УДК 678.746.5:544.022.533

Получение пористых полиимидсодержащих систем методом термической деструкции лабильного компонента

О.В. Слисенко

Институт химии высокомолекулярных соединений НАН Украины 48, Харьковское шоссе, Киев, 02160, Украина

В работе детальное внимание уделено методу формирования пористой структуры в полиимидсодержащих (в частности в полиимид-полиуретановых) системах посредством термической деструкции лабильного компонента, что позволяет регулировать размер пор и их распределение в материале. Проведен сравнительный анализ структуры и свойств пористых материалов, полученных методом термической деструкции лабильного компонента, показано влияние особенностей структуры на термические, теплофизические, диэлектрические, механические и другие свойства полиимидсодержащих материалов.

Ключевые слова: полиимид, полиуретан, пористая структура, термодеструкция, термически лабильный компонент.

Введение.

Интенсивное развитие науки и техники обусловливает разработку новых пористых полимерных материалов, а также их широкое применение в качестве мембран, сорбентов, фильтров, подложек в мембранных технологиях, процессах разделения и очистки, в системах газо- и ионопереноса, в микроэлектронных технологиях и т. д. [1-4]. Поиск литературы в основных электронных базах данных Elsevier (www.sciencedirect.com), Wiley (http://www.onlinelibrary.wiley.com) и Springer (www.springerlink.com) показал, что к настоящему времени опубликовано более 400 тыс. работ, в которых исследователи получали и изучали структуру и свойства различных пористых материалов. Из них около 100 тыс. работ, в которых авторы разрабатывали и исследовали свойства пористых материалов на основе различных модифицированных полимеров, смесей полимеров, гибридных или взаимопроникающих полимерных сеток, нанонаполненных композитов и пр. При этом внимание исследователей сосредоточено на создании пористых полимерных материалов, обладающих одновременно заданной пористой структурой (с определенной геометрией и размерами пор) и требуемым комплексом физико-химических и механических свойств.

Разработано множество способов получения пористых полимерных материалов, которые подробно описаны и проанализированы в литературе: разложение предварительно введенного порофора [5, 6], образование порофора в процессе получения смеси с последующим его разложением [7], эмульсионная полимеризация в присутствии порогена [8], вспенивание [9], молекулярный импринтинг [10], метод межчастичной сшивки [11], золь-гель метод [12], инклюзия

микросфер стекла или углерода [13], воздействие микроволнового излучения [14], метод фазового разделения [15-17], метод термически индуцированного фазового разделения [18], метод пористых подложек [19], экстракция [20], разложение термически лабильных доменов в фазоразделенных блок- или привитых сополимерах [21-23] и радиационные технологии [24, 25]. Поиск литературы, проведенный в электронных базах данных по ключевым словам пористый, термодеструкция, термически лабильный компонент показал, что на сегодняшний день метод формирования пористых материалов посредством деструкции термически лабильного компонента применялся авторами более чем в 300 работах. Необходимо отметить, что количество изданных после 2000 г. работ составляет 76 % от общего числа опубликованных работ в этом направлении, что свидетельствует о перспективности использования данного способа формирования пористой структуры.

С практической точки зрения наибольший интерес представляют материалы с широким температурным диапазоном эксплуатации, например, фторопласты, полифенилены, поли-(*n*-ксилилены), полигетероарилены (например, полибензоксазолы), некоторые элементорганические полимеры, а также полиимид (ПИ). Как известно, ПИ обладают высокой термической и термоокислительной устойчивостью, температура начала процесса термодеструкции ПИ лежит в области 350–450 °С (на воздухе) или 500 °С (в вакууме/инертной среде) [26]. Изделия из ПИ могут длительно эксплуатироваться при температурах 200–260 °С без ухудшения эксплуатационных свойств, а также обладают высокой радиационной стойкостью [27], что, в сочетании с малой летучестью в вакууме, делает ПИ незаменимыми при использовании в узлах трения, работающих в вакууме. Ценной характеристикой ПИ является высокое сопротивление ползучести при повышенных температурах [28, 29], а возможность применения ПИ для изготовления прецизионных деталей обусловлена минимальной усадкой (< 1,0 %) при переработке методом прессования или спекания. Все перечисленные достоинства ПИ обусловили выбор его в качестве основного компонента для получения мембран.

В данном обзоре проведен анализ работ, касающихся формирования пористой структуры в ПИ-содержащих материалах методом термической деструкции лабильного компонента, в частности полиуретана.

2. Получение пористых полиимидных материалов за счет термической деструкции лабильного компонента сополимеров и бинарных смесей.

Обычно ПИ получают полициклоконденсацией диангидридов карбоновых кислот и диаминов в растворе или расплаве в одну или две стадии, заключающиеся в синтезе полиамидокислоты (ПАК), с последующей имидизацией (дегидратация и циклизация с образованием имидных циклов) при повышенной температуре в присутствии катализатора или без него. Раствор ПАК или, в большинстве случаев, сформированные из нее пленочные материалы и волокна, нагревают в вакууме или инертной атмосфере с постепенным повышением температуры до 300-350 °С. При этом степень полимеризации преполимера при 100-150 °С уменьшается вследствие протекания обменных взаимодействий между растущими олигомерными молекулами ПАК, а затем, при более высоких температурах, возрастает, что обусловлено протеканием реакции полициклоконденсации по концевым амино- и ангидридным группам. Высокотемпературные, с точки зрения традиционной полимерной химии, условия синтеза, а также стойкость ПИ к действию растворителей значительно затрудняют получение смесей на его основе с полимерами других типов, особенно имеющих существенно меньшую термостойкость. Таким образом, условия синтеза ПИ, а также способы получения ПИ-содержащих систем существенно влияют на конечные мембранные свойства, в частности, на газопроницаемость, которая напрямую связана с плотностью упаковки его макромолекул. Высокая плотность большинства ПИ является причиной низкой газопроницаемости, что, в свою очередь, сужает возможности их применения. Для преодоления данного недостатка предложен способ повышения проницаемости полимера по отношению к различным газовым средам, заключающийся во введении в ПИ полимерного компонента с существенно меньшей плотностью, например полиуретана, что будет способствовать формированию более рыхлой структуры ПИ без ухудшения основных

эксплуатационных характеристик. Еще один недостаток ПИ, ограничивающий их применение, обусловлен высокими значениями диэлектрической постоянной (ε (ПИ) \approx 3,1–3,5). Как известно, ПИ, особенно нанопористые, применяют в микроэлектронике при изготовлении микроэлектромеханических систем по технологии жертвенных слоев и взрывной литографии, как межслойную изоляцию, а также в качестве диэлектрических и корпусных материалов [30-32]. Однако, в связи с развитием микроэлектроники, требуются материалы с низкими (< 2,5) и ультранизкими (< 2,2) значениями ε [33]. Формирование пористой структуры в ПИ позволяет значительно снизить значение є [22] за счет заполнения пустот воздухом $(\varepsilon$ (воздух) \approx 1). Так, в литературе достаточно широко описаны способы получения пористых ПИ пленок с низкими значениями диэлектрических постоянных: это и микроволновая обработка [14], и облучение ионами [34], и введение вспенивающих агентов [35], а также полых микросфер [13].

Перспективными являются методы получения пористой структуры, основанные на формировании пустот в блоксополимерах, которые содержат термически нестабильные блоки (полипропиленгликоль (ПОПГ), полиметилметакрилат), посредством термической деструкции последних [36], или деструкции боковых термически лабильных цепей в привитых сополимерах ПИ [37, 38]. Использование привитых сополимеров в качестве прекурсоров для получения нанопористых ПИ материалов имеет ряд преимуществ. Так, в работе [37] нанопористые ПИ пленки с низкой є получали термической имидизацией в аргоне сополимера поли[N,N'-(1,4-фенилен)-3,3',4,4'-бензофенонтетракарбоновой амидокислоты] с метилметакрилатом (ПАК-*пр*-ПММА), полученного RAFTполимеризацией (Reversible Addition-Fragmentation chain Transfer polymerization – полимеризация путем обратимого присоединения-фрагментации) [39], с последующей деструкцией боковых цепей ПММА. Пористость полученных ПИ пленок составила 5-20 %, при этом размер нанопор варьировался от 5 до 15 нм. Показано, что для ПИ пленки с пористостью 20 % значение є равно 2,1. Анализ результатов показал, что ПИ-содержащие нанопористые пленки, прекурсором для которых являлись блоксополимеры, полученные традиционным методом радикальной полимеризации, имеют больший размер пор и неравномерное распределение пор по размерам, по сравнению с сополимерами, синтезированными RAFT-полимеризацией.

Аналогично, RAFT-полимеризацией был синтезирован сополимер фторированного ПИ (ФПИ), полученный ступенчатой поликонденсацией диангидрида 2,2-бис(3,4-дикарбоксифенил)-гексафторпропана (бФДА) и 4,4'-бис(4-аминофенокси)дифенилсульфона с полиэтиленгликолем (ПЭГ), имеющим концевые метоксильную и метакрилатную группы (ПЭГМА)

Рис. 1. Схема получения нанопористых пленок на основе ФПИ-*пр*-ПЭГМА [40]

[40]. На рис. 1 схематично представлен процесс функционализации ФПИ озоном с последующей прививкой макроцепей ПЭГМА, а также получение нанопористых пленок на основе ФПИ-пр-ПЭГМА. Нанопористые пленки с ультранизкими значениями є получали термической деструкцией лабильных боковых цепей ПЭГМА привитого полимера ФПИ-пр-ПЭГМА при температуре 250 °С на воздухе. Методом фазоконтрастной сканирующей электронной микроскопии (СЭМ) были определены основные морфологические характеристики и показано, что пористость варьируется в пределах 2-10 %, а размер пор ~ 20-50 нм (рис. 2). Применение данного способа [40] позволило значительно снизить є с 3,1 (ФПИ) до 2,0 (нанопористый ФПИ) за счет, во-первых, уменьшения структурной жесткости и плотности упаковки макроцепей ФПИ, что приводит к увеличению свободного объема в полимере и, во-вторых, увеличения пористости материала. В то же время было установлено [40] неаддитивное изменение значений є по отношению к изменению свободного объема и концентрации нанопустот в полимере. Показано, что изменения конформаций макроцепей, происходящие в результате сополимеризации, а затем и их деструкции, в дальнейшем оказывают влияние на є полимера. Изучение механических характеристик выявило тенденцию к снижению прочности ФПИ с 67 до 62 МПа для нанопористого ФПИ с пористостью ~ 9,3 % на основе сополимера ФПИ-пр-ПЭГМА, синтезированного RAFT-полимеризацией, и до 55 МПа для ФПИ с пористостью ~ 10,1 %, полученного на основе сополимера ФПИпр-ПЭГМА, синтезированного традиционной свободнорадикальной полимеризацией. Более высокие значения прочности для систем, полученных RAFT-полимеризацией при близких значениях пористости, авторы объясняют высокоорганизованной пористой структурой с равномерным распределением пор в объеме образца и меньшей долей взаимосвязанных пор (рис. 2).

Все описанные выше ПИ-содержащие материалы

Рис. 2. СЭМ микрофотографии поперечного среза образцов пленок ФПИ-*пр*-ПЭГМА, полученных RAFT-полимеризацией (плотность прививки 0,37): *а* – исходный; *б* – после деструкции привитых макроцепей; *в* – после деструкции привитых макроцепей ФПИ-*пр*-ПЭГМА (образец синтезирован радикальной полимеризацией (плотность прививки 0,44)) [40]

обладают хорошими диэлектрическими свойствами с необходимыми ультранизкими величинами ε и имеют высокопористую структуру. Однако при этом полидисперсность пор достаточно высока (от нано- до микрометра), что недопустимо при использовании таких мембран для разделения газов. Вторым существенным недостатком полученных пористых ПИ содержащих материалов является их высокая хрупкость.

Islam с соавторами [41] предложили использовать метод пиролиза (1,5 ч, 450 °C) сульфированных ПИ для получения эластичных органо-неорганических

мембран за счет термической деструкции SO_3H -групп. Полученные мембраны обладают хорошими газоразделительными свойствами, регулируемыми варьированием содержания SO_3H -групп в исходном ПИ. Показано, что деструкция SO_3H -групп приводит к образованию микропор в полимерной матрице и способствует лучшей диффузии газов с большим диаметром молекул, например C_3H_6 . Полученные пористые материалы обладают высокой селективностью при разделении смеси газов C_3H_6/C_3H_8 .

Мембраны с хорошими газоразделительными свойствами были получены [42] термической обработкой (300-450 °C) ПИ, синтезированного из диангидрида 6ФДА, 3,5-диаминобензойной кислоты (ДАБК) и 2,3,5,6-тетраметил-1,4-фенилендиамина с привитым к ДАБК циклодекстрином (ЦД) по боковым карбоксильным группам (ПИ-пр-ЦД). Было установлено, что термообработка способствует не только разложению ЦД и образованию пор, но и сшивке макроцепей ПИ, что приводит к образованию жесткого каркаса, предотвращающего разрушение пор. Комбинированным методом термогравиметрии (ТГА) - инфракрасной спектроскопии (ИКС) было установлено, что термическая деструкция синтезированного сополимера ПИ-пр-ЦД происходит в три стадии. В температурном интервале 200-400 °С потеря массы составила 10 %, главным образом, за счет высвобождения продуктов разложения ЦД – RCHO, R₂CO, R–COOH и др. На второй стадии (потеря массы 5 %) в диапазоне температур 400-450 °С происходит выделение СО, (появление на спектре полосы 2350 см-1) в основном за счет процесса декарбоксилирования ДАБК, входящей в состав сополиимида, и выделение СГ, (полоса 1149 см-1, интенсивность которой зависит от температуры). В области 500-700 °С на спектре поглощения появляются полосы, характерные для низкомолекулярных продуктов деструкции (H₂O 3700-3900 см⁻¹; CO₂ 2350 см⁻¹; СО 2170 и 2110 см⁻¹; азот- и фторсодержащие вещества (С-N 1360 см⁻¹; СF, 1149 см⁻¹; С-О 1050 см⁻¹)), что связано с разрушением макромолекул ПИ. Мембрана ПИ-пр-ЦД, полученная термообработкой при температуре 425 °C, показала хорошую селективность для разделения смесей газов (О,/N,, CO_{2}/CH_{4} и $C_{3}H_{6}/C_{3}H_{8}$), что авторы объясняют формированием горловино-подобных микропор. Сравнительный анализ проницаемости и селективности полученных мембран показал возможность их конкурирования с уже известными материалами PIMs (Polymers of Intrinsic Microporosity - «полимеры с внутренней пористостью») [43-46].

Новый подход в разработке нанопористых ПИматериалов с низкими значениями диэлектрической постоянной и хорошей прозрачностью был предложен в работе [47], где формирование нанопор проводили в тонких пленках циклоалифатических ПИ, синтезированных из соответствующих диангидридов и диаминов. Синтез циклоалифатических ПИ с высокой молекулярной массой осуществляли при использовании силилированных алициклических диаминов. Триблоксополиимиды [47], полученные на основе двух различных N-силилированных алициклических диаминов 4,4'-метилен-бис(2-метил-N-триметилсилилциклогексиламина) (далее 1а) или 5-триметилсилиламино-N-триметилсилил-1,3,3-триметилциклогексанметиламина (далее 1б) и диангидрида (rel-(1'R,3S,5'S)-спиро[фуран-3(2H),6'-[3]оксабицикло [3.2.1]октан]-2,2',4',5(4Н)-тетрон), и ПОПГ (ММ ≈ 4000) с концевой аминогруппой подвергали термической обработке при температуре 230 °С в течение 6 ч для разрушения лабильного фрагмента (ПОПГ). Методом ТГА, проведенным в изотермических условиях, было установлено, что полная деструкция ПОПГ происходит при выдерживании образца при температуре 230 °С в течение 200 мин. Методом СЭМ (рис. 3) было обнаружено наличие пористой структуры для образцов с исходным содержанием ПОПГ менее 30 % мас. Установлено влияние размеров доменов фазоразделенных блоков ПОПГ в матрице ПИ, а, следовательно, и содержания ПОПГ на размер пор, варьирующийся в пределах ~ 50-100 нм.

Зависимость размера пор, сформированных в смесях ПИ/поливинилпирролидон (ПВП), при соотношении компонентов 95/5 % мас., от молекулярной массы

Рис. 3. СЭМ микрофотографии тонких пленок ПИ после термообработки (воздух, T = 230 °С, $\tau = 6$ ч.) с содержанием ПОПГ (мас.%) в исходных пленках и синтезированных на основе (1*a*): *a* – 0; *б* – 16; *в* – 27; *г* – увеличенная часть рисунка (*в*); и синтезированных на основе (1*б*): *д* – 18; *e* – 26 [47]

 $(MM \approx (1,0-5,5) \cdot 10^4)$ термически лабильного компонента рассмотрена авторами в работе [48]. Имидизацию ПАК проводили в присутствии ПВП при температуре 250 °C в течение 30 мин, а контроль осуществляли по появлению характеристических полос С=О имидных групп 1779 и 1721 см⁻¹, С-N-групп 1373 см⁻¹, и исчезновению полосы поглощения NHгрупп (1569 см⁻¹). Углеродные мембраны толщиной 30 мкм и диаметром пор ≈ 1,7 нм получали пиролизом ПИ/ПВП смесей, помещенных в кварцевые трубки в атмосфере Ar при температурах 550 и 700 °C. В работе отсутствует детальный анализ ТГ кривых, но отмечено, что деструкция ПВП происходит при температуре 450 °C, а разложение ПИ – при 550 °C. Изучение адсорбции различных газов [48, 49]: Не (размер молекулы 2,6 Å), H, (2,89 Å), CO, (3,3 Å), O, (3,46 Å), N₂ (3,64 Å) и селективности мембран при разделении газовых смесей H₂/N₂, He/N₂, CO₂/N₂ и O₂/N₂ позволило подтвердить предположение об особой роли ПВП в формировании микропор при пиролизе смесей ПИ/ПВП и, соответственно, в улучшении диффузии молекул газа через полученные мембраны. При этом с ростом молекулярной массы увеличивается пористость получаемых мембран с одновременным ухудшением их селективности по сравнению с мембранами на основе исходного ПИ. Так, например, с ростом молекулярной массы ПВП повышается проницаемость О, через ПИ/ПВП мембраны до 6075,405·10⁻¹⁸ м²·с⁻¹·Па⁻¹, по сравнению с ПИ мембранами (3750,25·10⁻¹⁸ м²·с⁻¹·Па⁻¹), при этом селективность при разделении смеси газов О₂/N₂ уменьшается с 11 до 7. Необходимо отметить возможность конкурирования таких смесевых ПИ/ПВП мембран с уже известными углеродными мембранами, полученными из ПИ-содержащих прекурсоров (таких как Карton® [50, 51] и ПИ на основе 6ФДА [52]), при разделении газов с небольшим диаметром молекулы.

Смеси ПИ с другими полимерами часто используют для получения углеродных мембран путем пиролиза полимеров, нанесенных на подложку в контролируемых условиях (температура, газовая среда, скорость нагрева, продолжительность обработки). Такие мембраны характеризуются механической жесткостью, хорошей устойчивостью к агрессивным средам [53, 54], лучшей проницаемостью и селективностью при разделении смесей газов (He/N,, H,/CH,, O_2/N_2 , CO_2/N_2 , CO_2/CH_4) по сравнению с другими существующими полимерными мембранами [55]. В качестве полимерных прекурсоров для получения углеродных мембран наиболее часто используют ПИ [56-58], полиакрилонитрил [59], полифурфуриловый спирт [60], фенол-альдегидные смолы [61]. Углеродные мембраны являются перспективными материалами для развития современных технологий в области химической микросенсорики, что обусловлено их направленными молекулярно-ситовыми свойствами и высокой стабильностью. Пиролиз смесей полимеров приводит к образованию двух различных пористых структур с широким распределением пор по размерам, поскольку термически лабильный компонент формирует большие по размерам поры, а термически стабильный полимер – микропоры. Соотношение пор по размерам существенно зависит от соотношения и термодинамической совместимости компонентов в смеси. Так, микропористые (< 2 нм) или ультрамикропористые (<0,7 нм) углеродные мембраны получают пиролизом плотных по структуре полимеров, в данном случае результирующий размер пор в основном зависит от условий пиролиза, а селективность ограничивается газами с размером молекул не превышающим 4,0-4,5 Å (He, H₂, CO₂, O₂, N₂, CH₄). В то же время для получения мезопористых (2 – 50 нм) углеродных мембран применяют как пиролиз смеси полимеров, так и фазоинверсионный метод [62, 63]. Контролируемый процесс формирования пор в результате пиролиза смесей поливинилбутираля и фенол-альдегидных смол с получением активированных углеродных волокон, содержащих мезопоры размером 3-5 нм, подробно описал Ozaki с сотрудниками [63]. В данном случае концепция карбонизации полимерной смеси основана на разнице степеней деструкций компонентов смесей, так, один из них в результате пиролиза образует углеродную матрицу, а второй – разлагается на газообразные продукты.

Метод получения пористой структуры, основанный на формировании пор в ПИ-содержащих материалах за счет термической деструкции боковых термически лабильных цепей в привитых сополимерах ПИ имеет широкое распространение, что основано на возможностях метода получать пористые материалы с равномерным распределением пор в ПИ матрице, варьировать размер пор (от нано- до микрометра), а также в простоте технологического процесса. В качестве термически нестабильных привитых фрагментов зачастую используют ПЭГ, ПММА, ЦД и ПОПГ. Применение процесса RAFT-полимеризации, как было показано выше, для синтеза таких привитых сополимеров способствует более равномерному распределению пор в объеме образца и уменьшению доли взаимосвязанных пор.

3. Пористые полиимид-полиуретановые материалы.

Полиуретаны обладают низкой термической стабильностью и теплостойкостью, что открывает новые возможности их применения в качестве термически лабильного компонента при получении пористых материалов [64]. Введение структурных единиц ПИ в ПУ проводят различными способами, а именно взаимодействием: ПУ-преполимера с концевыми –NCO группами с диангидридом [65, 66]; ПУ-преполимера с концевой неизоцианатной функциональностью с диангидридом [67]; ПУ-преполимера с концевыми –NCO группами с диолами или дикислотами, содержащими

Рис. 4. СЭМ микрофотографии поверхности и поперечного среза пористых ПИ пленок (T = 400 °C, $\tau = 1$ ч.) с содержанием 10 % ПУ: a – поверхность, δ – поперечный срез и 50 % ПУ: e – поверхность и c – поперечный срез [72]

имидные группы [68]; ПУ-преполимера с ПАК [69]. Все перечисленные методы приводят к получению полиуретанимидов за счет химического взаимодействия компонентов и только относительно небольшое количество публикаций [79–81] описывают введение ПИ в термопластичный ПУ путем смешения полимеров. Данный факт объясняется трудностью получения ПИ/ПУ смесей из-за высокой температуры имидизации ПАК и различной природы используемых полимеров.

3.1. Сополимеры полиуретанимид как прекурсоры для получения пористых материалов.

Наиболее подробно проблему получения и изучения свойств пористых материалов на основе различных сополимеров полиуретанимидов (ПУИ) описал в своих работах Takeichi с соавторами [29, 58, 70-76]. Так, в работе [72] пористые материалы получали пиролизом пленок ПУИ, синтезированных из ПУ преполимера с концевыми феноксигруппами и ПАК на основе пиромеллитового диангидрида (ПМДА) и 4,4'-диаминодифенилового эфира. Получение пористой ПИ содержащей пленки осуществляли нагреванием образца ПУИ до *T* ≈ 300–400 °С. Методом ТГА было установлено, что в области $T \approx 280-390$ °C происходит разложение термически лабильного уретанового компонента, тогда как при T > 500 °C протекает разложение и карбонизация имидного компонента. Методом СЭМ показано (рис. 4), что полученные пористые пленки характеризуются наличием унимодальной пористости с макропорами овальной формы, причем с увеличением содержания ПУ компонента растет средний размер макропор (с 0,6 до 10,0 мкм) и их полидисперсность (рис. 5), что свидетельствует о возможности контроля размера макропор варьированием

Рис. 5. Диаграммы распределения пор по размерам в пористых ПИ пленках с различным содержанием ПУ [72]

содержания ПУ компонента.

В работе [70] для получения ПУИ использовали ПУ преполимер на основе полиэтиленгликольадипината (ПЭГА), 2,4-толуилендиизоцианата (2,4-ТДИ) и фенола. Показано, что исходные ПУИ пленки обладают явной опалесценцией после удаления растворителя, тогда как при замене ПЭГА на ПЭГ [71] образцы ПУИ оптически прозрачны во всем диапазоне концентраций без заметных следов опалесценции даже при нагреве до температуры 200 °С. Факт опалесценции авторы объясняют разным размером доменов ПУ при использовании полиэфиров различной природы, поскольку энергия когезии ПЭГ существенно меньше, чем у сегментов ПЭГА. Были изучены механические свойства пленок ПУИ до и после пиролиза, а результаты исследований обобщены в табл. 1. Пиролиз синтезированных ПУИ пленок на стеклянной подложке проводили термической обработкой при T = 300 и 400 °C в течение 1 ч. при каждой температуре. Исследование ПУИ образцов после пиролиза методом СЭМ свидетельствует о наличии в образцах пор размером ≈ 50 нм [71]. Проведение механических испытаний пористых ПУИ систем (см. табл. 1) было затруднено из-за их высокой хрупкости. Для данных образцов установлено существенное снижение значений є при увеличении содержания ПУ, а значения G и σ выше, чем для индивидуального ПИ. На основании анализа вязкоупругих характеристик ПУИ сделан вывод о фазовом разделении компонентов во всем концентрационном диапазоне. Анализ вязкоупругих свойств образцов ПУИ, подвергнутых пиролизу, свидетельствует о разложении ПУ (отсутствует T_{cm} ПУ в низкотемпературной области ~ -30 °C). Методом ТГА обнаружен двухстадийный характер деструкции исходных ПУИ: 1-ая стадия (300-400 °C) разложение термически лабильных сегментов ПУ и

ПУИ												
	до пир	олиза		после пиролиза								
ПИ/ПУ	G,	σ,	Е,	ПИ/ПУ*	<i>G</i> ,	σ,	Е,					
% мас.	ГПа ¹	MΠa ²	%3	% мас.	ГПа	МΠа	%					
100/0	2,5	137	61	100/0	2,5	136	43					
80/20	2,2	75	49	80/20	4,5	199	15					
50/50	0,9	22	44	50/50	3,0	107	8,8					
20/80	0,03	8	490	20/80	1,3	5	0,4					
10/90	0,01	9	985	10/90	-	-	-					
0/100	0,001	4,2	>1000									

Таблица 1. Механические характеристики ПУИ пленок до и после пиролиза [71]

* – соотношение компонентов в ПУИ до пиролиза ${}^{1}G$ – модуль упругости; ${}^{2}\sigma$ – предел прочности при разрыве; ${}^{3}\varepsilon$ – удлинение при разрыве.

2-ая стадия (>500 °C) – термическая деструкция ПИ [71]. В продолжение своих работ *Takeichi* с сотрудниками [72, 76] провели высокотемпературный пиролиз пористых ПИ пленок при $T \approx 900$ °C, предварительно полученных из соответствующих ПУИ систем со средним размером пор 0,6–51,0 мкм, результатом чего было образование карбонизированных пленок, сохранивших пористую структуру исходных образцов (рис. 6). Изучение изотерм адсорбции N₂ макропористыми карбонизированными пленками позволило обнаружить наличие микропор, появившихся в процессе пиролиза макропористой ПИ пленки.

Кгіshnan с сотрудниками [77] представили технологически простой способ получения нанопористых ПИ систем пиролизом пленок ПУИ. Последние синтезировали имидизацией ПАК в присутствии ПУ преполимера на основе 1,6-гексаметилендиизоцианата и ПЭГ. Для получения ПИ компонента были использованы ПАК различной химической структуры, в которых варьировались диангидридная и диаминная составляющие: диангидрид 3,3',4,4' -дифенилтетракарбоновой кислоты (ДФТДА) с 1,4-фенилендиамином (1,4-ФДА) (ПАК А), ДФТДА с 2,5-диметил-1,4- фенилендиамином (2,5-Д-1,4-ФДА) (ПАК В) и диангидрид бФДА с 1,4-ФДА (ПАК С). Растворы ПАК и ПУ-преполимера в N-метилпирролидоне (НМП) смешивали

Рис. 6. СЭМ микрофотографии пористых карбонизированных пленок: $10\% \Pi Y(a)$ поверхность и срез (δ); 70 % ПУ: поверхность (θ) и срез (z) [72]

и отливали на стеклянную подложку, после чего образцы вакуумировали и термостатировали при температуре 50 °С (в течение 16 ч.), 100 и 200 °С (по 1 ч.). Далее, выдержанные в воде пленки ПУИ подвергали термической обработке при температуре 300 и 400 °C в течение 1 ч при каждой. Наличие наноразмерных пор было подтверждено методом СЭМ. Данный способ позволяет регулировать размер пор в широких пределах путем изменения соотношения уретанового и имидного компонентов в композиции. Были изучены теплофизические, диэлектрические и физико-химические (плотность, растворимость) свойства полученых пористых материалов, результаты приведены в табл. 2. Уменьшение плотности свидетельствует об увеличении свободного объема за счет введения гибких полиольных составляющих в состав ПУ. К сожалению, авторы не приводят подробного анализа теплофизических данных. Так, говоря о наличии в системе фазового разделения, в статье приведены значения только одной T_{ст}, которая, по-видимому, относится к T_{ст} ПУ составляющей. Высокие значения коэффициента термического раширения (КТР) у ПУИ (ПАК В) и ПУИ

	Состав									
Свойства	% ПУ в ПУИ (ПАК А)			% ПУ в ПУИ (ПАК В)			% ПУ в ПУИ (ПАК С)			
	5	10	20	5	10	20	5	10	20	
Плотность (г/см ³)	1,429	1,417	1,368	1,295	1,282	1,260	1,478	1,465	1,439	
Е _п (мДж/м ²)	12,0	14,1	14,8	9,21	9,55	14,36	7,82	9,19	15,24	
$T_{cm}(^{\circ}\mathrm{C})$	20,1	20,7	20,8	9,1	9,5	9,2	22,6	22,0	21,7	
КТР	17,0	22,2	27,5	48,2	51,6	61,1	64,8	70,3	73,5	
<i>в</i> * (1 Гц)	3,41	3,29	2,82	2,91	-	-	2,85	-	-	

Таблица 2. Основные характеристики пористых материалов [77]

*после пиролиза; **хрупкий образец.

E_n – поверхностное натяжение; ε – диэлектрическая постоянная; КТР – коэффициент термического раширения между 100 и 150 °C определяли с помощью ТМА 2940; T_{cm} (данные ДСК) – температуры стеклования определяли по 2-му циклу нагрева

(ПАК С) объяснены жесткой структурой объемных фрагментов макроцепи (замещенного диамина ПАК В или фторированного диангидрида ПАК С). Анализ физико-механических и теплофизических свойств проводился только для исходных ПУИ образцов. Как известно, пиролиз ПУИ приводит к усадке материала, особенно значительной при большом содержании ПУ. Эффективно уменьшить усадку материала позволило добавление углеродной сажи [78], при этом было отмечено значительное увеличение внутренней поверхности и объема микропор.

Таким образом, получение пористых ПИ пленок из сополимера полиуретанимида как правило проводят термической деструкцией ПУ составляющей при температуре 300-400 °С. Установлено, что размер пор зависит от соотношения компонентов в сополимере, причем повышение содержания ПУ компонента приводит к получению хрупких образцов с большим объемом пор. Пористые ПИ пленки характеризуются высокими значениями T_{cm} , термостабильностью и сохраняют хорошие механические свойства при высоких температурах. Использование сополимеров ПУИ в качестве основы для получения пористых ПИ пленок, по сравнению с применением блок- или привитых сополимеров, позволяет существенно упростить процесс синтеза (смешение и нагревание компонентов), использовать в качестве прекурсора высокомолекулярный ПИ и контролировать размер пор путем подбора структуры прекурсоров.

3.2. Структура и свойства нано- и микропористых материалов, полученных из смесей полиимида и полиуретана.

Как отмечалось ранее, до настоящего времени опубликовано только несколько работ, в которых представлены результаты по получению и исследованию смесей ПИ и ПУ [79–81], а также мало работ, посвященных изучению структуры и свойств пористых материалов, полученных из ПИ/ПУ смесей [82, 83]. Получение ПИ/ПУ смесей, как правило, проводят в растворе (в качестве растворителя чаще всего используют НМП, N,N-диметилацетамид, ДМФА, тетрогидрофуран) смешением ПАК и ПУ с последующей имидизацией ПАК [79], либо смешением предварительно полученного ПИ и ПУ [80]. Получение смесей типа полиэфируретан/полиэфиримид (ПЭУ/ПЭИ) [79, 81] проводили в два этапа. На первом синтезировали полиэфирамидокислоту (ПЭАК) из ди-п-аминобензоата полибутиленгликоля (ПБГ) (ММ ≈ 650, 1000, 2000) и ПМДА. На втором этапе проводили смешение ПЭАК с ПЭУ при соотношении компонентов 25:75, 50:50 и 75:25 с последующей имидизацией ПЭАК при температуре 140 °С в течение 6 ч. Необходимо отметить, что авторами были получены прозрачные пленки при использовании ПЭИ, в структуру которых входит ПБГ с ММ 650 и 1000, благодаря хорошему смешению гибких сегментов ПЭИ и ПЭУ. На ДСК кривых смесей ПЭУ/ПЭИ650 и ПЭУ/ПЭИ1000 (рис. 7а) присутствует Т_{ст} гибких сегментов в области от -75 до -40 °С и пик плавления кристаллитов жестких сегментов ПЭИ в интервале 160-250 °C, зависящие от соотношения компонентов. При этом наблюдается корреляция с ДМА данными относительно уменьшения T_{cm} гибких сегментов пропорционально содержанию ПЭИ в смеси. Однако данная корреляция не линейна для ПЭУ/ПЭИ2000 (рис. 7б), возможным объяснением чего является формирование кристаллитов гибких сегментов в ПЭИ2000, что проявляется в виде эндотермического пика плавления около 0 °С и свидетельствует о появлении микрофазового разделения с полиэфирными сегментами ПЭУ1000. На широкоугловых дифрактограммах смеси ПЭУ/ПЭИ1000 при соотношении компонентов 1:1 присутствуют 3 пика кристалличности, указывающих на активизацию процессов кристаллизации ПЭУ в условиях имидизации ПЭАК. Авторы предположили, что это возможно и при формировании кристаллитов смешанного типа в результате

Рис. 7. ДСК кривые смесей ПЭУ/ПЭИ1000 (а) и ПЭУ/ПЭИ2000 (б) [81]

взаимодействия жестких сегментов ПЭУ1000 и ПЭИ1000. Улучшенная термическая стабильность и высокие механические характеристики (удлинение при разрыве составило 460–670 %, а прочность и модуль Юнга – 32–53 и 8,1–15,1 МПа соответственно) позволили использовать полученные полимерные материалы как термостойкие термопластичные эластомеры.

Benson с соавторами [80] методами малоугловой рентгенографии, ДМА и ИК-спектроскопии изучали смеси на основе сегментированной полиэфируретанмочевины (Ultem-1000TM) и ПИ. Было установлено, что смешение ПИ и сегментированного ПУ приводит к уменьшению размеров жестких доменов ПУ, сопровождается возрастанием междоменного расстояния и улучшает фазовое смешение компонентов. Методом ИК-спектроскопии показано, что ПИ цепи, распределенные в ПУ, стабилизируются за счет образования межкомпонентной сетки водородных связей. Прочностные характеристики ПИ/ПУ смесей имеют достаточно высокие значения особенно при низком (1-5 % мас.) содержании ПИ, что объясняется как хорошим диспергированием жестких сегментов, так и образованием водородных связей. Сравнение с аналогичными характеристиками, зафиксированными для сополимеров ПУИ [77], показало конкурентоспособность смесевых ПИ/ПУ пленок.

В работе [82] описан метод получения пористых пленочных ПИ/ПУ материалов с низким значением *є*. Имидизацию ПАК (на основе ПМДА и 4,4'-диаминодифенилового эфира (ДДЭ)) и термолиз ПИ/ПУ проводили последовательно, при ступенчатом подъеме температуры до 360 °C. Варьирование содержания ПУ позволяет получать поры с размерами 40–300 нм и 400 нм – 1,5 мкм. Методом ИКС показано отсутствие в спектрах пористого ПИ полос поглощения ПУ, что говорит о его полной деструкции. Образование микропористой структуры подтверждали методом трансмиссионной электронной микроскопии, причем при повышении массовой доли ПУ компонента в ПИ/ ПУ смесях отмечалось увеличение размеров и количества пор. При содержании ПУ 25 % мас. в ПУ/ПИ количество и плотность распределения пор становится меньше, что авторы объясняют разрушением пор, вызванным их избыточным размером и изменениями плотности упаковки полимерных цепей. Установлено, что в образце присутствовали как открытые, так и закрытые поры, имеющие вытянутую форму и равномерно распределенные в ПИ матрице. Уменьшение є пористого ПИ до 2,0 для состава ПИ/ПУ при соотношении 80/20, по сравнению с исходным ПИ (ε = 3,2), объясняется захватыванием воздуха порами образца. Таким образом, авторы считают возможным уменьшить є за счет варьирования пористости, однако необходимо отметить, что данный способ влечет за собой ухудшение механических характеристик (рис. 8) и повышает водопоглощение (рис. 9) материала.

Интересный подход к получению ПИ/ПУ пористых материалов описан в работе [83]. Таблетки ПУ размером 20-25 и 5-8 мм пропитывали раствором ПАК, синтезированной на основе ПМДА и ДДЭ, и, после испарения растворителя (60 °С/10 ч.), проводили сначала имидизацию ПАК (200 °С/20 ч.), а затем карбонизацию образцов (1000 °C/1 ч, Ar). Изучение кривых термодеструкции индивидуальных полимеров методом ТГА показало, что разложение индивидуального ПУ протекает в одну стадию в интервале температур 300-400 °С, а деструкция ПИ, как было отмечено авторами, происходит в температурном диапазоне 550-650 °C с преимущественным высвобождением СО и СО₂ [84]. При изучении деструкции ПИ/ПУ композиций зафиксированы две стадии разложения при температурах 300-400 и 550-650 °С. В качестве отличительной особенности данной работы необходимо отметить ее четкую практическую направленность. Так, Inagaki с соавторами [84, 86, 87] рассмотрели несколько возможностей применения углеродных пен,

Рис. 8. Кривые предела прочности при разрыве (*a*) и модуля упругости (б) пористых ПИ пленок в зависимости от содержания ПУ [82]

Рис. 9. Водопоглощение пористых ПИ пленок в зависимости от содержания ПУ [82]

полученных сходным описаному выше методом. Графитизированные (3000 °C/20 мин., Ar) углеродные пены обладают высокой термической проводимостью [85] и могут работать как хорошие обратимые сорбенты водяного пара [86] и субстраты для фотоактивного анатаза [87].

Таким образом, проведенный анализ работ, касающихся формирования пористой структуры в полиимидсодержащих материалах термической деструкцией лабильного компонента (боковых цепей в привитых

Литература

1. *Брик М.Т.* Енциклопедія мембран : у 2 т. - Київ: Києво-Могилянська академія, 2006. – Т. 1. – 2006. – 658 с; Т. 2. – 2006. – 684 с.

2. *Odani H*. Design of polymer membranes for gas separation in "Polymers for gas separation" / Ed. by Toshima N. – N.Y.:Wiley-VCH, 1992. – 245 p.

3. *Dunleavy M.J.* Polymeric membranes. A review of applications in "Polymers in Medical Applications" / *Ed. by Lambert B.J., Tang F.-W., Rogers W.J.* – Rapra Techn. Ltd, 1996. – 147 p.

4. Russel T.P. Block copolymers as precursors to porous materials in "Encyclopedia of Materials: Science and technology" / Ed. By Buschow J.K.H., Cahn R.W., Flemings M.C., Ilschner B., Kramer E.J., Mahajan S. – Oxford: Elsevier science Ltd., 2001. – 12066 p.

5. Pat.4543368, USA. Foamable polyetherimide resin formulation / Smearing R.W., Floryan D.E. – Опубл. 24.09.1985.

6. *Hoki T., Matsuki Y., Kim D.W., Kang Y., Jin M.Y., Seok S., Won J.C., Lee C., Yi J., Kim J., Kang J., Shin J.S.* // J. of Appl. Polym. Sci. – 2004. – **93**, N4.- P. 1711–1718. 7. Pat. 4177333, 1979. Catalysts for polyimide foams from aromatic isocyanates and aromatic dianhydrides. / Riccitiello S.R., Swako P.M., Estrella C.A. – Опубл. 04.12.1979.

8. *Normatov J., Silverstein M.S.* // Polymer. – 2007. - 48. – P. 6648–6655.

9. *Lips P.A.M., Velthoen I.W., Dijkstra P.J., Wessling M., Feijena J. //* Polymer. – 2005. - 46.– P. 9396–9403.

10. Гендриксон О.Д., Жердев А.В., Дзантиев Б.Б. // Успехи биологической химии. – 2006. - 46. – С.149– 192.

11. Mahr U., Purnama H., Kempin E, Schomacker R., Reichert K.-H. // J. Membr. Sci. – 2000. - 171. – P. 285– 291.

12. Park S.-H., Park J.-S., Yim S.-D, Lee Y.M., Kim C.S. // J. Power Sources. – 2008. - **181**, N2. – P. 259–266.

13. Narkis M., Puterman M., Boneh H., Kenig, S. // Polymer Eng&Sci. – 1982. - 22. – P. 417–421.

14. *Gagliani J., Supkis D.E.* // Acta Astronautica. – 1980. - 7, N4-5. - P. 653-683.

15. Echigo Y., Iwaya Y., Saito M., Tomioka I. // Macromolecules. – 1995. - **28**, N19. – P. 6684–6686. сополимерах, блоков в блоксополимерах и сокомпонентов полимерных смесей) показал широкие возможности использования данного метода для получения пористых ПИ с различным размером пор (от нано- до микрометра) и их равномерным распределением в объеме полимера. Показано, что распределение и размер пор в материале зависит от способа получения, степени совместимости и соотношения компонентов в полимерной системе.

16. Mousavi S.A., Sadeghi M., Motamed-Hashemi M.Y., Chenar M.P., Roosta-Azad R., Sadeghi M. // Separ&Purif. Techn. – 2008. - **62**, N3. - P.642-647.

17. Fuertes A.B., Nevskaia D.M., Centeno T.A. // Micropor&Mesopor Mater. – 1999. - **33**, N1-3. - P. 115-125.

18. Luo B., Li Z., Zhang J., Wang X. // Desalination. – 2008. - 233. – P. 19–31.

19. *Hoa M.L.K., Lu M., Zhang Y. //* Advances in Colloid & Interface Sci. – 2006. - 121. – P. 9–23.

20. Hedrick J.L., Russell T.P., Labadie J., Lucas M., Swanson S. // Polymer. – 1995. - **36**, N14. - P. 2685-2697. 21. Hedrick J.L., Di Pietro R., Plummer C.J.G., Hilborn J., Jerome R. // Polymer. – 1996. - **37**, N23. -P. 5229-5236.

22. Hedrick J.L., Carter K.R., Labadie J.W., Miller R.D., Volksen W., Hawker C.J., Yoon D.Y., Russell T.P., McGrath J.E., Briber R.M. // Advances in Polymer Sci. – 1999. - 141. – P. 1-43.

23. *Kim Y.K., Park H.B., Lee Y.M.* // J. Membr. Sci. – 2004. - 243, N1-2. - P. 9-17.

24. *Apel P.* // Radiation Measurements. – 2001. - 34. – P. 559–566.

25. Apel P., Schultz R., Spohr R., Trautmann C., Vutsadakis V. // Nuclear Instruments&Methods in Physics Research. Section B. – 1998. - 146. – P. 468–474.

26. Аскадский А.А. Структура и свойства теплостойких полимеров. – Москва: Химия, 1981. - 320 с.

27. Marinovic-Cincovic M., Babic D., Dzunuzovic E., Popov-Pergal K., Rancic M. // Polymer Degradation&Stability. – 2007. - **92**, N9. - P. 1730–1736. 28. Feger C., Franke H. Polyimides in high-performance electronics packaging and optoelectronic applications in "Polyimides: fundamentals and applications" / Ed. by Ghosh M.K. – CRC Press, 1996. – 912 p.

29. *Takeichi T., Date H., Takayama Y. //* J. Polym Sci: Part A: Polym Chem. – 1990. - **28**, N12. - P. 3377-3385. 30. Handbook of low and high dielectric constant materials and their application / *Ed. by Nalwa H.S.* - San Diego: Academic Press, 1999. – 1108 p.

31. Ghosh M.K., Mittal K.L. Polyimides: Fundamentals and Applications. - New York: Marcel Decker, 1996. -

471 p.

32. Polyimides: Synthesis, Characterization and Applications / *Ed. by Mittal K.L.* V.2. – N.Y.: Springer, 1984. – 600 p.

33. *Wang Z., Mitra A., Wang H., Huang L., Yan Y. //* Adv. Mater. – 2001. - 13. - P. 1463-1466.

34. *Ensinger W., Sudowe R., Brandt R., Neumann R. //* Rad. Phys.&Chem. – 2010. - **79**, N3. - P. 204-207.

35. *Meyers R.A.* // J. Polym. Sci. Part A.-1. – 1969. - 7. - P. 2757-2762.

 Hedrick J.L., Hawker C.J., Di Pietro R., Jerome R., Charlier Y. // Polymer. – 1995. - 36, N25. - P. 4855-4866.
 Fu G.D., Zong B.Y., Kang E.T., Neoh K.G., Lin C.C., Liaw D.J. // Ind. Eng. Chem. Res. – 2004. - 43, N21. -P. 6723–6730.

38. *Wang W.C., Vora R.H., Kang E.T., Neoh K.G., Ong C.K., Chen L.F.* // Adv. Mater. – 2004. - **16**, N1. - P. 54-57.

39. Chiefari J., Chong Y.K., Ercole F., Krstina J., Jeffery J., Le T.P.T., Mayadunne R.T.A., Meijs G.F., Moad C.L., Moad G., Rizzardo E., Thang S.H. // Macromolecules. – 1998. - **31**, N16. - P. 5559–5562.

40. Chen Y.W., Wang W.C., Yu W.H., Kang E.T., Neoh K.G., Vora R.H., Ong C.K., Chen L.F. // J. Mater. Chem. – 2004. - 14. - P. 1406–1412.

41. Islam M.N., Zhou W., Honda T., Tanaka K., Kita H., Okamoto K. // J. Membr. Sci. – 2005. - 261. - P. 17-26.

42. *Xiao Y., Chung T.-Sh.* // Energy Environ. Sci. – 2011. - 4. - P. 201-208.

43. *Budd P.M., Mckeown N.B.* // Polym.Chem. – 2010 - 1. - P. 63-68.

44. Park H.B., Jung C.H., Lee Y.M., Hill A.J., Pas S.J., Mudie S.T., Wagner E.V., Freeman B.D., Cookson D.J. // Science. – 2007. - 318. - P. 254-258.

45. *Choi J.I., Jung C.H., Han S.H., Park H.B., Lee Y.M. //* J. Membr. Sci. – 2010. - **349**, N1-2. - P. 358-368.

46. *Jung C.H., Lee J.E., Han S.H., Park H.B., Lee Y.M.* // J. Membr. Sci. – 2010. - 350. – P. 301-309.

47. Yu H.-Ch., Kumar S.V., Song Y.-K., Choi J., Kudo K., Kim J.-G., Oh S.-Y., Chung C.-M. // Macromolecular Research. – 2011. - **19**, N12. - P. 1272-1277.

48. *Kim Y.K., Park H.B., Lee Y.M.* // J. Membr. Sci. – 2005. - 251. - P. 159–167.

49. *Kim Y.K., Park H.B., Lee Y.M.* // J. Membr. Sci. – 2004. - 243, N1-2. - P. 9-17.

50. *Suda H., Haraya K //* J. Chem. Soc. Commun. – 1995. - N11. – P. 1179-1180.

51. *Suda H., Haraya K. //* J. Phys. Chem. B. – 1997. - **101**, N20. - P. 3988-3994.

52. *Ghosal A.S., Koros W.J.* // J. Membr. Sci. – 2000. - 174, N2. - P. 177-188.

53. *Koros W.J., Mahajan R. //* J. Membr. Sci. – 2000. - 175, N2. - P. 181-196.

54. *Kim Y.K., Lee J.M., Park H.B., Lee Y.M.* // J. Membr. Sci. – 2004. - 235. - P. 139-146.

55. *Vu D.Q., Koros W.J.* // Ind. Eng. Chem. Res. – 2002. - **41**, N3. - P. 367-380. 56. Jones C.W., Koros W.J. // Carbon. - 1994. - 32. - P.1419-1425.

57. *Hatori H., Yamada Y. //* Carbon. – 1992. - **30**, N2. - P. 305-306.

58. Takeichi T., Eguchi Y., Kaburagi Y., Hishiyama Y., Inagaki M. // Carbon. – 1999. - **37**, N4. - P. 569-575.

59. David L.I.B., Ismail A.F. // J. Membr. Sci. – 2003. - 213. - P. 285-291.

60. *Cheng Y.D., Yang R.T.* // Ind. Eng. Chem. Res. – 1994. - 33. - P. 3146-3153.

61. Katsaros F.K., Steriotis T.A., Stubos A.K., Mitropoulos A., Kanellopoulos N.K., Tennison S. // Micropor. Mesopor. Mater. – 1997. - **8**, N3. - P. 171-176.

62. Hatori H., Kobayashi T., Hanzawa Y., Yamada Y., Iimura Y., Kimura T., Shiraishi M. // J. Appl. Polym. Sci. – 2001. - 79. - P. 836-841.

63. Ozaki J., Endo N., Ohizumi W., Igarashi K., Nakahara M., Oya A. //Carbon. – 1997. - 35, N7. - P. 1031-1033.
64. Klempner D., Frisch K. Advances in Urethane Science and Technology. – USA: University of Detroit Mercy, 2001. - P. 400.

65. *Liao D.C., Hsieh K.H.* // J. Polym. Sci. Part A: Polym.Chem. – 1994. - **32**, N9. - P. 1665-1672.

66. *Jiang B., Hao J., Wang W., Jiang L., Cai X.* // J. Appl. Polym. Sci. – 2001. - **81**, N3. - P. 773-781.

67. *Gnanarajan T.P., Nasar A.S., Iyer N.P., Radhakrishnan G.* // J. Polym. Sci. Part A: Polym.Chem. – 2000. - **38**, N22. - P. 4032-4037.

68. *Wang T.L., Huang F.J.* // Polym. Int. – 1998. - 46. - P. 280-284.

69. *Takeichi T., Zuo M., Ito A.* // High Perform. Polym. – 1999. - 11. - P.1-14.

70. *Zuo M., Takeichi T. //* J. Polym. Sci. Part A: Polym. Chem. – 1997. - **35**, 17. - P. 3745–3753.

71. *Takeichi T., Arimatsu K.* // J. Photopolym. Sci.&Techn. – 2001. - **14**, N1. - P. 67-72.

72. Takeichi T., Yamazaki Y., Zuo M., Ito A., Matsumoto A., Inagaki M. // Carbon. – 2001. - 39. - P. 257–265.

73. *Zuo M., Takeichi T.* // Polymer. – 1999. - 40. - P. 5153–5160.

74. *Takeichi T., Ujiie K., Inoue K. //* Polymer. – 2005. - 46. - P. 11225–11231.

75. *Takeishi T., Kawai T., Tsuchiya H.* // High Perform. Polym. – 2001. - 13. - P. 159-171.

76. Takeichi T., Yamazaki Y., Fukui T., Matsumoto A., Inagaki M. / Tanso. – 2000. - N195. - P. 388-394.

77. *Krishnan P.S.G., Cheng C.Z., Cheng Y.S., Cheng, J.W.C.* // Macromol. Mater&Eng. – 2003. - 288, N9. - P. 730–736.

78. *Zhen L., Jin L., Kou-Song Z. //* Carbon. – 2009. - **47**, N12. – P. 2943-2944.

79. *Yu X., Song C., Li C., Cooper S.L.* // J. Appl. Polym. Sci. – 1992. – **44**, N3. – P. 409-417.

80. Benson R.S., Lee M.W., Grummitt D.W. // Nanostructured Mater. – 1995. - **6**, N 1-4. - P. 83-91.

81. Chen J., Zhang J., Zhu T., Hua Z., Chen Q., Yub X. //

Polymer. – 2001. - 42. - P. 1493–1500. 82. *Liu J., Jiang L., Zhan J., Wu D., Jin R. //* Frontiers of Chemistry in China. – 2007. - **2**, N1. - P. 13-16. 83. *Inagaki M., Morishita T., Kuno A., Kito T., Hirano M., Suwa T., Kusakawa K. //* Carbon. – 2004. - 42. -P. 497–502. 84. *Inagaki M, Harada S, Sato T, Nakajima T, Horino Y,* Morita K. // Carbon. – 1989. - 27. - P. 253–257. 85. Klett J, Hardy R, Romine E, Walls C, Burchell T. // Carbon. – 2000. - 38. - P. 953–973. 86. Inagaki M, Ohmura M, Tanaike O. // Carbon. – 2002. - 40. - P. 2502–2505. 87. Toyoda M, Nanbu Y, Kito T, Hirano M, Inagaki M. // Desalination. – 2003. - 159. - P. 273–282.

Поступила в редакцию 2012 г.

Отримання пористих поліімідвмісних систем методом термічної деструкції лабільного компонента

О.В. Слісенко

Інститут хімії високомолекулярних сполук НАН України 48, Харківське шосе, Київ, 02160, Україна

В роботі детальну увагу приділено методу формування пористої структури в поліімідвмісних (поліімід-поліуретанових) системах за рахунок термічної деструкції лабільного компоненту, що дає можливість регулювати розмір пор та їх розподіл у матеріалі. Проведено порівняльний аналіз структури і властивостей пористих матеріалів, отриманих методом термічної деструкції лабільного компонента, показано вплив особливостей структури на термічні, теплофізичні, діелектричні, механічні та інші властивості поліімідвмісних полімерних матеріалів.

Ключові слова: поліімід, поліуретан, пориста структура, термодеструкція, термічно лабільний компонент

Preparation of porous polyimide systems via thermal destruction of labile component

O.V. Slisenko

Institute of Macromolecular Chemistry NAS of Ukraine 48, Kharkivske shause, Kyiv, 02160, Ukraine

The principles of formation of porous structure in polyimide-containing (polyimide-polyurethane) polymer systems via thermal degradation of thermally labile component, which provide precise control of pores size and distribution, were overviewed in details. The relationship of structure and thermal, thermal-physical, dielectric, methanical and other properties of obtained porous polyimide based materials has been evaluated.

Keywords: polyimide, polyurethane, porous structure, thermal degradation, thermally labile component.