I[MTPOBJIEMU OB‘-II/ICJHOBAJ:[JBHOT MEXAHIKHA ISSN 2079-1836
I MITHOCTI KOHCTPYKIIN 2017, eun. 26

UDC 539.3
R. A. Iskanderov, Dr. Sci. (Math.), H. Shafiei Matanagh

FREE VIBRATIONS OF LONGITUDINALLY REINFORCED
CONICAL SHELL WITH SPRING ASSOCIATED MASS IN MEDIUM

We consider a circular closed truncated medium-contacting conical shell of
constant thickness regularly reinforced with longitudinal ribs supporting the
associated mass connected with the shell in diametrically opposite points by means
of two springs of the same rigidity.

Keywords: conical shell, vibrations, energetic method, Winkler model.

Introduction. Conical shells are widely used in aviation, engineering and
machine building. One of the first papers on study of stability of conical

shells was the paper of Kh.M. Mushtari [1]. In the [2,3] the equations of

motion were obtained for conical shells reinforced with stiffening ribs under
linear-elastic deformation with regard to transverse shifts. Mathematical
model of deformation of general form reinforced orthotropic shells based on

the functional of total energy of deformation was represented in the [4] . The

[5] was devoted to construction of mathematical model of deformation of

conical shell constructions based on the functional of total energy of
deformation with regard to orthotropy of the material, geometrical
nonlinearity and transversal shifts.

Problem statement. The problem of definition of natural frequencies of
vibrations of such a shell is solved in linear statement by the energetic
method. Discrete arrangement of reinforcing longitudinal ribs is taken into
account. Such a system of coordinates is accepted: variable radius » and
dihedral angle ¢ between diametrical planes (Fig. 1).

The shell’'s potential energy is calculated by means of the following
expression [10]
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where according to [9] it is accepted
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E is modulus of elasticity; # is the shell's thickness; v is the Poisson's
ratio; 7, r, are the radii of the greater and less base of the shell; y is an
angle between the generator and the axis of the shell; u,uo,w are the

components of the vector of displacement of the points of the shell's medium

surface along the generator in tangential direction and along the normal to
3

the median surface; D = Lz

12(1—v )

Potential energy I1, of deformation of longitudinal ribs equals [6]:
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Here: £y, Iy, I, Iy, is the area and inertia moments of cross-section of

the longitudinal bar with respect to tangential and radial axes, respectively,
and also inertia moment in torsion; G is the shear modulus; k; is the

amount of longitudinal bars; ¢; are the coordinates of their arrangement.
The kinetic energy 7; of longitudinal ribs is calculated by means of the

expression
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wherein y, is specific weight of the shell and ribs material; g is acceleration
of gravitational force.

Influence of medium on the shell is determined as of external surface
loads applied to the shell and is calculated as a work done by loads when
taking the system from deformed state to initial undeformed one and is
represented in the form

nam
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We shall take into account the motion of mass only in the plane of cross-
section along the axis z (Fig. 1). The motion of the mass from this plane
and deformation of springs caused by displacements of the points of their
fastening to the shell in the direction of displacement vector u are ignored.
As the problem is solved in linear statement, i.e. in assumption that the
displacement of the points of the deformable system is small, such
assumptions are rightful.

2

n

Fig. 1 — Longitudinally reinforced,
medium-contacting conical shell with mass

Potential energy II; of springs and kinetic energy 7, of the mass are
equal to

1 .
My=(z- wocosy)2 c; Ty= EMZ'2 ,  respectively,

where w, is the displacement of the spring’s fastening points, arranged in
diametrical coordinate plane ¢ =0.
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Problem solution. We represent the displacements of the shell as
follows [7]:

2
w="_gin—\""72) mn(r FZ) ZA,Z( )cosn(p;
n n=n
2
9=r—2sin mnlr=n) 3 > B, (1)sinng; (2)
n n—n n=1
2
uzr—zcos mn(irQ) 2D, (t)cosng ,
n n=7n  ua

where n is the amount of waves in peripheral direction; m is the amount of
half waves along the generator.

These expressions satisfy such conditions of elastic built-in of the shell
along the edges under which w=38=0. Expressions (1) are convenient in

the sense that owing to the multiplier ”? , the integrals encountered when
calculating the energy, are taken in quadratures and this simplifies the
problem solution. Besides this, expressions (2) qualitatively reflect the fact
that the crests of half-waves of the form of vibrations along the generator of
the conical shell are somewhat displaced to the side of its greater base.

It should be noted that for even n the springs are deformed, the mass
does not move; for odd n the mass performs vibrations along the axis z . In
the sequel we shall consider this case.

Substituting the found expressions for kinetic and potential energy in
Lagrange’s equation of second kind [8] we get the system of ordinary
differential equations infinite with respect to n
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where
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Accepting the solution of the infinite system in the form z=z*sin0)t,

* . * . * . .
A4, = A,sinot , B, = B,sinwt, D, =D,sinwt, where o is the natural frequ-

ency of vibrations of the studied system, and substituting these volutions in
equation (3), we get an infinite homogeneous system of algebraic equations

. * * * *
with respect to unknowns z , 4,, B, , D, .

Assuming that the influence of the medium on the shell is subjected to
the Winkler model, i.e. g, = kw , we can represent (2) in the form:
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where k,  are constants.
Equate to zero the determinant of this system

7\,1+R—m2+6—0 R R
2a
R ?\,3+R—032+B—0 R .. |=0 (5)
2a
R R x5+R—m2+B—°
a
where
7y :ll+i Qnsn_& e_n_mz + qn fnsn_qi[ﬁ_oﬂj .
" a 2ad| d4ab 2a\ b 2a4| 4ab 2ab\ a ’
R:_(X,00)2 C
a i—(oz
M

180



As a result, we get an equation that allows to determinate natural
frequencies of vibrations of the medium-filled shell with associated mass.
The influence of the associated mass is included into the expression for R.
Consider the limit cases. For ¢=0 and R =0 we get a frequency equation
for a medium-filled shell without associated mass

kn+R—m2+B—°=0.
a
For M =0 the results are similar. If ¢=o, then R =—a%M(o2/a mass is
associated to the shell by means of absolutely rigid bars; for M =

R= oc%c/a is a shell with inner elastic bonds.

Natural frequencies of the system’s vibrations were determined by
numerical solution of equation (5). The followings for accepted for the
problem parameters: n =160mm, » =85mm , longitudinal bar of angle
profile with dimensions 5x5x1 (in mm), k; =32, m=1. The longitudinal
bars were fastened to the inner surface of the shell. The associated mass
whose quantity varies in the research process, was fastened in the middle of
the shell in diametrically opposite points.

Conclusions. The curve reflecting the dependence of natural frequency
= ®/(2m) of vibrations of medium-filled shell with no associated mass on

the number of waves n in peripheral direction is depicted in Fig. 2. It is seen
that with increasing the number of waves » in peripheral direction, the
frequencies of vibrations of medium-filled shell with no associated mass at
first decreases, attains minimum and begins to increase.
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Fig. 2 — Dependence of natural frequency of shell’s vibrations
on the number of waves in peripheral direction

The curves reflecting the dependence of minimum natural frequency of
the system’s vibrations on quantity of associated mass, relative rigidity of
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springs ¢ =c/D for relative bed coefficient k = k/D = 0,1, were depicted in
Fig. 3. The similar dependence for k = 0,3 is in Fig. 4.
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Fig. 3 — Dependence of natural frequency of shell’s vibrations
on the quantity of associated mass
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Fig. 4 — Dependence of natural frequency of shell’s oscillations
on the quantity of associated mass
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Analysis of curves shows that influence of associated mass on
minimum natural frequency of shell’s vibrations is very essential. With
decreasing the rigidity of bonds between the mass and shell, this
influence increases. Comparison of curves from Fig. 3 and 4 shows that
with increasing relative bed coefficient, minimum natural frequency of
the systems vibration increases. This is connected with the fact that the
Winkler model does not take into account inertial actions of medium on
vibrations process.
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YOK 539.3
P. A. IckaHOepis, 0-p mam. Hayk X. LLlagpueu MamaHae

BIJIbHI KOJIMBAHHA B CEPEAOBULLI
NMPOAOJNIbHO NOCUNEHOI KOHIYHOI OBOJTIOHKMN
3 MACOIO, WO NPUEOHAHA NMPYXXUHAMMU

PosrnspaeTbcs KOHTaKTyloua 3 cepefoBMLIEM KpyroBa 3aMKHeHa YyciyeHa
KOHiYHa 06GONOHKa MOCTINHOI TOBLYMHU, SIKa PErynsipHO NigKpinneHa No3foBXHIMK
pe6bpamu i Hece nMpuegHaHy Macy, WO MOB'A3aHa 3 OGONIOHKOK B AiameTpanbHO
NPOTUIEXHUX TOYKAX 3a AONOMOrol ABOX NPYXUH OAHAKOBOI XKOPCTKOCTI.

Knroyosi cnoea: KoHiuHa 00050OHKa, KonusaHHs, eHepeemuyHul memod, moderlb
BiHknepa.

YOK 539.3
P. A. UckaHdepos d-p mam. Hayk, X. LLlacgpueu MamaHaz

CBOBOHbIE KONNIEBAHUA B CPEAE
NPOAOJNLHO NOAKPEMIEHHOWU KOHWYECKOW OBOJIOYKMN
C MACCOW, NPUCOEAUHEHHOW HA NPY>XUHAX

PaccmaTpuBaeTcs KOHTaKTUpPYHOLas Co Cpeaow KpyroBasi 3aMKHyTasi yceyeHHas
KOHMYeckasi 06oOnoyYyka MNOCTOAHHOW TOMWMHbI, PErynspHO noAKpenneHHas
npoAoNnibHbLIMU pebpaMyM UM Hecyllasi NPUCOEAUHEHHYIO Maccy, CBS3aHHYH C
060onoykon B AUamMeTpanbHO NPOTMBOMNOMOXHBIX TOYKaX C MOMOLLbIO ABYX NPYXWUH
OAMHaKOBOW XXeCTKOCTH.

Knrodeenle cnoea: kKoHu4Yeckasi oborouyka, konebaHusi, aHepaemu4yeckul memood,
molernb BuHknepa.
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