УДК 614.8

186

Е.А. Тищенко, к.т.н, доц., нач. каф., ЧИПБ им. Героев Чернобыля НУГЗУ, Ю.А. Абрамов, д.т.н., профессор, гл. научн. сотр., НУГЗУ

МОДЕЛИ ПРОЦЕССА ТУШЕНИЯ ПОЖАРА КЛАССА В С ИСПОЛЬЗОВАНИЕМ РАСПЫЛЕННОЙ ВОДЫ

Получены выражения для передаточных функций, описывающих процесс тушения пожара класса В распыленной водой, принадлежащих классу дробно-рациональных функций и обладающих высокой степенью адекватности.

Ключевые слова: пожар класса В, распыленная вода, передаточная функция.

Постановка проблемы. Одним из путей повышения эффективности тушения пожаров класса В является использование в качестве огнетушащего вещества распыленной воды. Техническая реализация такого подхода обуславливает наличие адекватного математического описания процессов, имеющих место при воздействии распыленной воды на горящую жидкость.

Анализ последних исследований и публикаций. Традиционно для такого математического описания используются дифференциальные уравнения в частных производных [1-3]. Однако возможности таких математических моделей ограничены как трудностями, возникающими при получении решения аналитическими методами, так и трудностями, имеющими место при адаптации решений, полученных численными методами. Одним из направлений, связанным с разрешением этих трудностей, является использование кибернетических методов [4], которые предполагают использование в качестве математических моделей процесса тушения пожара класса В распыленной водой, в частности, передаточных функций [5]. В [6] приведены алгоритмы, обеспечивающие получение таких математических моделей в виде иррациональных или дробно-рациональных функций комплексного аргумента. Передаточные функции процесса тушения пожара класса В распыленной водой, представленные в виде иррациональных функций комплексного аргумента, являются точным соответствием решения дифференциального уравнения в частных производных. Представление передаточных функций такого процесса в виде дробно-рациональных функций комплексного аргумента является приближенным и основано на аппроксимации решения дифференциального уравнения, представленного в виде переходной функции. Погрешность аппроксимации может достигать 18,0 % [8].

Постановка задачи и ее решение. Целью работы является получение математических моделей, описывающих процесс тушения пожара класса В распыленной водой, в виде передаточных функций, имеющих форму дробно-рациональных функций и обладающих повышенной степенью адекватности.

Процесс тушения пожара класса В распыленной водой описывается математической моделью [8]

$$\frac{\partial \theta}{\partial t} = \frac{\partial^2 \theta}{\partial \xi^2} + \frac{\partial \theta}{\partial \xi} \tag{1}$$

с начальными и граничными условиями

$$\theta(\xi,0) = 0; \ \frac{\partial \theta(0,t)}{\partial \xi} = -\frac{arK}{\lambda V(T_K - T_0)} I(t), \tag{2}$$

где

$$t = V^2 a^{-1} \tau; \ \xi = \text{Va}^{-1} z; \ \theta = (T_K - T)(T_K - T_0)^{-1};$$
 (3)

 T,T_K,T_0 — температура горючей жидкости, температура кипения горючей жидкости и температура окружающей среды соответственно; a — коэффициент температуропроводности; V — линейная скорость горения жидкости; λ — теплопроводность горючей жидкости; r — теплота испарения воды; K — коэффициент использования воды; I(t) — интенсивность подачи распыленной воды.

Применяя к (1) и (2) интегральное преобразование Лапласа, получим выражение для передаточной функции процесса тушения пожара класса В распыленной водой как объекта управления системы пожаротушения

$$W(p) = \frac{\theta(0, p)}{I(p)} = \frac{arK}{\lambda V(T_K - T_0)} \left[0.5 + (0.25 + p)^{0.5} \right]^{-1}.$$
 (4)

Сомножитель передаточной функции (4) или приведенная передаточная функция

$$q = \left[0.5 + (0.25 + p)^{0.5}\right]^{-1} \tag{5}$$

является иррациональной функцией аргумента p, что обуславливает определенные трудности при использовании передаточной функции вида (4).

Снятие таких трудностей возможно путем трансформации (5) в другой класс функций. Наиболее предпочтительным вариантом является представление (5) в виде аппроксимации дробно-рациональной функцией, что может быть реализовано с помощью Паде аппроксимации [9]. В этом случае функция q = q(p) принимает вид

$$q \cong \left[\sum_{i=0}^{m} a_{i} p^{i}\right] \left[\sum_{j=0}^{n} b_{j} p^{j}\right]^{-1} = q(m, n), \tag{6}$$

где a_i, b_j – параметры аппроксимации, причем m < n.

Максимальное значение порядка характеристического полинома приведенной передаточной функции (6), т.е. величины n, определяется из обеспечения необходимого условия устойчивости в соответствии с критерием Гурвица, согласно которому необходимо, чтобы

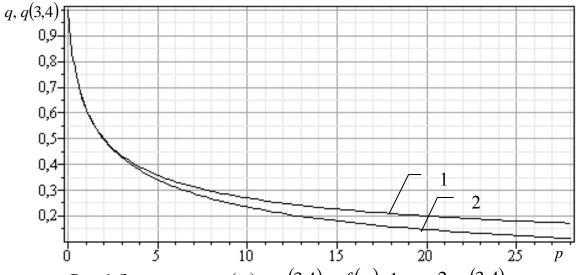
$$b_j > 0, j = \overline{0, n}. \tag{7}$$

В табл. 1 приведены значения параметров a_i, b_j для Паде аппроксимации q(n-1,n) функции (5), которая реализована в среде Maple.

Табл. 1. Значения параметров Паде аппроксимации

таол. 1. эна тения нараметров наде анпрокенмации												
i, j	q(3,4)		q(4,5)		q(5,6)		q(6,7)		q(7,8)		q(8,9)	
	a_i	b_{j}										
0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
1	6,0	7,0	8,0	9,0	10,0	11,0	12,0	13,0	14,0	15,0	16,0	17,0
2	10,0	15,0	21,0	28,0	36,0	45,0	55,0	66,0	78,0	91,0	105,0	120,0
3	4,0	10,0	20,0	35,0	56,0	84,0	120,0	165,0	220,0	286,0	364,0	455,0
4		1,0	5,0	15,0	35,0	70,0	126,0	210,0	330,0	495,0	715,0	1001,0
5				1,0	6,0	21,0	56,0	126,0	252,0	462,0	794,0	1287,0
6						1,0	7,0	28,0	84,0	270,0	462,0	924,0
7								1,0	8,0	36,0	120,0	330,0
8										1,0	9,0	45,0
9												1,0

На рис. 1 приведены зависимости q(p) и q(3,4)=f(p), а на рис. 2 – зависимости q(p) и $q(8,9)=\varphi(p)$, которые иллюстрируют степень совпадения зависимости (5) и её Паде аппроксимации (6) от порядка характеристического полинома.



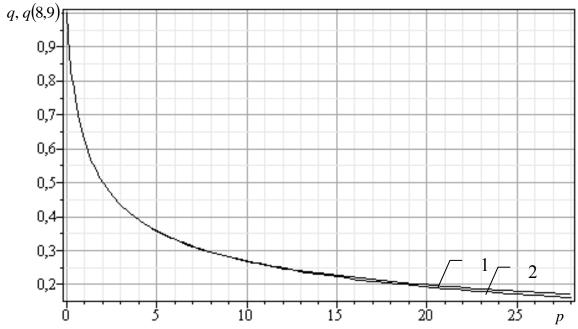


Рис. 2. Зависимости q(p) и $q(8,9) = \varphi(p)$: 1-q; 2-q(8,9)

Для принятия решения о выборе количественных показателей Паде аппроксимации (6) целесообразно перейти к временным зависимостям. С этой целью выражение для q(m,n) перепишем следующим образом

$$q(m,n) = \left[\sum_{i=0}^{m} a_{i} p^{i}\right] \left[\sum_{j=0}^{n} b_{i} p^{j}\right]^{-1} = \left[\sum_{i=0}^{m} a_{i} p^{i}\right] \times \left[b_{n} \prod_{j=1}^{n} (p - p_{j})\right]^{-1} = \sum_{j=1}^{n} A_{j} (p - p_{j})^{-1},$$
(8)

где p_j , $j=\overline{i,n}$ — корни характеристического полинома; A_j — параметры, значения которых определяются в соответствии с методом неопределенных коэффициентов [10]. В соответствии с этим методом параметры A_j определяются из уравнения

$$\sum_{j=1}^{n} A_j \prod_{k=1}^{n} (p - p_k) = \sum_{i=0}^{m} a_i p^i,$$

$$k \neq j$$
(9)

путем приравнивания коэффициентов при одинаковых степенях переменной p, расположенных слева и справа в уравнении (9). В этом уравнении p_k — корни характеристического полинома, а также учтено, что $b_n = 1,0$.

Вследствие того, что имеет место [11]

$$q(m,n) = L[w(m,n,t)], \tag{10}$$

где w(m,n,t) — импульсная переходная функция; L — оператор интегрального преобразования Лапласа, то можно записать

$$w(m,n,t) = L^{-1}[q(m,n)] = \sum_{j=1}^{n} A_j \exp(p_j t),$$
 (11)

где L^{-I} — оператор обратного интегрального преобразования Лапласа.

Единичная переходная функция q(m,n,t) и импульсная переходная функция w(m,n,t) связаны между собой соотношением [11]

$$q(m,n,t) = \int_{0}^{t} w(m,n,\tau)d\tau,$$
(12)

вследствие чего имеет место

$$q(m,n,t) = \int_{0}^{t} \sum_{j=1}^{n} A_{j} \exp(p_{j}\tau) d\tau = \sum_{j=1}^{n} A_{j} p_{j}^{-1} [1 - \exp(-p_{j}t)] =$$

$$= 1 - \sum_{j=1}^{n} A_{j} p_{j}^{-1} \exp(-p_{j}t)$$
(13)

где учтено условие нормировки, т.е.

$$\sum_{j=1}^{n} A_j p_j^{-1} = 1. (14)$$

В табл. 2 приведены значения параметров переходных функций (13) для m = n - 1, n = 8 и n = 9.

На рис. 3 и рис. 4 приведены графические зависимости для погрешностей $\delta(m,n,t)$

$$\delta(m,n,t) = q(t) - q(m,n,t), \tag{15}$$

где

$$q(t) = L^{-1}[q(p)] = 1 + \sqrt{\frac{t}{\pi}} \exp(-0.25t) - (1 + 0.5t) \operatorname{ertc}(0.5\sqrt{t}).$$
 (16)

Табл. 2. Значения параметров переходных функций

	тион 2. эни тении пириметров перемодных функции										
	n =	= 8	n=9.								
J	$A_j p_j^{-l}$	p_j^{-1}	$A_j p_j^{-l}$	p_j^{-1}							
1	0,232	29,37	0,21	36,66							
2	0,22	3,34	0,20	4,15							
3	0,19	1,26	0,17	1,55							
4	0,15	0,69	0,15	0,84							
5	0,11	0,46	0,114	0,55							
6	0,06	0,35	0,08	0,40							
7	0,03	0,29	0,05	0,32							
8	0,008	0,26	0,02	0,28							
9			0,006	0,26							

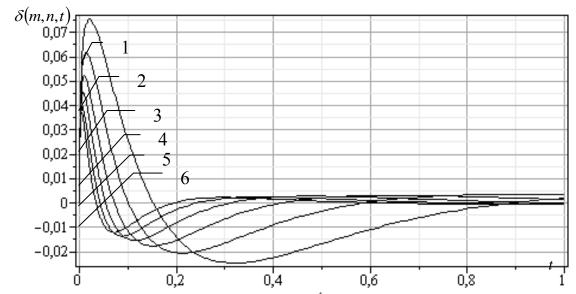


Рис. 3. Зависимость $\delta(m,n,t)$: 1-m=3, n=4; 2-m=4, n=5; 3-m=5, n=6; 4-m=6, n=7; 4-m=6, n=7; 6-m=8, n=9.

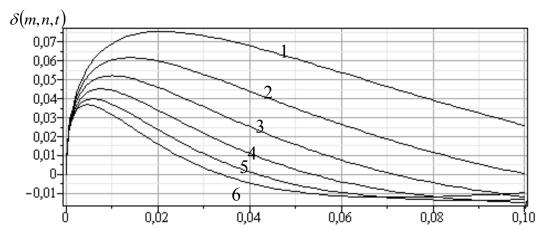


Рис. 4. Фрагмент зависимости $\delta(m,n,t)$: 1-m=3, n=4; 2-m=4, n=5; 3-m=5, n=6; 4-m=6, n=7; 4-m=6, n=7; 6-m=8, n=9

Анализ этих зависимостей свидетельствует о том, что погрешность рассогласования $\delta(m,n,t)$ имеет наибольшее значение при малых значениях времени и для $m \in [3,8], n \in [4,9]$ лежит в диапазоне $(3,7 \div 7,5)\%$. На рис. 5 приведена зависимость максимального значения погрешности рассогласования $\delta_m(m,n)$ при m=n-1 от порядка характеристического полинома n.

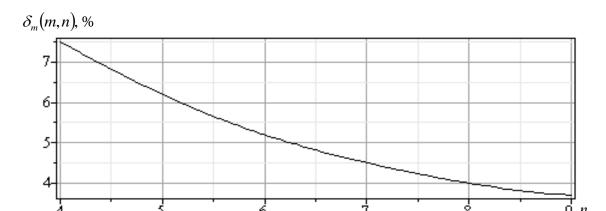


Рис. 5. Зависимость $\delta_m(m,n) = f(n)$

Зависимость, приведенная на рис. 5, может быть использована для выбора порядка характеристического полинома аппроксимации приведенной передаточной функции (6). Параметры этой аппроксимации, т.е. параметры a_i, b_j , определяются путем Паде аппроксимации с использование среды Maple и их значения для m = n - 1, $n \in [4,9]$ приведены в табл. 1.

Выводы. Применительно к пожарам класса В, тушение которых осуществляется распыленной водой, получены математические модели, принадлежащие к классу передаточных и переходных функций. Передаточные функции представлены в виде дробно-рациональных функций, которые являются Паде аппроксимацией иррациональной функции комплексного аргумента. Порядок характеристического полинома дробно-рациональной функции определяется необходимым условием устойчивости в соответствии с критерием Гурвица, а также требуемой степенью адекватности. Использование Паде аппроксимации для иррациональной передаточной функции позволяет обеспечить погрешность аппроксимации в диапазоне $(3,7\div7,5)\%$.

ЛИТЕРАТУРА

- 1. Fuchs P. On the extinguishing effect of various extinguishing agents and extinguishing methods with different fuels / P. Fuchs // Fire safity J. -1984. vol. 7. P. 165-275.
- 2. Горшков В.Н. Тушение горючих жидкостей распыленной водой / В.Н. Горшков // Юб. сб. трудов ВНИИПО. М.: ВНИИПО МВД России, 1997. С. 384-413.

- 3. Садковой В.П. Упрощенная математическая модель объекта управления систем автоматического пожаротушения / В.П. Садковой, Ю.А. Абрамов // Науковий вісник будівництва. Х.: ХДТУБА, 2007. вип. 43. С. 142-148.
- 4. Садковой В.П. Концептуальные основы построения систем автоматического пожаротушения / В.П. Садковой, Ю.А. Абрамов // Чрезвычайные ситуации: теория, практика, инновации. ЧС-2006: материалы докл. межд. НПК.- Гомель: ГИИ, 2006. С. 185-186.
- 5. Садковой В.П. Модели объекта управления системы автоматического пожаротушения / В.П. Садковой, Ю.А. Абрамов // Актуальні проблеми технічних та природничих наук у забезпеченні цивільного захисту: матеріали ІІ міжвузівської НПК. Черкаси: АПБ, 2009. С. 31-33.
- 6. Абрамов Ю.А. Алгоритм определения динамических свойств пожаров класса В при их тушении распыленной водой / Ю.А. Абрамов // Пожарная безопасность: проблемы и перспективы. Сб. матер. НПК. Воронеж: ДГБОУ ВПО Воронежский ин-т ГПС МЧС России, 2012.- С. 195-196.
- 7. Садковой В.П. Выбор модели объекта управления в системе ослабления последствий чрезвычайных ситуаций / В.П. Садковой // Проблеми надзвичайних ситуацій. Харків: УЦЗУ, 2007. Вип. 6. С. 115-120.
- 8. Абрамов Ю.А. Динамические характеристики пожара класса В при его тушении распыленной водой / Ю.А. Абрамов // Пожежна безпека: теорія і практика. Черкаси: АПБ, 2012. С. 352-355.
- 9. Baker G. Pade Approximants / G. Baker, P. Graves-Morris. London: AWP Co., 1981. 496 p.
- 10. Корн Г. Справочник по математике / Г. Корн, Т. Корн. М.: Наука, 1968. 720 с.
- 11. Абрамов Ю.А. Основы пожарной автоматики / Ю.А. Абрамов. X.: XПТУ,1993. 288 с.

€.О. Тищенко, Ю.О. Абрамов

Моделі процесу гасіння пожежі класу В з використанням розпиленої води

Отримано вирази для передаточних функцій, що описують процес гасіння пожежі класу В розпиленою водою, що належать класу дробово-раціональних функцій і мають високий ступінь адекватності.

Ключові слова: пожежа класу В, розпилена вода, передаточна функція.

E.A. Tishchenko, Yu.A. Abramov

The model of the process of fire extinguishing of class B with the use of atomized water

The expressions for the transfer functions describing the process of fire extinguishing of class b sprayed water, belong to the class of fractional-rational functions and having a high degree of adequacy.

Keywords: fire class b, water fog, transfer function.