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SOLUTION OF THE SPECIFIC BOUNDARY PROBLEM IN
THE CASE OF THE ONE-DIMENSIONAL WAVEGUIDE

LIO. /Iuumpiesa. Po3B’si3aHHs cnewiaabHoOi KPaioBoi 3a1adi 1J1s1 0/IHOMIPHOTO XBHJIEBOAY. 3alpOIIOHOBAHO
aHAIITHYHE PO3B’3aHHS KpaiioBoi 3a/1adi, sIKa ITOPO/HKEHa CHMETPHYHOIO0 CHCTEMOIO JI(epeHIiaIbHNX PIBHSAHL Makc-
BeJIa Y BHIAJKY JOBUIBHO 30yPKEHOr0 JiHIHHOTO 130TPOITHOIO OTHOPIAHOTO cepenoBuia. [1o4aTkoBi Ta rpaHiYHI yMO-
BU PO3IVISIAIOTHCS ISl OAHOMIPHOTO T1iB HECKIHUEHHOTO XBUJIEBO/LY, BB)KAIOUM OCHOBHOIO 3MiHHOIO KOOPJMHATY Yacy.
OnepxxaHi pe3yibTaTé 103BOJISIOTH PO3B’SI3YBATH Y SIBHOMY BUIJISII 33a4i PO3TIOBCIO/DKYBAHHSI CHTHANIB Y BKA3aHHUX
CepeOBHIIAX, B TOMY YHMCII 1 MMTAHHS MOOLIBHOTO 3B’SI3KY.

Kniouogi cnoea: xpaiioBa 3amava, OZHOpPIIHE 130TpONHE JIiHIHHE TOBUTBHO 30y/PKEHE CepelOBHIIE, OTHO-
BHUMIipHHUH TIBHECKIHYEHHUH XBUJICBO.

U IO. /Imumpuesa. Penienne cnenuaabHoii KpaeBoi 3a1auu JJIs OJHOMEPHOro BOJHOBONA. [Ipemio-
JKEeHO aHAIMTHYECKOE PEIICHUE KPaeBOH 3aauH, IIOPOXKICHHON CHMMETPHIHON cucTeMoil tuddepeHmanbHbIX
ypaBHeHHII MakcBela B ciydae MpOM3BOJIEHO BO30YXK/IEHHOM JTMHEHHON M30TPOITHON OHOPOIHOM cpezpl. Ha-
YaJIbHBIC U TPAaHWYHBIC YCIOBHUS PAacCMaTPHUBAIOTCS JUIS OZHOMEPHOTO MONY- OECKOHEYHOTrO BOJTHOBOAA, CUHTAS
OCHOBHOH IEPEMEHHON KOOpAMHATY BpeMeHH. [lomyueHHbIe pe3ynbTaThl MO3BOJIAIOT pellaTh B IBHOM BHIE 3a-
Jlaq¥l paclipoCTpaHEH!s CUTHAIOB B YKa3aHHBIX CpelaX, B TOM YMCIIE U BOIPOCH MOOMIIBHOM CBSI3H.

Kniouesvie cnosa: kpaeBas 3aa4da, OTHOPOIHAS M30TPOITHAS JIMHEHHAs! IPON3BOJIBHO BO30YXKIEHHAS Cpe-
Jla, OTHOMEPHBIH MOITyOECKOHEUHBIH BOIHOBO/.

LYu. Dmitrieva. Solution of the specific boundary problem in the case of the one-dimensional
waveguide. We propose an analytic solution of the boundary problem that is generated by the symmetrical sys-
tem of the differential Maxwell equations in the case of an arbitrary excited linear isotropic homogeneous me-
dium. The initial and boundary conditions are given for the one-dimensional semi-infinite waveguide, consider-
ing the temporal coordinate as the main variable. The present results allow solving explicitly the problems of the
signal transmission in the aforesaid media including the questions of the mobile communications.

Keywords: the boundary problem, homogeneous isotropic linear arbitrary excited medium, the one-
dimensional semi-infinite waveguide.

It is well known that the signal transmissions in the various kinds of media can be described ana-
lytically by means of the corresponding systems of PDEs [1, 2]. In its turn, these mathematical objects
generate the respective boundary problems that reflect the aforesaid physical phenomena in the frame-
work of the appropriate temporal and spatial restrictions [3, 4]. Solving such problems explicitly, one
covers simultaneously two of the researching directions, as of the classical electromagnetic field theory,
as of the current technical electrodynamics. Both of them are tightly connected and equally important.

Classical electrodynamics is the fundamental basis of technical radio electronics and the modern
theory of electromagnetic wave propagation too [5].

Hence, an explicit analytical study of the relevant vector boundary problems remains essentially
necessary even nowadays, when a lot of applied computer programs exist. Moreover, if one investi-
gates the concrete industrial or physical phenomenon, it is quite natural to construct first of all its
mathematical model whose correct analytic solution is in conformity with the original problem state-
ment and does not infringe it.

The preferable approach here is the strict but simple mathematical procedure that can be under-
stood by the majority of engineers, staying at the same time in the limits of the usual program of
higher mathematics which is lectured at the technical universities.

© Dmitrieva I.Yu., 2012
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That is why we propose the essential industrial problem whose explicit solution bases on the gen-
eral analytical diagonalization method. The latter represents the operator analogy of the classical alge-
braic Gauss algorithm [6], and was applied successfully when the differential symmetrical Maxwell
system was studied [7]. Such system describes the electromagnetic wave propagation in the various
kinds of media and can be used in the mobile connections as well.

The virtue of the above mentioned operator diagonalization approach is its independence, either
on the original matrix structure, or on the initial and boundary conditions. So, it is very convenient to
reduce the given system to the equivalent totality of the respective scalar equations, and only after-
wards to formulate the relevant boundary problem.

Further, if we compare even the most advanced mathematical applied achievements studying the
modern electromagnetic field problems, it can be noticed that almost all of them originally are bound
to the initial and boundary conditions [8]. Moreover, the proposed solution relies basically on the con-
crete spatial coordinates, not on the temporal one.

Finally, it is easier to formulate and study the scalar boundary problem for an only one function
than deal with the vector analogy that includes even the finite system of the corresponding equations.

Therefore, the main purpose of the present paper is the analytic solution of the specific boundary
scalar problem that is generated by the symmetrical differential Maxwell system in the case of an arbi-
trary excited linear isotropic homogeneous medium. The initial and boundary conditions are given for
the one-dimensional semi-infinite waveguide considering the temporal coordinate as the main variable.

Such problem statement in the scalar case is obviously approved owing to [9] where the solvabil-
ity criterion of the symmetrical differential Maxwell system is proved. The medium is the same as we
consider here, and the unified scalar wave PDE represents the equivalent object instead of the original
Maxwell system.

Before we come directly to the aforesaid scalar problem study, it should be noted that the sug-
gested formulation is really specific, since there is no one-dimensional analogy of the classical rot (ro-
tor) operation. Therefore, we can not reduce formally the unified wave PDE [9] from the statement of
(x,»,z,t) to the case of (x,¢). It means that just in the present situation the complete diagonalization

process of the original Maxwell system must be done as the first step, and the unified wave PDE is its
final result. Only after that we have right to formulate the required boundary problem basing on [9]
and solving it explicitly by means of the integral transforms technique [10].

So, let the symmetrical differential Maxwell system be given in the case of an arbitrary excited
linear isotropic homogeneous medium over the space (x,¢), where x,¢ are the spatial and temporal va-

riables respectively:
61ﬁ =(cx KSH)E +€, a—EJerT,

~0,E=(r+\p)H+ ua‘z—}:d”,

where:

E= E(x,t) ,H= ﬁ(x,t) — are the sought for vector functions of the electric and magnetic field
tensions;

o,u,,e, =const>0 — are the specific conductivity, absolute magnetic and dielectric perme-
ability of the medium;

A = const >0 — is the parameter of the signal that excites the medium. An absorption of the sig-
nal by the medium corresponds to “+”, a seizure implies “—;

>0 — is the theoretical constant which is responsible for the “symmetry” of the right parts of (1)
and whose existence is only assumed at the current stage of research;
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~CT =CT ~CT —~CT . . .
i =j (xt); e =e (x,t) — are the known vector functions that describe the outside cur-

rent sources and tensions;

0,= ﬁi — is the partial differential operation by the spatial variable x .
x

. - — =CTr -CT . .
Vector functionsE, H, j , e belong to one and the same class of four-times continuously
differentiated functions over the space (x,¢) [9].

After simple algebraic transformations system (1) can be rewritten as follows

“Chrak=h, @
-0,F, — DF, =f1,,
where:
C=G+8a62;D=r+ua62;62=80ik;60=%; 3)
are the symbols of the partial differential operators;
— = — — — =T — =T
F=E;F=H;f=j ;f,=e 4

are the unknown and given corresponding vector functions.
Further, (2) can be diagonalized either by the operator analogy of Gauss method [6, 7], or by the
inverse matrix operator construction with respect to the original matrix (2). The last method is re-

flected in [9].
Namely, matrix from (2) looks like
-C 0,
M= 5)
-0, -D
and
2 -1 4| =D _81
detM =0, +CD; M " =(detM) , (6)
0, —C
where:

M ' — is the inverse matrix operator regarding (5);
detM — is the determinant of (5);

(detM) ' — is the inverse operator of detM .
An application of (6) to (2) ... (4) takes (2) to the unified wave PDE

(85 +o7 JF=1", (7)
where:
~ * * * 2 *
03 =CD=(c+2,0,)(r+1,00) =21, (05 ) +(om, +7e,)0; +or (8)

is the operator differential polynomial,;

F{F—l] E*{‘Dﬁ‘aﬂ ©)
F, o f - Cf,

are the sought for and known functions respectively.
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It should be noted here that since the initial system (1) is considered for the space (x,t) , then

vector functions from (7), (9) can be accepted simultaneously as scalar in the framework, as of the
original problem statement, as of the PDE (7).
Moreover, we have to repeat again that there is no right to reduce directly the unified general

wave PDE from [6, 7] over the space (x, V, Z,t) to the present case of (x,t). This fact is completely
explicable because of the general situation [6, 7] when instead of 612 from (7) the operator
rot” =rot rot appears and acts. It is well known that the one-dimensional rot operator does not exist.
Now, taking into account the results of [9], we can formulate the wanted boundary problem for
the semi-infinite axis over the space(x,7).
The mentioned statement is the following

(é(z) +612)F =1, x,t e[O,+oo);

F(x,t)|, =8, (x);

OF(x,1)
ot

F(0,£) =8, (t) = const = d;

0" F(x,1)
a;c—"|*=°°= 0, (k=0,1).

The given mathematical model (10) describes the wave propagation (signal transmission) in the
semi-infinite one-dimensional waveguide along the direction of its spatial variable x and taking into
account the temporal parameter ¢ . The medium remains the same, as in (1), — isotropic linear homo-
geneous and an arbitrary excited. It is quite natural, since (10) is equivalent to (1) because of [9].

The first and the second initial conditions from (10) determine the behavior of the sought for vec-
tor field function and its instantaneous velocity at the zero time. The third, boundary condition from
(10) concerns the behavior of the same function in terms of the spatial origin point and describes the
signal independence of time remaining constant. The last, fourth boundary condition in (10) at the in-

| 1o =85 (%) (10)

finite point (x = oo) is required by the original problem statement and classical integral transform that

must be applied here [10]. Physically it means the natural signal (wave) fading by its spatial coordi-
nate x at the infinity.

The present contour of integration implies an application of the simplest version of the integral
transforms. It is the continuous sine (sin ):

Tsinocxdx, (azconsteR\{O}). (11)

0
The simplified geometrical picture of (10) is the following:
0x:0 (x,2) — ©

Applying (11) to (10) we get the equivalent problem in terms of the respective transforms, and it
is written further. Only, it should be noted that the double integration by parts gives the result which
we use here. Namely,

[o1F(x,0)sinoxd x = aF(0,) - o’F, (t), (12)
0

where:
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Fa (1) = .[F(x,t) sin ox dx — is the continuous sine -transform of F(x,7) by the variable x .
0

Hence, using (11) for (10) and considering (12), we obtain the transform analogy of (10) with the
appropriate ODE where 17‘“ (#) is the unknown:

2 2
{é15+(:14~1;i2k]éL+{k2ik(iz4~1;]+£9;1£—12£JJE;0)=f;UL 1€[0,+);
t

€, K, t €, K, H.&,
i.T()L(O) = gla;
dF,(0) _ (13)
dt _gZOL’

8., = |8 (x)sinoxdx (i=1,2).

S =8

In general, the second-order inhomogeneous linear ODE with the constant coefficients from (13)
can be rewritten as follows

F, (t)+aF, (1)+bF, (1) =f (1), (14)
where:
a=£+ii2kzc0nsteR,
€, M,
5 (15)
c r ro—o” +od
b=2" ik(—+—J+—=consteR
80 uﬂ uasa
are its coefficients;
f;(r)z.[#;(x,t)sinaxdt (16)
0

is the transform of the function f(: (x,t) .

Additionally, it is clear that (14)...(16) is the equation of forced oscillations [11] whose general
solution is the sum of the particular solution of (14) and the general one of the corresponding homoge-
neous ODE with respect to (14). The latter is the equation of free oscillations [11], and its general so-
lution is well-known [11]:

C, exp(_a +D)t+ C, exp(_az_D)t, it D* >0;

_ D(t-C
F,,(1)= exp(—%}(Clcos%+Czsin%)=Qexp(—%tjsin%, iftD*><0;  (17)

exp(—%J(Clt +C,), ifD*=0,
where:

2

4 -d

D2=a2—4b=(£—LJ +M=consteR. (18)
80 l’la uﬂgﬂ

The aforesaid respective partial solution of (14) is the following [11]:
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t _ —
zj.f;(t)expa(r t)shD(t 17)dr, ifD?>0;
D 2 2
‘- _ D(t -
()= %i (:(T)expa(t2 t)sm (1‘2 T)dt, if D* <0; (19)
t —
(£, (t)(t—t)exp—a( t)dr, if D* =0.
c

Then the required general solution of (14) is the sum of (17) and (19), where an addition is done

in the appropriate cases

F, (t)=F,(t)+F,(t). (20)

Realizing the initial conditions from (13) and taking into account (17)...(20) we get the system
regarding the unknown real constants C,, C, from (17):

0
C1+C2—£J.f;(t)expa—TshEdr, if D*>0
D} 27 2
0
Cl—gj.f;(r)expa—Tsinﬂdr, if D’<0 =g, (21)
D} 272

0—’* art . 2
C,-[f, (’E)‘Eexp?d’t, if D* =0
C

—atD e 4D L F,(0), ifD’>0
2 2
F.,(0)+F., (0)= —%Cl +§C2 +F.,(0), if D*<0 =8, (22)

o —%Cz +F.,(0), it D=0

Simplifying (21), (22) with respect to the unknown constants C;,C, we obtain the three linear

systems:

where:

_ (23)
atDe 2D F(0)48,,.if D> 0;
2 2
G ZFal(o)"'gm’
. (24)
e +2C2 =-F., (0)+8&,,,if D* <0;
2 2
CZ ZFal(o)+gla’
(25)

C, —%Cz ——F,(0)+8,,,if D* =0,

g (i = 1,2) — are the same in all cases and are given in (13), (21), (22);
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F, (0), F,

al

each of three values of D from (1 8).
The corresponding solutions of (23)...(25) are given below:

(0) — are described in (19), (21), (22) and have their own different expressions in

CI,Z = i%(_g.hl - F(;l (0)) +%(1 i%)(]—‘i‘al (0) + gla ) s (26)
C = F(xl (0) +8105
- . (27)
Cy = (a(Fr(0)+ 81 )+ 2(F3y (0)+£2,.))

CZ = Fotl (0) + gla;

. _ (28)
C =-F, (0) + 854 +%(Fa1 (0) +81q )

Substituting (26) — (28) for C|, into (17), (20) we get the required analytic solution of (13).

Afterwards, an application of the inverse integral sine -transform
- 2% .
F(x,t)==[F,(¢)sinax do
To

to (20) gives at last the explicit solution of the original boundary problem (10).
Hence, the raised problem is solved analytically completely, and the purpose of the present paper
is achieved here too.
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