенной поверхностной энергией. В этом случае возможность перехода «графит–алмаз» ниже линии равновесия «массивных» графита и алмаза на фазовой диаграмме состояния углерода представляется весьма вероятной.

Из фазовой диаграммы состояния углерода, которая установлена для идеальных структур совершенных кристаллов, находятся условия возможного взаимного превращения графита и алмаза. Кроме термодинамических условий вероятности процесса, важна скорость такого превращения, которая может быть крайне малой [12-14]. Так, хотя при низких давлениях и температурах переход алмаза в графит сопровождается уменьшением свободной энергии. И термодинамически вполне возможен, скорость такого перехода мала и алмаз сохраняется в течение длительного времени. Прямой переход макроскопического графита в алмаз происходит при очень высоких давлениях до 15 ГПа. По мере уменьшения размеров кристаллов все больший вклад в общую свободную энергию системы будут вносить энергии граней, ребер и вершин. При достаточно малых размерах кристаллитов вклад поверхностной энергии в общую энергию становится весьма значительным.

Термодинамические расчеты показывают [17, 18], что особенно легко должны переходить в алмаз тонкие слои графита, осажденные на поверхность алмазных кристаллов, что связано с уменьшением свободной Поэтому, энергии системы. как показали экспериментальные исследования, использование частиц наноалмазов, покрытых тонкими слоями углерода (графита), способствует параметров перехода графитового слоя снижению В алмаз И соединению воедино зерен исходных наноалмазов с образованием более крупных частиц алмаза микронного диапазона.

Условия и режимы синтеза алмазных поликристаллических основе материалов на частиц наноалмазов, модифицированных изучались экспериментально. неалмазными формами углерода Наноалмазы, поверхность которых покрыта тонким слоем неалмазного углерода толщиной около 1 нм, спекали в условиях высоких давлений и температур. Покрытие формировали путем отжига очищенных наноалмазов в вакууме при 10⁻³ мм рт. ст. в температурном диапазоне 900-1100 °С. Полученный композиционный порошок «наноалмазнанографит» представляет собой метастабильную систему,

ISSN 1817-2997 Процеси механічної обробки в машинобудуванні

характеризующуюся избыточной поверхностной энергией. Термообработку под давлением такого порошка проводили в области стабильности как алмаза, так и графита.

Matrix size - 233 x 253

б)

Рис. 2. Структура поликристаллических наноалмазов, полученных из композиционного порошка «наноалмаз–нанографит»: а) давление 2 ГПа; б) давление 4 ГПа

При термобарической обработке композиционного порошка в тонком поверхностном слое неалмазного (графитоподобного) углерода происходит его превращение в алмаз (алмазоподобный углерод), при этом исходные агломераты частиц наноалмазов объединяются в более крупные агрегаты с сохранением первичной структуры. В этом случае возможно образование частиц алмаза субмикронных и микронных размеров. С помощью рентгеноструктурного анализа и просвечивающей электронной микроскопии было установлено, что синтезированные частицы обладают субструктурой, характерной для исходных нанопорошков. В материале, полученном при давлении 2 ГПа и температуре 1300-1500 °C, размер алмазных кристаллитов несколько увеличен по сравнению с размером исходных частиц наноалмаза и составляет 20-30 нм, размеры поликристаллических частиц составляют 1-1,5 мкм (рис. 2, а). В спеках, полученных при давлении 4 ГПа, поликристаллические частицы достигают размеров 2-3 мкм (рис. 2, б). С ростом температуры до 2300 °C при давлении 7 ГПа отмечается образование поликристаллических частиц до 10 мкм с размерами алмазных кристаллитов 100-150 нм.

На рисунке 3 в координатах «давление-температура» показана область получения наноструктурированных поликристаллических алмазных субмикро- и микропорошков из композиционного нанопорошка «наноалмаз-нанографит».

Рис. 3. Область получения наноструктурированных алмазных субмикро- и микропорошков из наноалмазов; 1 – линия равновесия «графит–алмаз»; 2 – область каталитического синтеза алмаза; 3 – область получения поликристаллических порошков

на основе наноалмазов

Заключение:

1. Согласно рассмотренной топологической модели подтверждается, что синтез алмаза проходит двумя путями: прямым и

каталитическим; при этом возможно сочетание каталитического и прямого пути (переход с одного на другой).

2. В случае кристаллов графита и алмаза малых размеров, для которых вклад поверхностной энергии в термодинамический потенциал значителен, условия фазового равновесия графит–алмаз существенно отличаются от предсказанных принятой фазовой диаграммой состояния углерода. Область размеров углеродных частиц, в которой ожидается появление кристаллитов со структурой алмаза при «нулевом» давлении, находится в пределах 0,3–1,5 нм.

3. При термобарической обработке композиционного порошка «наноалмаз-нанографит» в тонком поверхностном слое неалмазного (графитоподобного) углерода происходит его превращение в алмаз (алмазоподобный углерод), при этом исходные агломераты частиц наноалмазов объединяются в более крупные агрегаты с сохранением первичной структуры.

Исследования поддержаны грантом РФФИ 14-08-90011 и БРФФИ Т14Р-198.

Список использованной литературы:

- 1. Аносов В.Я. Основы физико-химического анализа / В.Я. Аносов, М.И. Озерова, Ю.Я. Фиалков. М., 1976. 504 с.
- 2. *Курнаков Н.С.* Введение в физико-химический анализ / *Н.С. Курнаков.* М.–Л. : АН СССР, 1940. 562 с.
- Горощенко Я.Г. Физико-химический анализ гомогенных и гетерогенных систем / Я.Г. Горощенко. – К. : Наукова думка, 1978. – 490 с.
- 4. *Хейфец М.Л.* Проектирование процессов комбинированной обработки / *М.Л. Хейфец.* М. : Машиностроение, 2005. 272 с.
- 5. Витязь П.А. Синтез и применение сверхтвердых материалов / П.А. Витязь, В.Д. Грицук, В.Т. Сенють. Минск : Белорусская наука, 2005. 359 с.
- 6. Structure, Properties, and Applications of Ceramic Composite Produced of Nanostructured Powders of Composition ZrO2 + 3 % Y2O3 / A.G. Kolmakov, V.I. Antipov, S.A. Klimenko at oll. // J. of Superhard Mater. 2013. Vol. 35. № 6. Pp. 399–407.
- 7. Systematic Description of Nanomaterial Structure / A.G. Kolmakov, K.A. Solntsev, P.A. Vityaz' at oll. // Inorganic

Materials: Applied Research. – 2013. – Vol. 4. – № 4. – Pp. 313–321.

- Systematic Description of Nanomaterial Structure / A.G. Kolmakov, K.A. Solntsev, P.A. Vityaz' at oll. // Inorganic Materials: Applied Research. – 2013. – Vol. 4. – № 4. – Pp. 322–327.
- Технологии конструкционных наноструктурных материалов и покрытий / П.А. Витязь, А.Ф. Ильющенко, М.Л. Хейфец, и др.; под общ. ред. П.А. Витязя и К.А. Солнцева.– Минск: Белорусская наука, 2011. – 283 с.
- Гленсдорф П. Термодинамическая теория структуры, устойчивости и флуктуации / П.Гленсдорф, И.Пригожин. – М.: Мир, 1973. – 280 с.
- Берже П. Порядок в хаосе : О детерминистическом подходе к турбулентности / П.Берже, И.Помо, К.Видаль. – М. : Мир, 1991. – 368 с.
- Синтез алмазов / Н.В. Новиков, Д.В. Федосеев, А.А. Шульженко, Г.П. Богатырева; под ред. Н.В. Новикова. – К. : Наукова думка, 1987. – 158 с.
- Синтетические сверхтвердые материалы : В 3-х т. Т. 1. Синтез сверхтвердых материалов / редкол. : Новиков Н.В. (отв. ред.) и др. – К. : Наукова думка, 1986. – 175 с.
- 14. Витязь П.А. Термодинамика процессов синтеза и технологии производства наноструктурных алмазных материалов / П.А. Витязь, М.Л. Хейфец, В.Т. Сенють // Перспективные материалы и технологии. Гл. 8; под ред. В.В. Клубовича. – Витебск: ВГТУ, 2013. – С. 152–171.
- 15. *Gamarnik M.Y.* Energetical preference of diamond nanoparticles / *M.Y. Gamarnik* // Phys. Rev. B. 1996. 54, № 3. Pp. 2150–2156.
- Чайковский Э.Ф. Фазовая диаграмма углерода и возможность получения алмаза при низких давлениях / Э.Ф. Чайковский, Г.Х. Розенберг // ДАН СССР. – 1984. – Т. 279, № 6. – С. 1372–1375.
- Наноалмазы детонационного синтеза: получение и применение / П.А. Витязь, В.И. Жорник, А.Ф. Ильющенко и др.; под общ. ред. П.А. Витязя. – Минск: Бел. навука, 2013. – 381 с.
- Кристаллизация алмаза / Д.В. Федосеев, Б.В. Дерягин, И.Г. Варшавская, А.С. Семенова-Тян-Шанская. – М. : Наука, 1984. – 136 с.

ХЕЙФЕЦ Михаил Львович – доктор технических наук, профессор, заместитель академика-секретаря Отделения физико-технических наук НАН Беларуси.

Научные интересы:

- материаловедение;

- оборудование и технология машиностроения;

 технологическое обеспечение качества и эксплуатационных свойств деталей машин.

КОЛМАКОВ Алексей Георгиевич – доктор технических наук, заместитель директора Федерального государственного бюджетного учреждения науки Института металлургии и материаловедения им. А.А. Байкова Российской академии наук.

Научные интересы:

- материаловедение;

 – многоуровневый системный физико-химический и мультифрактальный анализ материалов.

ВИТЯЗЬ Петр Александрович – академик, доктор технических наук, профессор, руководитель аппарата Президиума НАН Беларуси.

Научные интересы:

- материаловедение;

порошковая металлургия;

- технология машиностроения.

СЕНЮТЬ Владимир Тадеушевич – кандидат технических наук, ведущий научный сотрудник лаборатории наноструктурных и сверхтвердых материалов Объединенного института машиностроения НАН Беларуси.

Научные интересы:

- материаловедение сверхтвердых и наноструктурных материалов;

- технология машиностроения.

КЛИМЕНКО Сергей Анатольевич – доктор технических наук, профессор, заместитель директора Института сверхтвердых материалов им. Бакуля НАН Украины.

Научные интересы:

механическая обработка металлов;

- материаловедение инструментальных материалов;

- износ режущего инструмента;

- технология машиностроения;

– технологическое обеспечение качества и эксплуатационных свойств деталей машин.

Статья поступила в редакцию 03.08.2015