ОСЦИЛЯЦІЇ ЕЛЕКТРИЧНИХ ПАРАМЕТРІВ У ПЛІВКАХ ПОНИЖЕНОЇ РОЗМІРНОСТІ, ОБУМОВЛЕНІ КВАНТОВО-РОЗМІРНИМ ЕФЕКТОМ

Д.М. Фреїк, Л.Т. Харун, І.К. Юрчишин

Фізико-хімічний інститут Прикарпатського національного університету імені Василя Стефаника вул. Шевченка, 57, Івано-Франківськ, 76025, Україна, LidiaHaroun@ua.fm

Зроблено аналіз результатів дослідження осциляцій електричних параметрів у напівметалічних та напівпровідникових наноструктурах, які мають місце внаслідкок розмірного квантування спектру носіїв струму.

Вступ

Ідея розмірного квантування була запропонована ще в 1937 р. [1]. Теоретичні основи явища квантово-розмірного ефекту (КРЕ) почали закладатись у 1953р. [2] та інтенсивно розвивались протягом наступних десяти років у роботах [3-10].

КРЕ вперше спостережено у 1966 р. на напівметалічних зразках, а саме, на плівках вісмуту Ві [11].

На даний час, дослідження квантово-розмірних ефектів, має не тільки наукове, але й прикладне значення. Зокрема, в останні роки виявили значне зростання термоелектричної добротності $ZT\approx 8$ ($Z=S^2\sigma/\chi$, де S – коефіцієнт Зеєбека, σ – питома електропровідність, χ – теплопровідність), при розмірному квантуванні спектру носіїв струму в наноструктурах [12]. Останнє зумовило дослідження КРЕ у напівпровідникових сполуках IV VI – перспективних термоелектричних матеріалах для середньої області температур (500-750) К [13].

У цій статті зроблено аналіз результатів дослідження квантово-розмірних ефектів у напівметалічних та напівпровідникових наноструктурах.

Елементи теорії

При співмірності товщини d кристала (плівки) з довжиною хвилі де Бройля λ_D елементарних збуджень, може бути реалізований квантовий розмірний ефект. Він обумовлений тим, що поперечний рух квазічастинок є квантований: проекція квазіімпульсу на напрям малого розміру d може приймати лише дискретний набір значень[14]:

$$\left|p_{z}\right| = \frac{\pi\hbar}{d}n,\tag{1}$$

де n=1, 2, 3...

Це часто використовуване співвідношення справедливе відносно квазічастинки з квадратичним законом дисперсії в прямокутній нескінченно високій потенціальній ямі і в загальному випадку не є точним [15]. При розгляді умов розмірного квантування передбачається, що відбиття від стінок потенціальної ями є дзеркальним. При дзеркальному відбитті зберігаються паралельна складова проекції імпульсу p_{\parallel} на поверхню кристала і енергія. Нормальні компоненти проекції імпульсу до і після зіткнення (відповідно p_{z1} і p_{z2}) задовольняють рівнянню

$$\varepsilon (\mathbf{p}_{\parallel}, \mathbf{p}_{z}) = \varepsilon. \tag{2}$$

Умова квантування набуває вигляду:

$$\Delta p_{z} = |p_{z1} - p_{z2}| = 2\pi \hbar n/d.$$
(3)

Вона справедлива при довільному законі дисперсії і анізотропному енергетичному спектрі. Ліва частина у формулі (3) є хордою ізоенергетичної поверхні є (**p**) = ε , що проходить через точку (**p**_{||},0) паралельно до осі **p**_z. Для поверхні з площиною симетрії, що перпендикулярна до **p**_z, співвідношення (3) переходить у (1).

Просторове квантування зумовлює розщеплення енергетичної зони на двовимірні підзони, закон дисперсії для яких $\varepsilon = \varepsilon_{\parallel}(p_{\parallel})$ визначається умовою квантування (3). Енергія квазічастинки залежить у цьому випадку від "плоского" імпульсу p_{\parallel} і дискретного квантового числа п. При квадратичному законі дисперсії:

$$\varepsilon = \frac{p_{\parallel}^2}{2m_{\parallel}} + \frac{\pi^2 \hbar^2}{2m_z d^2} \cdot n^2, \tag{4}$$

де m_{||} і m_z, відповідно, паралельна і поперечна складова ефективної маси.

Таким чином, спектр квазічастинки в плівці є квазідискретним – він розбитий на підзони, що перекриваються. Відстань по енергії між станами з найменшою енергією в сусідніх підзонах складає

$$\Delta \varepsilon_{n,n+1} = \frac{\pi^2 \hbar^2}{2m_e d^2} (2n+1).$$
⁽⁵⁾

Мінімальна енергія ε_1 визначається умовами $p_{\parallel} = 0$, n = 1 і дорівнює

$$\varepsilon_1 = \frac{\pi^2 \hbar^2}{2m_e d^2}.$$
 (6)

Відсутність підзони з n = 0 є наслідком принципу невизначеності і пов'язана з локалізацією електрона в плівці, товщина якої мала.

Відомо, що головною причиною появи осциляцій у товщинних залежностях кінетичних, електричних, термодинамічних та інших параметрів, є немонотонний характер залежності густини станів від товщини. Зокрема, густина станів для розмірно-квантованої плівки g_{пл} з парболічним законом дисперсії має вигляд:

$$g_{nn}(\varepsilon,d) = g_{M}(\varepsilon) \left[\sqrt{\frac{\varepsilon}{\varepsilon_{1}}} \right] / \sqrt{\frac{\varepsilon}{\varepsilon_{1}}} , \qquad (7)$$

 $de\left[\sqrt{\varepsilon/\varepsilon_1}\right]$ — ціла частина від $\sqrt{\varepsilon/\varepsilon_1}$, тобто число підзон, дно яких лежить нижче заданої енергії є; ε_1 – енергія найнижчого рівня у плівці (6), а

$$g_{M}(\varepsilon) = \frac{m}{\pi \hbar^{2} d} \left(\frac{\varepsilon}{\varepsilon_{1}}\right)^{1/2} = \frac{\left(2m\right)^{3/2}}{2\pi^{2} \hbar^{3}} \varepsilon^{1/2}$$
(8)

- густинана станів у масивному зразку, m - ефективна маса носіїв струму.

Із формули (7) видно, що при товщинах d_n, коли $(\epsilon/\epsilon_1)^{1/2}$ дорівнює цілому числу, тобто коли дно якої-небудь підзони співпадає із заданою енергією є, то $g_{\pi\pi}(\epsilon,d_n)=g_M(\epsilon)$. При інших товщинах зі зростанням товщини d, густина станів $g_{\pi\pi}(d)$ зменшується пропорційно 1/d доти, поки не зміниться на одиницю число підзон, що розміщені нище рівня є. Ця залежність наведена на рис. 1. Значення товщини, при якій густина станів міняється стрибком, визначаються з умови $(\epsilon/\epsilon_1)^{1/2}=n$, де n – ціле число. З цієї умови знаходимо: $\epsilon/\epsilon_1=n^2$, $\epsilon/(\pi^2\hbar^2/2m_zd^2)=n^2$, звідси

$$d_{n} = \left(\pi^{2}\hbar^{2}/2m\varepsilon\right)^{1/2} n = d_{1}n,$$
(9)

де n = 1, 2, 3,...; $d_1 = \pi \hbar / \sqrt{2m\epsilon}$ – товщина, при якій дно найнищої зони співпадає із заданою енергією є, тобто d_1 визначається з умови $\epsilon_1 = \epsilon$. Відмітимо, що при товщинах $d < d_1$ станів немає (див. рис.1), оскільки ця область товщин відповідає $\epsilon < \epsilon_1$, тобто є попадає в заборонену область. Із рис.1 видно, що густина станів для розмірно-квантованої плівки $g_{nn}(d)$ – це періодична функція від товщини. Як уже було сказано вище, товщинні осциляції різних параметрів плівки за умов квантово-розмірного ефекту, пов'язані саме з такою поведінкою густини станів. Період осциляцій легко визначити з формули (9):

$$\Delta d = d_1 = \pi \hbar / \sqrt{2m\varepsilon} = \lambda_D / 2 \tag{10}$$

де $\lambda_D = 2\pi\hbar/(2m\epsilon)^{1/2} = \hbar/(2m\epsilon)^{1/2}$.

Рис. 1. Залежність густини станів від товщини розмірно квантованої плівки при заданій енергії ε (ε = const). Штриховою лінією показано густину станів масивного зразка [16].

У формулі (10) для розрахунків часто замість є беруть енергію Фермі є_F масивного зразка, а в якості ефективної маси m – поперечну складову ефективної маси носіїв струму.

Експериментальні результати Напівметалічні наноструктури

Осциляції електричних параметрів коефіцієнта Холла R_H та відносного опору ρ_T/ρ_{300} (рис. 2) спостерігалися в роботі [11] на плівках вісмуту Ві, де було вперше досягуто такий характер d-залежностей в умовах КРЕ. Дослідження проводились в інтервалі товщин d \approx 20-160 нм. Період осциляцій складає $\Delta d \cong (40 \div 50)$ нм. На основі експериментального періоду Δd =40нм, за формулою (10) у роботі оцінено ефективну масу носіїв струму m=0,011m₀, яка збігається з відомим [17] значенням компоненти ефективної маси, що відповідає тригональній осі.

Рис. 2. Залежність відносного опору р_т/р₃₀₀ від товщини d плівок вісмуту Ві за температур 78 і 4,2 К [11].

Рис. 3. Залежність питомого опору р від товщини плівок вісмуту, що сконденсовані на слюді. Вимірювання виконані на серіях зразків, які приготовлені з кроком по товщині [12].

У роботі [18] проведено дослідження плівок Ві у значно більшому інтервалі товщин (d=12-400 нм), у результаті чого спостерігались до 8 періодів добре виражених осциляцій на d-залежностях питомого опору ρ (d) (рис. 3). Як видно з рисунка, амплітуда осциляцій більша за нижчих і майже повністю згладжується при кімнатних температурах вимірювання. Також у статті отримані дані про структурні характеристики плівок вісмуту, що свідчать про високу їх досконалість, що, як відомо, є однією з необхідних умов для реалізації КРЕ.

Дослідження в роботі [19] товщинних залежностей електричних параметрів R_H , та σ плівок вісмуту в інтервалі d=4-300 нм при кімнатній температурі показало, що за температури підкладки T_n =380 К спостерігаються осциляції з періодом Δd =(30±5) нм (рис. 4а), що узгоджується з більшістю літературних даних.

Загальний характер залежностей зберігається і за температури підкладки Т_п=300 К, але осциляції проявляються менш чітко (рис. 4б).

Осцилюючий характер залежностей із тим же періодом Δd має місце і за низьких температур (рис. 5), причому відносна зміна провідності у результаті осциляцій, практично не залежить від температури вимірювання. Якщо приймати до уваги тільки монотонну складову кривих $\sigma(d)$, то автор відзначила зростання електричної провідності зі збільшенням товщини плівок до ~200нм і вихід на насичення при подальшому зростанні d (рис. 5).

Рис. 4. Залежність $R_H(d)$ для плівок Ві за кімнатної температури, при $T_n = 380 K$ (a), $T_n = 300 K$ (б) [19].

Рис. 5. Залежності електропровідності σ від товщини d тонких плівок Ві при кімнатній температурі і при 100 К (температура підкладки T_n= 380 K) [19].

Факт збереження загального характеру d-залежностей параметрів плівок, незважаючи на те, що кожний із досліджуваних зразків одержано в окремому експерименті, вказує на добре відтворення результатів та вірогідність закономірностей, що спостерігаються.

Також у [19] було проведено детальне дослідження товщинних залежностей кінетичних параметрів тонких плівок Ві в інтервалі d=7-60 нм. У межах цих товщин, як відзначає автор, можна виділити дві підобласті з різною залежністю параметрів від товщини: d=7-25 та d=25-60 нм. У першій підобласті залежності мають вигляд кривих із максимумом при d~20 нм, а в другій – осцилюючий характер із періодом осциляцій $\Delta d=(5\pm1)$ нм (рис. 6).

Рис. 6 Залежність електропровідності σ від товщини d тонких плівок Ві за кімнатної температури (температура підкладки T_п = 380 K) [19].

Висловлено припущення, що товщина $d=(25\pm5)$ нм відповідає переходу напівметал-напівпровідник (НМНП), розмежовуючи підобласті з напівпровідниковим і напівметалічним характером провідності, і що в області d=25-60 нм має місце прояв розмірного квантування дірок. Теоретична оцінка Δd для діркового газу показує, що це значення наближається до експериментального.

На основі одержаних температурних залежностей R_H для плівок із товщиною d=7-60 нм [19], автором було проведено теоретичний розрахунок значень ширини забороненої зони Е_g у припущенні, що критична товщина, яка відповідає переходу НМНП, дорівнює d=(25±5) нм і при d<(25±5) нм має місце напівпровідниковий хід провідності. Також у роботі встановлено осцилюючий характер ($\Delta d=(15\pm2)$ нм) залежності електричної провідності σ від товщини d шару Ві в гетероструктурах слюда/PbTe/Bi/Al₂O₃ (d_{Bi}=1-80 нм, d_{PbTe}=50 нм) (рис. 7), і слюда/PbTe/Bi (без захисного покриття) ($\Delta d = (25 \pm 2)$ нм), що свідчить про розмірне квантування енергетичного спектру електронів, коли їх рух обмежений у квантовій ямі. Зменшення періоду осциляцій у порівнянні з Δd у плівці Bi (Δd=(30±5) нм) (див. рис. 4a) пояснюється зміною структури і параметрів квантової ями для електронів (ефективної маси носіїв заряду та енергії Фермі). Збільшення періоду у відсутності захисного шару Al₂O₃ відбувається, як пише автор, внаслідок процесів окиснення. Кисень, проникаючи через тонкий шар Ві при малих товщинах останнього, в результаті акцепторної дії, впливає на властивості шару PbTe, знижуючи концентрацію електронів у ньому, що призводить до зростання Δd. гетероструктурах РbTe/Ві можна досягти Показано, що В вищих значень термоелектричної потужності в порівнянні із плівками Ві.

Рис. 7. Залежність електропровідності σ від товщини шару Ві (d_{Bi})і при кімнатній температурі в гетероструктурах слюда/PbTe/Bi/Al₂O₃ [19].

Рис. 8. Залежність σ(d) для плівок Ві (температура підкладки T_п = 350 К): 1 – до відпалу; 2 – після відпалу при T=420 К. Різні позначення експериментальних точок відносяться до різних зразків[20].

У роботі [20] проведено спостереження квантоворозмірного ефекту в тонких полікристалічних плівках вісмуту. Період товщинних осциляцій провідності складає Δd~40 нм. За умов прояву КРЕ, автори статті [20] виявили аномальний розмірний ефект у провідності плівок вісмуту (рис. 8), де зі зменшенням товщини провідність плівок зростає.

Цю аномальну залежність у провідності пояснено не структурною досконалістю, а ростом часу релаксації для дірок і електронів, при зменшенні товщини плівок. Оскільки зростає час релаксації, то відповідно зростуть рухливість і провідність носіїв. Проте, оскільки в роботі не досліджена область малих товщин, автори могли помилитись. Таку думку змушує висловити попереднє дослідження, яке відображене на рис. 6. На основі цього видно, що у плівках Ві не має аномального ефекту у провідності.

Автори [21], на основі дослідження d-залежності відносного опору плівок чистого вісмуту та сплаву Bi_{0,96}Sb_{0,04} (рис. 9) показали, що осциляції опору в структурно досконалих плівках вісмуту пов'язані саме з параметрами спектру, а не з якими-небудь іншими випадковими причинами. Кількість нанесеної сурми складала ~4 ат.% у сплаві. Це відповідає дуже сильному зменшенню перекриття електронної і діркової зон у сплаві вісмут-сурма, порівняно з чистим вісмутом, а саме: більше, ніж у два рази. З рис. 9 видно, що додання сурми зумовило зміну періоду осциляцій від ~26 до ~65 нм, тобто, більше як у два рази, що повністю узгоджується зі зміною параметрів спектру. Зростання амплітуди автори пояснили тим, що спостережені осциляції відповідають меншим квантовим числам.

У роботі [22] детально вивчено товщинні залежності відносного опору R_T/R_{293} та провідності σ для плівок сурми, де R_T – опір при температурі 78 і 4,2 К. На одержаних кривих спостерігаються осциляції з періодом $\Delta d \sim (25 \div 28)$ нм. У дуже тонких плівках сурми зменшення σ (рис. 10) пов'язано з визначальним впливом погіршення структурних характеристик зразків при зменшенні товщини, про що свідчить згладження і розмиття квантових осциляцій.

Рис. 10. Залежність електропровідності σ від товщини d плівок сурми Sb за температур: 1 – 4,2 K; 2 – 78 K; 3 – 293K [22].

На рис. 10 (крива 3) бачимо, що осциляції не зникають повністю навіть при кімнатній температурі, у зв'язку з відносно великою (порівняно з енергією теплового руху kT) відстанню між енергетичними рівнями поблизу енергії Фермі. З теоретичної кривої, яка зображена на вставці рис. 10, видно, що відносна провідність плівок має стрибок при зростанні товщини зразка на величину, що дорівнює періоду ∆d осциляцій, також тут

видно, що провідність плівок σ_{nn} менша за провідність масивних матеріалів σ_{∞} , і росте зі збільшенням товщини, наближаючись до σ_{∞} .

Дослідження температурного затухання амплітуди квантово-розмірних осциляцій у плівках олова Sn зроблено у статті [23]. Проведений аналіз показав, що температурне затухання осциляцій і спостережувані періоди у зразках характеризуються величинами, що добре узгоджуються з параметрами спектру в масивному кристалі. Експериментальні товщинні залежності відносного опору R_T/R₃₀₀ плівок Sn представлені на рис. 11.

Рис. 11. Залежності відносного опору R_T/R₃₀₀ від товщини d плівок олова Sn за різної температури вимірювання [23].

Напівпровідникові наноструктури

У роботі [24], застосовуючи метод зразків змінної товщини, спостерігали квантоворозмірні ефекти в монокристалічних плівках InSb n-типу. Попередньо було показано, що енергетичний спектр електронів у тонких плівках InSb має квазідискретний характер. Внаслідок малої величини густини станів у зоні провідності електронний газ у плівках InSb є вироджений при кімнатній температурі [24], що зумовлює прояв КРЕ. На залежностях коефіцієнта Холла R_H та питомого опору р від товщини d плівок InSb мали місце осциляції (рис. 12). Їх період на товстому кінці зразка складав ∆d=50нм. Оцінка ефективної маси носіїв згідно співвідношення (10), де в якості енергії є було взято є_F – енергію Фермі масивного зразка, дала значення т^{*}≈0,01m₀, яке добре узгоджується з даними оптичних вимірювань. Як видно з рис. 12, при товщині d≤30 нм спостерігається різке зростання р, обумовлене в основному зменшенням концентрації носіїв, що інтерпретовано у роботі, як зняття виродження електронного газу. У роботі [25] досліджено осциляції електричної провідності σ (рис. 13), за умов квантоворозмірного ефекту, у квантових ямах PbSe. Саме підкладка KCl і шар EuS забезпечували квантову яму для носіїв у шарі PbSe. За відомої ефективної маси носіїв заряду в PbSe n-типу $(m_t^* = 0.04m_0, m_t^* = 0.07m_0)$ і енергії Фермі (є_F) за рівнянням (10) теоретично оцінений період осциляцій, який дорівнює $\Delta d_r = 27$ нм і дещо не узгоджується з експериментально визначеним періодом $\Delta d_e = (35\pm3)$ нм. Не чітке співпадіння експериментального і теоретично обрахованого періоду осциляцій автори пояснюють спрощеннями у використаній моделі, а саме: ізотропністю і параболічністю зони провідності, дзеркальним розсіюванням носіїв заряду, ідентичністю та нескінченною висотою стінок квантової ями.

Рис. 12. Залежність питомого опору р від товщини d плівок InSb за кімнатної температури [24].

Рис. 13. Залежність питомої провідності σ від товщини d шару PbSe в двошаровій структурі (100)KCl/PbSe/EuS за кімнатної температури. Криві проведені через експериментальні точки [25].

Подібно, як і у [25], квантова яма для плівок PbS (d=2-200нм) реалізована авторами у роботі [26]. Осциляції в d-залежності електричної провідності σ (рис.14), пояснено появою в тонких шарах квантово-розмірних ефектів. Оцінений період осциляцій $\Delta d_r = 10-15$ нм для концентрації носіїв заряду n=(4-8)×10¹⁸ см⁻³, відрізняється від даних експерименту $\Delta d_e \approx 25-30$ нм. Крім причин, вказаних вище, автори [26] зазначають, що ця відмінність у періодах пов'язана з тим фактом, що вимірювання здійснювалися при кімнатній температурі. Адже, зазвичай приймається, що осциляції при КРЕ можуть спостерігатися тільки в достатньо низькотемпературному діапазоні. Проте підмічено, що КРЕ може проявлятись навіть, коли ці умови не виконуються, хоча його прояв є не такий чіткий, як при низьких температурах і деякі осциляції, можливо, зникають.

Рис. 14. Залежність провідності σ від товщини d шару PbS у двошаровій структурі (100) KCl/PbS/EuS за кімнатної температури [26].

Осциляційна поведінка електричних параметрів, завдяки прояву КРЕ, досліджувалася у квантових ямах PbTe n-типу[27]. Важливим параметром, що визначає характер d-залежностей є концентрація носіїв струму, яка визначає номер заповненого підрівня і період осциляцій. У зв'язку з цим, автори виконали більш детальне вивчення залежностей електричних параметрів для структур KCl/n-PbTe/EuS від товщини d плівок n-PbTe із різною концентрацією носіїв струму. Було встановлено, що в залежностях $R_H(d)$ та $\sigma(d)$ позиції максимумів змінюються, при зміні концентрації носіїв струму (рис. 15).

У роботі [28] реалізована модель квантової ями для шару p-SnTe у гетероструктурі n-PbTe/p-SnTe/n-PbTe. Гетероструктури були вирощені шар за шаром, що дозволило вивчати розмірне квантування при малій товщині, де КРЕ проявляються найчіткіше. При цьому спостерігається чітка немонотонна поведінка провідності σ (рис.16) гетероструктур від ширини квантової ями SnTe ($d_{SnTe}=0,5-6$ нм), при сталій товщині бар'єрних шарів PbTe, яку не можна пояснити в межах тришарової сандвічмоделі. Автори приписують цю поведінку прояву КРЕ для газу дірок у квантовій ямі SnTe, між бар'єрами n-PbTe. Експериментальне значення періоду осциляцій і положення екстремуму точок знаходиться в хорошій відповідності з результатами теоретичних обчислень, зважаючи на обмежену висоту бар'єрів, що підтверджує прояв КРЕ.

У роботі [19] отримані осциляційні залежності електричних параметрів для тонких плівок РbTe на слюді, за умов квантово-розмірного ефекту. Плівки PbTe були приготовлені з шихти n-PbTe з концентрацією електронів n≈1,0·10²⁰ см⁻³ в інтервалі товщин d=5-100 нм із захисним покриттям Al₂O₃. Всі плівки мали електронний тип провідності. На d-залежностях σ (рис. 17) та R_H було виявлено осциляції з періодом $\Delta d \approx (20\pm 2)$ нм. Природно припустити, як відзначено, що такий характер залежностей є наслідком розмірного квантування енергетичного спектру, що має місце в квантовій ямі PbTe, яка оточена діелектричними бар'єрами (слюда та Al₂O₃). Для такої системи може бути використана модель нескінченно глибокої прямокутної потенціальної ями.

Рис. 17. Залежність електропровідності σ від товщини d плівок PbTe, одержаних із шихти з концентрацією електронів п≈1,0·10²⁰ см⁻³ [19].

У роботі [29] спостерігалися осциляції на d-залежностях електропровідності σ та коефіцієнта Холла R_H наноструктур p-SnTe на слюді, без додаткового захисту їх від окиснення (рис.18). Як стверджують автори, у роботі вдалося реалізувати квантову яму для дірок у шарі p-SnTe, бар'єрами для якої служили з одного боку слюдяна підкладка, а з іншого – сильно збагачений на акцепторні центри шар на поверхні структури слюда/p-SnTe. За умови, що дифузія кисню супроводжується утворенням тонкого адсорбованого шару на поверхні кожного нанокристаліту, квантування енергетичного спектру дірок матиме місце в межах цього утворення. Також у [29] зауважено, що механізми росту конденсату визначають максимуми в d-залежностях електричних і кінетичних параметрів, що слід враховувати при їх аналізі.

Рис. 18. Залежність питомої провідності σ від товщини плівок SnTe у наноструктурі (0001) CTA/p-SnTe при T=300 K [29].

200 400 600 800 d, нм
 Рис. 19. Залежність питомої провідності σ від товщини d плівок PbTe у наноструктурі ПМ1/р-РbTe при T=300 K для різного часу витримки на повітрі t: свіжовирощені - 1; 24 год. - 2; 50 год. - 3 [30].

Авторами [30] спостережено осциляції товщинних залежностей електропровідності σ та коефіцієнта Холла R_H на структурах p-PbTe на поліаміді (рис.19). Зразки для дослідження вирощували з парової фази методом відкритого випаровування у вакуумі на підкладках з поліамідної стрічки типу ПМ-1. Температура випарника під час осадження складала T_в=970 K, а температура підкладок T_п=420 K. Така поведінка осциляцій, як стверджується, обумовлена розмірними ефектами у квантовій ямі, утвореній потенціальними бар'єрами на межі поліамідної підкладки і окисного шару на поверхні нанокристалітів p-PbTe.

Висновки

Зроблено аналіз виникнення квантоворозмірного ефекту (КРЕ) у структурах пониженої розмірності. Встановлено зв'язок між характером зміни густини станів та осциляціями електричних параметрів. Показано, що для плівок Ві період осциляцій електричних параметрів залежить від температури осадження, а область переходу "напівметал-напівпровідник" (НМНП) реалізується при товщинах $d=(25\pm5)$ нм. Для плівок вісмуту Ві, сурми Sb та олова Sn встановлено температурне затухання амплітуди осциляцій за умов КРЕ в діапазоні температур вимірювання: $4,2\div300K - Bi$; $4,2\div293K - Sb$; $4,2\div180K - Sn$. Показано, що для плівок РbTe n- і р-типу розміщення максимумів на товщинних залежностях електричних параметрів визначаються концентрацією основних носіїв струму. Підтверджено можливість реалізації KPE у гетероструктурах: n-PbTe/p-SnTe/n-PbTe (модель потенціальної ями зі скінченною висотою бар'єрів); слюда/PbTe/Bi, слюда/PbTe/Bi, CTA/p-SnTe, ПМ1/p-PbTe (модель потенціальної ями з нескінченно високими стінками).

Література

- 1. Frölich H. Die spezifische Wärme der Elektronen kleiner metallteilchen bei tiefen Temperaturen // Physica. 1937. V. 4. P. 406.
- 2. Лифшиц И.М., Косевич А.М. // ДАН СССР. 1953. Т. 91. С. 795.
- 3. Лифшиц И.М., Косевич А.М. Об осцилляциях термодинамических величин для вырожденного ферми-газа при низких температурах // Изв. АН СССР. Сер. физ. 1955. Т. 19, № 4. С. 395–403.
- 4. Косевич А.М., Лифшиц И.М. // ЖЭТФ. 1955. Т. 29. С. 743.

- 5. Лифшиц И.М., Каганов М.И. Некоторые вопросы электронной теории металлов // УФН. 1959. Т. 69, № 3. С. 419–458.
- 6. Лифшиц И.М., Каганов М.И. Некоторые вопросы электронной теории металлов // УФН. 1962. Т. 78, № 3. С. 411–461.
- 7. Лифшиц И.М., Каганов М.И. Некоторые вопросы электронной теории металлов // УФН. – 1965. – Т. 87, № 3. – С. 389–469.
- 8. Тавгер Б.А., Демиховский В.Я. О некоторых эффектах, обусловленных дискретностью энергетического спектра электрона в тонких пленках // ФТТ. 1963. Т. 5, № 2. С. 644–648.
- 9. Сандомирский В.Б. // Радиотехника и электроника. 1962. Т. 7. С. 1971.
- 10. Сандомирский В.Б. // ЖЭТФ. 1962. Т. 43. С. 2309.
- 11. Огрин Ю.Ф., Луцкий В.Н., Елинсон М.И. О наблюдении квантовых размерных эффектов в тонких пленках висмута // Письма в ЖЭТФ. 1966. Т. 3, № 3. С. 114–118.
- 12. Lin Yu-Ming, Dresselhaus M.S. Thermoelectric properties of superlattice nanowires // Phys. Rev. B. 2003. V. 68 P. 075304–075318.
- Harman T.C., Walsh M.P., LaForge B.E., Turner G.W. // J. Electron. Mater. 2005. V. 34. – L19.
- Комник Ю.Ф. Физика металлических пленок. Размерные и структурные эффекты Москва: Атомиздат, 1979. – 264 с.
- 15. Недорезов С.С. О поверхностных эффектах в термодинамике электронов проводимости // ЖЭТФ. 1966. Т. 51. С. 868.
- 16. Аскеров Б.М. Электронные явления переноса в полупроводниках Москва: Наука, 1985. 320 с.
- 17. Cohen M.H. Energy bands in the bismuth structure. I.A. nonellipsoidal model for electrons in Bi // Phys. Rev. 1961. V. 121. P. 387.
- Огрин Ю.Ф., Луцкий В.Н., Шефталь Р.М., Арифова М.У., Елинсон М.И. Квантовые размерные эффекты в тонких пленках висмута // Радиотехника и электроника. – 1967. – Т. 12. – С. 748.
- 19. Любченко С.Г. Явища переносу і квантові розмірні ефекти в тонких плівках телериду свинцю та вісмуту та структурах на їх основі : автореф. дис. на здобуття наук. ступеня канд. фіз.-мат. наук: спец. 01.04.10 "Фізика напівпровідників та діелектриків". Харків, 2007. 20 с.
- Комник Ю.Ф., Бухштаб Е.И. Наблюдение квантового и классического размерных эффектов в поликристаллических тонких пленках висмута // ЖЭТФ. – 1968. – Т. 54, №1. – С. 63–68.
- 21. Комник Ю.Ф., Бухштаб Е.И., Никитин Ю.В. Квантовый размерный эффект в тонких пленках висмута с добавлением сурьмы // ФНТ. –1975. Т. 1, № 2. С. 243–246.
- 22. Комник Ю.Ф., Бухштаб Е.И. Обнаружение квантових осцилляций проводимости в тонких пленках сурьмы // Письма в ЖЭТФ. 1967. Т. 6. С.536–540.
- 23. Комник Ю.Ф., Бухштаб Е.И., Никитин Ю.В., Сулковский Ч. Температурная зависимость амплитуды квантовых осцилляций сопротивления тонких пленок олова // ФТТ. 1972. Т. 14. С. 641.
- 24. Филатов О.Н., Карпович И.А. Квантовые размерные эффекты в тонких пленках InSb // Письма в ЖЭТФ. 1969. Т. 10. С. 224–226.
- Rogacheva E.I., Tavrina T.V., Nashchekina O.N., Grigorov S.N., Nasedkin K.A. Quantum size effects in PbSe quantum wells // Applied Physics Letters. – 2002. – V. 80, N 15. – P. 2690–2692.
- 26. Rogacheva E.I., Nashchekina O.N., Vekhov Y.O., Dresselhaus M.S., Cronin S.B. Effect of thickness on the thermoelectric properties of PbS thin films // Thin Solid Films. 2003. N 423. P.115–118.

- 27. Rogacheva E.I., Nashchekina O.N., Grigorov S.N., Dresselhaus M.S., Cronin S.B. Oscillatory behaviour of the transport properties in PbTe quantum wells // Nanotechnology. 2003. V. 14. P. 53–59.
- Rogacheva E.I., Nashchekina O.N., Meriuts A.V., Lyubchenko S.G., Dresselhaus M.S. Dresselhaus G. Quantum size effects in n-PbTe/ p-SnTe/ n-PbTe heterostructures // Appl. Phys. Lett. – 2005. – V. 86, N 6. – P. 063103–063109.
- 29. Юрчишин І.К., Чав'як І.І., Лисюк Ю.В., Харун Л.Т. Розмірні ефекти термоелектричних параметрів у наноструктурах p-SnTe на слюді // Фізика і хімія твердого тіла. 2010. Т. 11, № 4. С. 898–903.
- Остафійчук Б.К., Фреїк Д.М., Шпак А.П. Квантово-розмірні ефекти і осциляції кінетичних параметрів у напівпровідникових наноструктурах // Фізика і хімія твердого тіла. –2010. – Т. 11, № 4. – С. 804–814.

ОСЦИЛЛЯЦИИ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ В ПЛЕНКАХ ПОНИЖЕНОЙ РАЗМЕРНОСТИ, ПРЕДОПРЕДЕЛЕННЫЕ КВАНТОВО-РАЗМЕРНЫМ ЭФФЕКТОМ

Д.М. Фреик, Л.Т. Харун, И.К. Ючишин

Физико-химический институт

Прикарпатского национального университета имени Василия Стефаника ул. Шевченко 57, Ивано-Франковск, 76025, Украина, LidiaHaroun@ua.fm

Проанализированы результаты исследования осцилляций электрических параметров в полуметаллических и полупроводниковых наноструктурах, которые имеют место вследствие размерного квантования спектра носителей тока.

THE OSCILLATIONS OF THE ELECTRICAL PARAMETERS IN FILMS OF REDUCED DIMENSION CAUSED BY QUANTUM SIZE EFFECT

D.M. Freik, L.T. Kharun, I.K. Yurchyshyn

Physical-Chemical Institute, Carpathian National University named after Vasil Stefanik 57 Shevchenko Str., Ivano-Frankivsk, 76025, Ukraine, LidiaHaroun@ua.fm

Results of the study of oscillations of electrical parameters in semi-metallic and semiconductor nanostructures which take place due to the size quantization spectrum of the carriers have been analyzed.