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BUNDE STRESS THEORY OF SEMICIRCULAR LAYERED
COMPOSITE CURVED BARS

C.M. Bepewaxa, Pinoi A6oyrna Anaragp, Imao Toma Kapaw. baratomapoBa Teopisi HANPYKeHb Po3-
IIApYBaHHS HAMIBKPYIJIMX LIAPYBATHUX KPHBOJIHIHMX CTEP:KHIB 3 KOMIO3UTHUX MaTepiaJjiB. Bukopuc-
TOBYIOYH aHI30TPOITHY TEOPiI0 NMPYXKHOCTI, PO3PaxOBaHO HANPYKEHHS Yy HAIIBKPYTIIMX IUIACTUHYACTHX 3MilIa-
HUX BUTHYTHX OpyCKax, MiIMaHuX Mii KiHIEBUX CHJI i KIHIIEBUX 3TMHAIbHUX MOMEHTIB, BU3HAUEHO 1X pajiaibHi
nosioskeHHs. [IpeacraBineHo ciM’10 KpeclieHb KPUBUX, TIOKa3aHO 3MiHY iHTEHCHUBHOCTI HAMPYXeHb Ta iX pajiaib-
HUX TMOJIOKEHB 32 PI3HOI reoMeTpil 1 piBHIB aHI30TPOIIT HAMBKPYTINX KPUBHUX. BITHB aHi30TpOMil HA MOIOXKECH-
Hi MiKiB pO3LIapyBaHHS HAaNPY>KeHHS BU3HAYEHO SIK Manuid. Bukopucrano nporpamunii maker MathCAD 14 s
OTPHUMaHHS MaKCUMaJIbHO TOYHHX PE3YJIbTATIB.

Kniouosi crnoea: HanpykeHUH CTaH, KOMIIO3UTHHI BUTHYTHH OpYCOK HaIliBKpYTJIOi ()OpMH, KIHIIEBE 3YCHII-
JIs1, KIHIIEBUH 3rHHAIBHUA MOMEHT.

C.M. Bepewaxa, Pusde Ab6oyina Ananagh, Umao Toma Kapaw. MHoOrocjoiHasi Teopusi HANPsKeHU
paccjioeHUs] MOJYKPYIVIBIX CIOMCTBIX KPHMBOJMHEHHBIX CTep:KHell M3 KOMIIOBMTHBLIX MaTepuanoB. Vc-
MOJIB3ys. aHU3OTPOITHYIO TEOPHIO YIPYTOCTH, PACCUMUTAHBI HANPSIKCHHUSA B MOMYKPYTNBIX IUIACTHHYATHIX CMe-
MIaHHBIX M30THYTHIX OpYCKax, MOJBEPTHYTHIX BO3JCHCTBHIO KOHEUHBIX CHJ U KOHEYHBIX M3THOAIOIIUX MOMEH-
TOB, OIPEAEIICHBI UX paguaibHbIC MoNoKeHus. [IpeacTaBieHo ceMeHCTBO YepTekeil KPUBBIX, TOKa3aHO N3MEHe-
HHE MHTEHCUBHOCTH HANPSDKEHUH W MX paJlalibHBIX MOJOKEHUH ¢ Pa3IMYHBIMUA F€OMETpUEH W YPOBHSIMH aHU-
30TPOIHHU MOJXYKPYIJIBIX KPUBBIX. BIussHNEe aHN30TPONNH Ha MOJIOKEHHUE NMMKOB, PACCIIANBAIOIINX HAIPSDKEHHE,
orpezeneHo kak crnaboe. Mcnonb3oBan nporpamMusiii maker MathCAD 14 s nmosydennst Hanbosee TOYHBIX
pe3yIIbTaToB.

Kniouegvie cnoea: HalpspKeHHOE COCTOSIHUE, KOMIO3UTHBIM TOYKPYTIIBIA M30THYTHIH OpycOK, KOHEYHOE
ycuime, KOHSUHBIH H3rHOaronIii MOMEHT.

S.M. Vereshaka, Riadh Abdulah ALAlaf, Emad Toma Karash. Bunde stress theory of semicircular lay-
ered composite curved bars. Using anisotropic elasticity theory, stresses in a semicircular laminated composite
curved bar subjected to finite/end forces and finite/end moments are calculated, and their radial locations are
determined. A family of design curves is presented, showing variation of the intensity of stresses and their radial
locations with different geometry and different degrees of anisotropy of the semicircular curves. The effect of
value change in tangential coordinate caused change in location and value of maximum radial stress, tangential
stress and shear stress. The effect of anisotropy on the location of peak delamination stress is found to be small.
The Math CAD-14 program has been used to get most accurate results.

Keywords: stress state, a semicircular composite curved bar, finite/end force, finite bending moment.

Introduction

The applications of composite materials in high gas cylinder, pipes and other engineering struc-
tures are ever increasing, due to their highly desirable properties like high specific strength/ stiffness,
low co-efficient of expansion, damping properties and directional dependence [1...4]. The problem of
elastic equilibrium of an inhomogeneous cylinder by the force and torque is similar to the problem of
bending of a semicircular curve bar moments and the force acting in the median plane. In the design
and analysis of laminated composite cylinders, axis symmetric loads and ax symmetric geometries are
often assumed for developing closed-form analytic solutions. In addition, the cylinder is assumed to
have an infinite length such that the stresses are not only independent of the circumferential coordinate
but also independent of the axial coordinate [5].

Solutions have been formulated on the basis of both the anisotropic elasticity theory and the la-
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minated shell theory. The laminated shell theory provides an accurate solution for thin-walled cylin-
ders, whereas elasticity solutions are required for an accurate determination of the three-dimensional
stress states that exist in thick-walled cylinders. In both of these analytical approaches, further simpli-
fications are obtained by restricting the composite cylinder to be orthotropic [6...8].

The purpose of this paper is to represent documentarily the calculation of stress state in semicir-
cular composite bar and its exact radial location, maximum stress as well as to describe how stress and
its location change with the changes in degree of anisotropy and the wall thickness of the curved bar.

Composite curved bar

Figure 1 shows a semicircular composite curved bar of hollow cylinder subjected to end forces P,
both ends of the curved bar being extended slightly. Thus, the loading axis will have slight offset e
from the vertical diameter of the curved bar. Therefore, the loading state in figure 1 is the combination
of two cases:

Bending due to end forces P with the loading axis coinciding with the vertical diameter of the
curved bar.

Pure bending due to end moments M (=Pe) created by the loading axis offset e.

It has been observed that the highest probability of examined effect onset takes place at the inter-
faces of 0° and 90° plies because of high Poisson’s ratio mismatch [9]. In constructing the curved bar
test coupon, it is desirable to introduce 90° plies at, or in the vicinity of, a peak stress point (that is, a
peak radial tensile stress point or peak shear stress point) and thereby ensure that the delamination will
initiate at the peak stress point, which is yet to be determined. In the following sections, the peak ra-
dial tensile stress (or peak shear stress) and it’s radial. Location will be calculated.

1. Anisotropic curved bar under end force

Figure 2 shows the anisotropic semicircular curved bar subjected to end forces P with the loading
axis coinciding with the vertical diameter of the curved bar.

P Phi
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e T (TrO)max

T
~
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- (TrO)max
— "‘I‘e €
P P
Fig. 1. Laminated composite semicircular curve bar Fig. 2. Bending of semicircular curve bar by forces at
test coupon for delamination study its ends

Stresses induced
If the composite material of the curved bar is treated as a continuous anisotropic material, then
the stresses induced in the composite curved bar due to the end forces P may be written as [5].

_ P b|(r P ora (b al | . )
“*“9)%?{@ G- }6 M
_ P b ' aY (b)Y a) | . )
Ge(”,e)—%;{(l—ﬁ)(zj "'(1—[3)(;] (;j —1—[5] }Slne, (2)
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_ P b|(r b raY (Y a
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where: a is the curved bar inner radius, the b represents the curved bar outer radius, and /4 the width of
the curved bar, r radial coordinate, O tangential coordinate, o, radial stress, oy tangential stress, T,

shear stress, and
- 21_@ ; 1+(zjﬁmz @
S T b) b

And the anisotropic parameter f3 is defined as

6=J1+%<l—2ve,>+%, )

where: Eis the modulus of elasticity in 0 direction, £ is the modulus of elasticity in r direction,
G,, Shear modulus, and v, Poisson’s ratio. For isotropic materials, $ =2.
Consequently to equations (1) and (3) the magnitudes of ¢ and are identical, but they are out of

phase by.n/2 The maximum value of ¢ occurs at cross section 6 =n/2, and t,, reaches its peak
value at the two load application cross sections (6 =0) and (6 =7):

G, (Vagj=_T,e(U,O)=T,e(”,TC)- (6)

Thus, the semicircular curved-bar test coupon can provide the same intensities of open-mode and
shear mode delamination stresses simultaneously. If the composite is weak in open-mode strength, the
delamination will initiate at the midspan (6 =m/2). On the other hand, if the composite is weak in
shear strength, delamination will start at both ends of the curved bar (that is, (6 =0) and (6 =7) [9] :

Because of the relationship between ¢ and 1, given in equation (6), analysis will be limited to & .

Equation (1) (for 6 =n/2) may be rewritten as:

gGier GROIGRROR)
RN

may be found by

where

Location of maximum
The radial location » =r, where o, (p, n/2) reaches its peak value (c,)

max.

differentiating equation (7) with respect to p and setting the resulting derivative to zero, or

d T

— ,—||=0. 9

dr {Gr (V ZH ©)
From which it is found as

(_T = Kéjﬁ HT e _D@B {(ET H} | "

May be written as (o, )

max
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where r,, is given by equation (10).
2. Anisotropic curved bar under end bending moments.
Figure 3 shows the anisotropic curved bar under pure bending due to moment M.
Stress induced
When the composite material of the curved bar is treated as continuous material, the radial stress
tangential stress, and shear stress induced in the curved bar under the end moments M would be ex-
M pressed as [5]

o () =-A {1_1‘(“/5’)“] (ﬁj _1-@b)" (ﬁj F} }; (12)
r

(11)

b’hg|  1—(a/b)* \ b 1-(a/b)* \ b
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< i @ DT {1 @y ) =@ \s) ) [
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Fig. 3. Bending of se- . . .
micircular curved of where the anisotropic parameter £ is defined by:

curved bar by moments E
at its ends k= |= (15)
El"
2 k+142 2 k-142
o o=l @d)y Kk [-@B)F | ka/b) [ -(a/b) ] 16)
2 k+1 [1-(a/b)*] k-1 [1-(a/b)™]
Location of maximum stress
Differentiating equation (13) with respect to r, and setting the resulting derivative to zero,
d.
—I[c,(1]=0. (17)
dr
The radial location 7/ of the maximum ¢/, may be calculated as:
(j _ (k4 )b/ [(a/0)* 1] (s
a (k-DI(b/a)" =11
For the isotropic case (k—1), equation (18) is reduced to
[r_mj _b 21n132/a , (19)
a)i, a\(b/a)’-1
where the relationship
k-1 k-1
(/)" -n|  _nG/a™ _ b 20)
k-1 . k-1 a
has been applied.
2
ha, (b—a) (o). =— (b/a)* -1 y
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where | is given in equation (18).

Maximum stress

The open-mode maximum stress op induced in the curved bar under the end force P with the
loading axis offset e (see figure 1) will be the sum of (G,)nu.x Due to P without loading axis offset c
(equation (10)) and (6" )max due to (M=Pe) (equation (21), see figure 3):

— ' -__ P e
= + = +F —
GD (Gr)max (Gr)max h(b _ a) |:F‘1 F2 am :|? (22)
where
B B p
O CREIRO)
B\a r, |\ a a) \r, a
2 2k k+1 ;N\l
gl HE e -
2C|\a a a a
_a+b
m 2
For thin-walled curved bar, the values of F1 and F2 are quite close, or
F ~F,. (24)

Therefore, the stress contribution from the end moment [Pe] for the thin-walled curved bar is al-
most proportional at the value of e/a,,.

Numerical results

To extract the results, the MATHCAT-14 program has been used. The curved bar is made of 31

composite plies and with the following plies properties: [05/90°/0;/£45 /(0;/90),/£45 /0°], With the
stacking code

E, =17,24-10°N/mm’, E, =0,83-10°N/mm?,

G, =0,41-10°N/mm*, v,, =0,33, v, =0,015,

E, =17,24-10°N/mm°, E, =0,83-10°N/mm”,
G, =0,41-10°N/mm*, v,, =0,33, v, =0,015

and forces (P=20 KN), dimension hollow cylinder [a=100 mm, b=109 mm, e=40 mm, ~A=25 mm,
®=0°, o is angle forces, 6=0,015, & is composite ply thickness, y;=0,55, y;=0,01, »=100...109 mm,
6=0°, 90°, 180° ]. vy, y; are the relative volume content reinforcement layer in the direction of axes
(1) and (3).The following elastic tensile and shear properties obtained using program MATHCAT14.

E, =8,263-10°N/mm*, E, =5,668-10°N/mm’, E.=3,14-10°N/mm?,
G, =0,804-10°N/mm?*, G_=0,095-10°N/mm*, G, =0,084-10°N/mm”,
v, =0,181, v_=0,018, v, =0,017.

From table 1. Realized is the following: when (6=0°, 90°), the value of (c,=6,=0) but value 7,4
was maximum when the (r,=104,38 mm) stress value (1,0=133,4 MPa). This does mean that when ap-
plied vertical forces P on a curved semi-circular curved bar, the maximum stress was T,4. But when the
value of (6=90°) we note that the value (1,,~0) and the highest value of stress (o,)mx Was when

(r=r,=104,38 mm) and the value of stress ((G,)mx=133,4 MPa) the highest value cg)was when (r=aq) it
is equal to (cy=6470 MPa). Also from figure 1. we note that the value of 6, when (r=a) was zero and

MAIINMHOBYAYBAHHSA. TEXHOJIOI'LI METAJIIB. MATEPIAJIO3HABCTBO



24 . . . . ISSN 2076-2429 (print)
IMpani Opecpkoro nositexHigHOTO YHiBepcutety, 2011. Burm. 2(36) ISSN 2223-3814 (on line)

increases with increasing the value of 7 and reaches the highest value when the (r=r,,=104,38 mm) it is
equal to (0,=133,4 MPa) and then start the value of stress after this point decrease until it reaches zero
when the (»=b). Figure 5 shows when (6=0) the value (t1,4=0) and increases with increasing » until it
reaches the highest value when (7,=104,38 mm) maximum stress (t,4=133.4 MPa), but after this point
begins the downward increase in the value of r until it reaches zero when (=b), as well as the same
case when (6=180°) but the values are negative (compression stress) and the values appear opposite in
figure. Figure 6 shows when (6=90°) the value of oy was the highest value when (r=a) it is equal to
(0e=6473 MPa), but begin a downward until it reaches the value of stress (gg=0) when (7,,=104,5 mm)
and then begin to increase (compression stress) until it reaches the highest value when (=b) it is equal
to (5¢=5939 MPa).

Table 1
Shows r as function of stresses for different values of @ when applied forces on the ends
0 =180° 0=90° 0=0°

1,0, MPa l\jlyga l\gIr”a l\f[r}e)’a 69, MPa | o,MPa | 1,9, MPa l\jler;a l\gIr”a romm N
0 0 0 0 6473 0 0 0 0 100 1
-56,35 0 0 0 4978 56,35 56,35 0 0 101 2
—96,66 0 0 0 3517 96,66 96,66 0 0 102 3
-121,85 0 0 0 2088 121,85 | 121,85 0 0 103 4
132,78 0 0 0 690 132,78 | 132,78 0 0 104 5
-130,26 0 0 0 —682 130,26 | 130,26 0 0 105 6
—115,05 0 0 0 —2029 115,05 | 115,05 0 0 106 7
—87,84 0 0 0 —3354 87,84 87,84 0 0 107 8
49,29 0 0 0 —4655 49,29 49,29 0 0 108 9
0 0 0 0 —5939 0 0 0 0 109 10

From table 2 when we applied moment M on semicircular curved bar it is evident that when the
value of (6=0°, 180°), the value of stresses (¢’ =1,4=0) but maximum stress o, and from the table we
note that it be fixed and not depend on changing the value of » and the value is equal to
(cp=2441 MPa). But when the value of (6=90°), the value of stress (1,,0=0) but the highest value of
stress ¢’ is when (=7, =104,34 mm) and the amount equal to (¢’ =51,09 MPa) and the lowest value

is when (r=a, r=b). The highest value of stress o, is when (r=a) and value (c;,=2441 MPa) and less

than the value of the stress increase in the value of 7 until it reaches its minimum when (=104,38 mm)
and value ( c;,=230 MPa). From eqution (26) maximum stress 6, under the end forces P and moment
M equal (6p=(6,)maxt( 0" )max=184,49 MPa) and (65=(50)max( O} Jmax=8911 MPa).

Also by using MATHCAT-14 was obtained the following results: From the figure 4 shows the
dimensionless delamination stress [4(b—a)/P](c,)max induced by the end forces P plotted as a function
of b/a for different values of anisotropic parameter . As b—a, the effect of anisotropy disappeared,
and all the curves converge into a single point giving [A(b—a)/P](C,)mix=1,5, which has been estab-
lished in equation (11). For low anisotropy 2<p<5, the delamination stress increases monotonically
with the increase of b/a. However, for high anisotropy of >5, the delamination stress curves show a
slight valley (or dent) in the regions of moderate values of b/a. In these regions [A(b—a)/P](C,)max
yields values less than 1,5. Notice that as the value of B increases, the intensity of delamination stress
decreases, and that the higher the value of b/a (that is, the thicker the wall), the higher the magnitude
of the delamination stress.
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Table 2
Shows r',, as function of stresses for different values of @ when applied moment on the ends
0=180° 0=90° 0=0°
T,95 Gy, T, T,95 e, Gy, 7, mm Ne
Mpa | OMPa |\ | Mpa | O MPa | onMPa | B B | MPa

0 2241 0 0 2441 0 0 2241 0 100 1
0 2241 0 0 1871 21,34 0 2241 0 101 2
0 2241 0 0 1313 36,73 0 2241 0 102 3
0 2241 0 0 767 46,46 0 2241 0 103 4
0 2241 0 0 230 50,80 0 2241 0 104 5
0 2241 0 0 -296 49,99 0 2241 0 105 6
0 2241 0 0 —812 44,29 0 2241 0 106 7
0 2241 0 0 -1319 33,91 0 2241 0 107 8
0 2241 0 0 —-1816 19,08 0 2241 0 108 9
0 2241 0 0 —2304 0 0 2241 0 109 10

Figure 5 shows the dimensionless radial distance [(r,/a)—1]/[(b/a)—1] of (G,)max point measured
from the inner boundary of the curved bar plotted as a function of b/a. It is seen that the effect of ani-
sotropy is relatively small and is negligible in the region b/a<1,4. As the value of b/a increases, the loca-
tion of (G,)mx Moves away from the middle surface and toward the inner boundary of the curved bar.

hb—a —a
D (6, =2
P b= b-a
2,5
3
s 0.4
1,6 45 ’
5
g,s
5
0,3 =
| s
>3 35
4
45
35
0,2 é,s
1.4
1 14 18 22 2,6 bla 1 14 18 22 26 bla
Fig. 4. Plots of delamination stress (0r),u.. As func- Fig. 5. Plots of location of stress (or) . As function
tion of a/b for different valves of of a/b for different valves of

Figure 6 shows the plots of the dimensionless delamination stress /4(b—a)/M](o,)m.x induced by
the end moments M as a. function of b/a. Similar to the previous case, as b/a#1, all the stress curves
converge into one point giving A(b—a)/M](c,)mx=1,5 which was established by equation (21). Notice
that as the value of k& increases, the magnitude of the delamination stress decreases. Figure 7 shows the
dimensionless radial distance [(7,/a)—1]/[(b/a)—1] of (6" )max point measured from the inner boundary
of the curved bar plotted as a function of bla. The effect of anisotropy turned out to be very small and
could be neglected in the region 1<b/a<1,7. As bla increases (that is, as the wall of the curved bar be-
comes thicker), the location of (6’ ) moved inwardly away from the middle surface with a slower

rate as compared with figure.
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Fig. 6. Plots of delamination stress (0,) . As function — Fig. 7. Plots of location of stress (0,) . As function
of a/b for different valves of k of a/b for different valves of k

Conclusion

In this paper it is studied the effect of tangential coordinate changes of the stress state of the
semi-circular bar made of a composite material and consisting of many layers as well as it is investi-
gated the relation between maximum peak radial stresses with the ratio of outer/to inner diameters at
the different values of anisotropic parameters. The effect of anisotropy on the location of peak delami-
nation stress was found to be small. The issues of stress state study indicated that change of tangential
coordinate angle, the maximum value of radial stress is when the value of the tangential coordinate
angle is equal to the ninetieth degree under the influence of forces and moments. But the maximum
value for the tangential stress under the influence of forces is when the value of the tangential coordi-
nate angle is equal to the ninetieth degree but maximum tangential stress under the influence of mo-
ment is when tangential coordinate is equal to zero and hundred eighty degree. The maximum shear
stress is when tangential coordinate equal hundred eighty degree.
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