ВЛИЯНИЕ НАНОЧАСТИЦ Fe₂O₃ НА ГИДРОФОБНЫЕ СВОЙСТВА КРЕМНЕЗЁМА С АДСОРБИРОВАННЫМ ПОЛИМЕТИЛФЕНИЛСИЛОКСАНОМ

В. М. Богатырев, М. В. Галабурда, Н.В.Борисенко

Институт химии поверхности им. О.О. Чуйка Национальной академии наук Украины ул. Генерала Наумова 17, Киев, 03164, Украина

Методами ИК-спектроскопии и дифференциального термического анализа исследованы особенности термического превращения адсорбированного полиметилфенилсилоксана (ПМФС), а также влияние наночастиц Fe_2O_3 на эти преобразования. Установлено, что ПМФС обуславливает гидрофобные свойства соединения SiO₂/ПМФС в интервале температур 250-350 °C при концентрации полимера 20-40 %, а присутствие оксида железа повышает термическую стойкость гидрофобного покрытия (10-40 % ПМФС) в интервале 100-400 °C.

Введение

Анализ тенденций развития современного материаловедения свидетельствует об увеличении спроса на материалы полифункционального назначения, которые обладают значительной теплостойкостью, а также характеризуются стабильностью свойств. Потребности в полимерных покрытиях для защиты различных материалов и изделий от влаги и требования к их эксплуатационной надежности в настоящее время неуклонно растут. Широкое распространение среди таких гидрофобизующих покрытий получили лакокраски и композитные материалы на основе кремнийорганических (полиорганосилоксанових) пленкообразователей [1, 2].

Важным направлением при создании новых полимерных композитов является исследование влияния дисперсных наполнителей на термическую деструкцию полимеров, и особое место в этом направлении занимают полиорганосилоксаны. Известно, что термическая и термоокислительная деструкция является не только критерием температурного ограничения в использовании полимерных композитов, но и методом получения новых органосиликатних и керамических материалов из кремнийорганических прекурсоров. Новый импульс эти исследования получили вследствие интенсивного развития работ в области наноразмерных наполнителей полимеров [3, 4]. Развитие методов синтеза оксидных наночастиц вызывает необходимость в исследовании особенностей протекания химических реакций в процессе термического разложения полимеров, наполненных наночастицами оксидов металлов и влияние этих процессов на конечные свойства материалов [5].

В данной работе рассмотрено влияние оксида железа, синтезированного в кремнеземной матрице, на изменение гидрофобности адсорбированного полиметилфенилсилоксана после термической обработки на воздухе.

Экспериментальная часть

В работе использован пирогенный кремнезем марки Асил-300, S_{уд}=342 м²/г (Калушский опытно-экспериментальный завод Института химии поверхности им. А.А. Чуйко НАН Украины), ацетилацетонат железа Fe(acac)₃ «ч» ТУ 6–09–09–631–75, метилфенилсилоксановый полимер (ПМФС), коммерческое название «Кремнийорганический лак КО-08 («Кремнийполимер», Украина).

Кремнезем, модифицированный наночастицами оксида железа, готовили обработкой пирогенного кремнезема раствором ацетилацетоната Fe (III) в изопропаноле

с последующим упариванием дисперсии и прокаливанием сухого продукта при 600 °C. В этих условиях в кремнеземной матрице формируются наночастицы γ-Fe₂O₃ [6, 7]. Использованы образцы с содержанием железа 0,2 ммоль/г SiO₂.

Образцы с адсорбированным ПМФС (10-40 % от массы SiO₂) получали упариванием дисперсий кремнеземного порошка в толуольном растворе полимера при расчетных соотношениях компонентов. Полученный продукт сушили при 90 °C на воздухе до полного удаления растворителя.

ИК спектроскопические измерения проводили на приборе ThermoNicolet Nexus методом диффузного отражения с Фурье преобразованием. Перед измерением образцы растирали с КВг в соотношении 1:10. Для обработки спектров использовали программу «Omnic v.6.1». Величина интегральной интенсивность полос поглощения (ПП) приведена в единицах функции Кубелка-Мунка.

Термоокислительную деструкцию адсорбированного ПМФС исследовали методом термогравиметрии с использованием дериватографа марки «Q-1500D» с системой компьютерной регистрации данных. Навески образцов при измерениях составляли 218-234 мг, скорость повышения температуры 10 град/мин.

Гидрофобные свойства определяли по изменению краевого угла смачивания водой пластинки из прессованного образца. Каплю воды на пластинке фотографировали и краевой угол определяли по форме капли на экране компьютера. Для этого измеряли высоту h капли и радиус или диаметр площади контакта капли с поверхностью r (рис. 1) [8]. Точность измерений краевого угла не превышает, как правило, 5 °.

Рис. 1. Схема определения краевого угла смачивания (а) - для углов θ <90 °; (б) - для углов θ> 90 °.

Значение краевого угла рассчитывают по формулам - для углов $\theta < 90^{\circ}$ (рис. 1, а):

$$tg \theta = 2r \cdot h / (r^2 - h^2)$$

Для углов $\theta > 90^{\circ}$ (рис. 1, δ), когда капля воды не смачивает поверхность:

$$tg \theta = (\sqrt{2h} \cdot r - h^2) / (r - h).$$

Угол смачивания θ определяли по значению величины tg θ.

Результаты и обсуждение

Кремнийорганические полимеры, на основе которых изготавливают промышленные кремнийорганические лаки и смолы, представляют собой продукты Варьируя соотношение соконденсации три- и дифункциональных мономеров. фенилтрихлорсилана $CI_3SiC_6H_5$ и диметилдихлорсилана $CI_2Si(CH_3)_2$, получают метилфенилсилоксановые полимеры разветвленного строения с соотношением R/Si в пределах 1,0 -1.6[9]. Полученные полимеры содержат функциональные фенилсилильные и диметилсилильные группы:

Контроль содержания ПМФС в образце осуществляли по изменению интегральной интенсивности полос поглощения валентных колебаний связей С-H (3000-2900 см⁻¹ и 3100-3000 см⁻¹, относящихся к метилсилильным \equiv Si-CH₃ и фенилсилильным \equiv Si-C₆H₅ группам, соответственно) и валентных колебаний связей SiO-H (3748 см⁻¹) в зависимости от содержания полимера (рис 2). С увеличением содержания полимера на поверхности кремнезема уменьшается полоса поглощения валентных колебаний при 3748 см⁻¹. Адсорбция ПФМС сопровождается уменьшением интенсивности ПП валентных колебаний силанольных групп (3748 см⁻¹). При 40 % интенсивности ПП практически равна нулю.

Рис. 2. Зависимость величины интегральной интенсивности ПП валентных колебаний связей С–Н (I_{C-H}) при 3100–2900 см⁻¹ (3,4) и ПП силанольных групп SiOH (I_{O-H}) при 3748 см⁻¹ (1,2) от расчетного содержания адсорбированного ПМФС в образцах SiO₂/ПМФС (2,3) и Fe₂O₃/SiO₂/ПМФС (1,4)

Несмотря на равное расчетное содержание полимера в образцах исходного и железосодержащего кремнезема, характер изменения величины I_{C-H} для этих двух серий образцов отличается. Уточнение содержания полимера на поверхности кремнеземных образцов проведено по результатам дериватографических измерений.

Данные термогравиметрии образцов SiO₂/ПМФС и Fe₂O₃/SiO₂/ПМФС приведены на рис. 3. Для всех образцов характерно уменьшение количества физически сорбированной воды с увеличением содержания полимера. Это хорошо видно по изменению кривых ТГ и ДТГ до температуры 200 °С. Термоокислительная деструкция ПМФС, адсорбированного на поверхности исходного кремнезёма и модифицированного оксидом железа, сопровождается экзотермическим эффектом. Следует отметить, что интенсивность экзотермических эффектов на кривых ДТА не имеет линейной зависимости от количества адсорбированного ПМФС. Также различна и форма кривых ДТА. В образцах с исходным кремнеземом $T_{макс}$ основного экзоэффекта находится в интервале 530-570 °С. Однако в случае с железосодержащими образцами $T_{макс}$ экзотермического эффекта наблюдается уже при 420 °С с 10 % ПМФС и достигает 570 °С при повышении содержания полимера. Кривые ДТГ и ТГ (рис.3) показывают интенсивное уменьшение потери массы в интервале ~ 350-750 °С для образцов

SiO₂/ПМФС. В случае образцов Fe₂O₃/SiO₂/ПМФС температурный интервал потери массы, который можно отнести к термоокислительной деструкции, начинается уже от 160 °C и завершается в области 750 °C.

Рис. 3. Кривые ДТА/ДТГ (а,в) и ТГ (б,г) для образцов SiO₂/ПМФС (а,б) и Fe₂O₃ /SiO₂/ПМФС (в,г) при содержании ПМФС: 1-10%, 2-20%, 3-30%, 4- 40 %

По результатам термогравиметрии, деструкция ПМФС в присутствии наночастиц оксида железа начинается при более низких температурах и температурный интервал процесса термоокислительной деструкции расширяется. Интересно, что наблюдаемые отличия в термоокислительной деструкции полимера в присутствии наночастиц Fe₂O₃ согласуются с результатами исследованной ранее термической деструкцией ПМФС в вакууме изученной методом термодесорбционной масс-спектрометрии [10].

По кривым ТГ определили значения потерь массы во всех образцах в интервале температур 200-800 °С (рис. 4). В отличие от результатов ИК-спектроскопии (рис. 2), наблюдается достаточно хорошее совпадение между расчетным содержанием ПМФС и потерями массы в образцах SiO₂/ПМФС и Fe₂O₃/SiO₂/ПМФС.

Оценку гидрофильно-гидрофобных свойств всех образцов проводили по общей схеме. Порошок кремнезема с нанесенным ПМФС прессовали в пластинки размером 24 × 8 мм при давлении 50 ГПа. На пластинку медицинским шприцем наносили каплю воды и проводили измерения (фотографировали). Затем пластину помещали в печь для термообработки на воздухе в течение 1 ч. После остывания пластины вновь наносили каплю воды и проводили измерения. Температурную обработку проводили от 100 до

600 °С через каждые 50 °С. Результаты эксперимента представлены на рис. 5 в виде трехмерных графиков.

Рис. 4. Зависимость потери массы образцов SiO₂/ПМФС (1) и Fe₂O₃/SiO₂/ПМФС (2) от расчетного содержания ПМФС в образцах при термоокислительной деструкции в интервале температур 200-800 °C

Рис. 5. Зависимость краевого угла смачивания водой от температуры прокаливания образцов SiO₂/ПМФС (а) и Fe₂O₃/SiO₂/ПМФС (б) при содержании ПМФС 10-40%.

На диаграммах отчетливо видно, что в образцах с наночастицами Fe_2O_3 область гидрофобности ($\theta > 90^\circ$) более широкая.

Максимальные значения краевого угла смачивания для образцов SiO₂/ПМФС наблюдались в интервале температур 250-350 °C и составили 106-110 ° (30% и 40% полимера). Для образцов Fe₂O₃/SiO₂/ПМФС максимальные углы смачивания определены в 108-115 ° и наблюдаются в более широком интервале температур 100-350 °C (30% полимера).

В проведенных исследованиях наблюдается взаимосвязь во влиянии наночастиц оксида железа на изменения в термических превращениях адсорбированного ПМФС и на изменения гидрофобных свойств полимерных слоев после термообработки.

Использованный в работе ПМФС имеет трехмерную сшитую силоксановую структуру с диметилсилиьными и фенилсилильными группами. Адсорбированный на кремнеземной поверхности полимер взаимодействует с силанольными группами и может образовывать водородные связи с участием кислорода силоксановых мостиков и π -электронов фенильных колец [11]. Образование таких адсорбционных комплексов сопровождается уменьшением интенсивности ПП при 3748 см⁻¹. Образцы с 10 % и 20 %

полимера содержат достаточное количество свободных групп SiO-H для образования водородных связей с молекулами воды и повышения гидрофильности поверхности. Повидимому, адсорбированные фрагменты трехмерного полисилоксана не обладают достаточной гибкостью для образования плотного адсорбционного слоя, как в случае с линейными полисилоксанами [5, 12]. С началом термоокислительной деструкции структура адсорбированного полисилоксана трансформируется с образованием более плотного покрытия, способствующего увеличению гидрофобных свойств. Такой процесс может быть представлен следующей схемой реакции

 $\equiv Si-OH + R-Si \equiv \rightarrow \equiv Si-O-Si \equiv + RH$

В присутствии кислорода реакция протекает с образованием различных промежуточных кислородных продуктов окисления RH вплоть до CO₂ и H₂O при повышении температуры [13].

По данным термогравиметрии в присутствии наночастиц оксида железа деструкция ПМФС начинается при более низких температурах. Скорость начала термоокислительной деструкции, судя по кривым ТГ и ДТГ, намного ниже, чем в образцах SiO₂/ПМФС. Небольшие изменения массы образцов связаны с незначительным уменьшением количества органических функциональных групп, придающих гидрофобные свойства. В этом случае и структурные преобразования адсорбированного полимера происходят при более низких температурах. Вероятно, наблюдается ситуация, когда именно структура полиорганосилоксанового слоя на поверхности кремнезема является определяющим фактором в повышении гидрофобных свойств ПМФС.

Выводы

Таким образом, присутствие наночастиц Fe_2O_3 на поверхности кремнезема с адсорбированным ПМФС способствует повышению гидрофобных свойств полимерного покрытия. Установлена взаимосвязь между снижением температуры начала деструкции адсорбированного на кремнеземе ПМФС и усилением гидрофобных свойств покрытия в присутствии наночастиц Fe_2O_3 .

Литература

- 1. Соболевский М.В., Музовская О.А., Попелева Г.С. Свойства и области применения кремнийорганических продуктов. Москва: Химия, 1975. 296 с.
- 2. Брык М. Т. Деструкция наполненных полимеров. М.:Химия, 1989. 192 с.
- New advances in polymer/layered silicate nanocomposites / Schmidt D., Shah D., Giannelis E. P. // Current Opinion in Solid State and Materials Science. - 2002. - V. 6. -P. 205-212.
- 4. Nanoparticle Polymer Composites: Where Two Small Worlds Meet / Balazs A. C., Emrick T., Russell Th. P. // Science. 2006. V. 314, P. 1107 1110.
- Effect of chemical modification of silica surface with metal oxides on the thermal properties of adsorbed polydimethylsiloxane/ Borysenko M. V., Bogatyrov V. M., Dyachenko A. G., Pokrovskiy V. A. // Interdepartmental Digest "Chemistry, physics and technology of surfaces". – 2002. – № 7-8. – P. 11-18.
- 6. Synthesis of nanocomposites M_xO_y/SiO_2 : chemical modification of silica with acetylacetonates of iron and cerium / V. M. Bogatyrov, M. V. Borysenko, M. V. Gaeva et al. // Nanosystems, Nanomaterials, Nanotechnologies. 2007. V. 5. No 2. P. 425–433.
- 7. О структуре оксида железа, полученного термолизом ацетилацетоната железа (III) в кремнеземной матрице / Е. И. Оранская, Ю. И. Горников, В. М. Богатырев и др. // Всеукраїнська конференція з міжнародною участю, присвячена 90-річчю

Національної академії наук України "Хімія, фізика та технологія поверхні наноматеріалів" Україна. – Київ, 2008. – С. 27-28.

- 8. Градус Л.Я. Руководство по дисперсному анализу методом микроскопии. М.: Химия, 1979. – 232 с.
- 9. Молотова В. А. Промышленное применение кремнийорганических лакокрасочных покрытий. М.: Химия, 1978. 112 с.
- Влияние наночастиц оксида железа на термическую деструкцию адсорбированого на кремнеземе полиметилфенилсилоксана / В.М. Богатырев, М.В. Галабурда В.А. Покровский, Б.Г. Мисчанчук // Химия, физика и технология поверхности. – 2009. – Вып. 16. – С. 234-242.
- 11. Харитонов Н. П., Островский В. В. Термическая и термоокислительная деструкция полиорганосилоксанов. Л.: Наука, 1982. 208 с.
- 12. Богатырев В. М., Борисенко Н. В. Термическая деструкция полидиметилсилоксана на поверхности пирогенного кремнезема // Журн. прикл. химии, 1999. Т. 72, Вып. 2. С. 292-298.
- 13. Пиролиз углеводородного сырья / Т. Н. Мухина, Л. Н. Барабанов, С. Е. Бабаш и др. // М.: Химия, 1987. 240 с.

INFLUENCE OF Fe₂O₃ NANOPARTICLES ON THE HYDROPHOBIC PROPERTIES OF SILICA WITH ADSORBED POLYMETHYLPHENYLSILOXANES

V.M. Boratyrev, M.V. Galaburda, M.V. Borysenko

Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine 17 General Naumov Str., Kyiv, 03164, Ukraine

By means of the IR-spectroscopy and differential thermal analysis a research has been made into peculiarity of thermal transformation of adsorbed polymethylphenylsiloxanes(PMPS), as well as influence of Fe_2O_3 nanoparticles on these transformations. It was experimentally estimate, that PMPS provides stable hydrophobic properties of SiO₂/ PMPS compound in the temperature interval 250-350 °C with concentration of the PMPS 20-40 %. And Fe_2O_3 presence increases thermal stability of hydrophobic coating (10-40 % PMPS) up to 500 °C.

ВПЛИВ НАНОЧАСТИНОК Fe₂O₃ НА ГІДРОФОБНІ ВЛАСТИВОСТІ КРЕМНЕЗЕМУ З АДСОРБОВАНИМ ПОЛІМЕТІЛФЕНІЛСИЛОКСАНОМ

В. М. Богатирьов, М. В. Галабурда, М.В.Борисенко

Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України вул. Генерала Наумова 17, Київ, 03164, Україна

Методами IЧ-спектроскопії та диференційного термічного аналізу досліджено особливості термічного перетворення адсорбованого поліметилфенілсилоксану (ПМФС), а також вплив наночастинок Fe_2O_3 на ці перетворення. Встановлено, що ПМФС обумовлює гідрофобні властивості сполуки SiO₂/ПМФС в інтервалі температур 250-350 ° С при концентрації полімеру 20-40%, а присутність оксиду заліза підвищує термічну стійкість гідрофобного покриття (10-40% ПМФС) в інтервалі 100-400 ° С.