С.И. Весельский, канд.техн.наук

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ПАРАМЕТРОВ ПОДКРЕПЛЕНИЯ НА НАПРЯЖЕННОЕ СОСТОЯНИЕ ПАНЕЛИ, ВЫЗВАННОЕ ЛОКАЛЬНЫМИ НАГРУЗКАМИ. СООБЩЕНИЕ 2

В работе [2] исследовано влияние на параметры напряженнодеформированного состояния (НДС) жесткости краевой балки как основного элемента системы, ответственного за это состояние. Именно через эту балку на систему передается локальная нагрузка.

Однако в системе имеются продольные элементы (нервюры с поясами), от жесткости которых, очевидно, зависит распределение компонент перемещений и напряжений всей системы. Кроме того, степень локальности нагрузки зависит от ширины промежуточного элемента («языка»), через который происходит передача нагрузки.

Данная работа посвящена исследованию влияния выше обозначенных факторов на НДС системы.

1. Влияние на напряженное состояние системы жесткости нервюры

В общее решение, определяемое функцией перемещения u(x, y)[1], входит безразмерный параметр $\mu = \frac{C}{E_x h_x b}$, где С – обобщенный параметр жесткости на растяжение - сжатие нервюры, характеризующий жесткость продольного подкрепления; E_x , $h_x b$ – параметры приведенные в работе [1].

Рассмотрим два случая.

Случай $\mu = 0$ соответствует отсутствию подкрепления, при $\mu = \infty$ края панели $y = \pm 1$ лишены возможности деформироваться.

1.1. Случай $\mu = 0$

Здесь решение легко получить из решения (22), приведенного в работе [1], при $\mu = 0$. Из характеристического уравнения (18) работы [1] при $\mu = 0$ получаем $\lambda_n = n\pi$, $n = \overline{1, \infty}$.

Тогда искомое решение будет иметь вид

$$u(x,y) = -\frac{2Pk}{E_x h_x} \left(\frac{\overline{\ell} - x}{2} + \sum_{n=1}^{\infty} \frac{a_n e^{-n\pi x} \cos n\pi y}{n\pi \left(1 + \rho n^3 \pi^3\right)} \right), \tag{1}$$

где *а_n* определяется формулами:

$$a_n = \begin{cases} 1 & - \text{действует сосредоточенная сила;} \\ \frac{\sin \lambda_n a}{\lambda_n a} - \text{действует распределенная нагрузка,} \end{cases}$$
(2)

а остальные обозначения такие же, как в работе [1].

По формулам, связывающим погонные усилия с функцией перемещения, находим компоненты НДС обшивки панели:

$$T(x,y) = \frac{2P}{b} \left(\frac{1}{2} + \sum_{n=1}^{\infty} \frac{a_n e^{-n\pi x} \cos n\pi y}{1 + \rho n^3 \pi^3} \right);$$

$$S(x,y) = \frac{2P}{bK} \sum_{n=1}^{\infty} \frac{a_n e^{-n\pi x} \sin n\pi y}{1 + \rho n^3 \pi^3};$$

$$R(x,y) = \frac{2P}{bK^2} \sum_{n=1}^{\infty} \frac{a_n e^{-n\pi x} \left[(-1)^n - \cos n\pi y \right]}{1 + \rho n^3 \pi^3}.$$
(3)

1.2. Случай *µ* = ∞

Этот случай требует отдельного рассмотрения, так как осуществить во всех зависимостях предельный переход при $\mu \to \infty$ затруднен. Опустим подробности и дадим сразу формулировку краевой задачи:

$$\nabla^{2} u(x, y) = 0 \quad b\Omega = \left\{ (x, y) : \quad 0 \le x \le \overline{\ell}, \quad -1 \le y \le 1 \right\};$$

$$u(x = \overline{\ell}, y) = 0 \quad u(x, y = \pm 1) = 0;$$

$$\left(\frac{\partial^{4} u}{\partial x^{4}} - \frac{1}{\rho} \frac{\partial u}{\partial x} \right) \Big|_{x = 0} = -\frac{q(y)b^{4}}{E_{0}I_{0}}.$$
 (4)

Следует отметить, что в данном случае никакие дополнительные условия, типа условий (4) работы [1], не ставятся. Нагрузку q(y), входящую в последнее краевое условие, в случае сосредоточенной силы и погонной нагрузки соответственно можно представить равенствами:

$$q(y) = \frac{2P}{b}\delta(y) - \text{сосредоточенная сила;}$$
(5)

$$q(y) = \begin{cases} 0, & |y| > \alpha \\ \frac{P}{b\alpha}, & |y| \le \alpha \end{cases} - \text{локальная распределенная нагрузка.}$$
(6)

Вновь опуская подробности, приведем окончательный результат решения краевой задачи (3):

$$u(x,y) = -\frac{2Pk}{E_x h_x} \sum_{n=0}^{\infty} \frac{a_n e^{-\lambda_n x} \cos \lambda_n y}{\lambda_n \left(1 + \rho \lambda^3\right)}, \qquad (7)$$

17

где $\lambda_n = \frac{\pi}{2}(1+2n)$, a_n определяется равенствами (2) при новом значении λ_n . Для компонент НДС имеют место формулы:

$$T(x,y) = -\frac{2P}{b} \sum_{n=0}^{\infty} \frac{a_n e^{-\lambda_n x} \cos \lambda_n y}{1 + \rho \lambda_n^3},$$

$$S(x,y) = -\frac{2P}{bk} \sum_{n=0}^{\infty} \frac{a_n e^{-\lambda_n x} \sin \lambda_n y}{1 + \rho \lambda_n^3},$$

$$R(x,y) = -\frac{2P}{bk^2} \sum_{n=0}^{\infty} \frac{a_n e^{-\lambda_n x} \cos \lambda_n y}{1 + \rho \lambda_n^3} = \frac{T(x,y)}{k^2}.$$
(8)

Сопоставим результаты вычисления безразмерной функции $T(x=0, y) = T(x=0, y) \frac{b}{2P}$ при $\mu = 0; 0,0735; \infty$ и $\rho = 0,007;$ $k^2 = 2,6; \alpha = 0,2735$, характеризующей напряжения $\sigma_x = \overline{T} \frac{2P}{bh_x}$, которыми определяется (в основном) прочность обшивки панели. Величины T(x=0, y) приведены в табл. 1, из которой видно, что параметр μ не оказывает практически никакого влияния на распределение нормальных напряжений σ_x в сечении панели у краевой балки, где уровень этих напряжений самый высокий.

Аналогичный вывод следует и из табл. 2, где приведены значения в том же сечении безразмерной функции $\overline{R}(x=0, y) = R(x=0, y) \frac{b}{2P}$, характеризующей нормальные напряжения $\sigma_y = \overline{R} \frac{2P}{bh_1}$. Некоторая разница наблюдается в значениях функции $\overline{S}(x=0, y) = S(x=0, y) \frac{b}{2P}$, характеризующей касательные напряжения $\tau = \overline{S} \frac{2P}{bh}$, но эта разница становится значительной при приближении к краю y=1 ($\mu = \infty$). Реальный параметр $\mu = 0,0735$, как видно из табл. 3, близок к нулю, и при $\mu < 1$ можно пренебречь влиянием работой на растяжение - сжатие нервюры.

При этом в зоне, примыкающей к нагруженному участку, напряженное состояние изменений не претерпевает; оно существенно изменится на краях $y = \pm 1$, т.к. полагая $\mu = 0$, мы тем самым считаем,

١Ö	1	8
----	---	---

•	• • • •	
$\mu = 0$	$\mu = 0,0735$	$\mu = \infty$
1,463	1,466	1,513
1,375	1,379	1,428
1,159	1,053	1,120
0,832	0,837	0,892
0,530	0,533	0,585
0,291	0,293	0,338
0,131	0,0847	0,160
0,0387	0,0437	0,091
- 0,141	- 0,0053	0,049
- 0,0360	- 0,0334	0,023
- 0,044	- 0,049	0
	$\mu = 0$ 1,463 1,375 1,159 0,832 0,530 0,291 0,131 0,0387 - 0,141 - 0,0360 - 0,044	$\mu = 0$ $\mu = 0.0735$ 1,4631,4661,3751,3791,1591,0530,8320,8370,5300,5330,2910,2930,1310,08470,03870,0437-0,141-0,0053-0,0360-0,0334-0,044-0,049

Таблица 1 — Распределение параметра $\overline{T}(x=0, y)$

Таблица 2 — Распределение параметра $-\overline{R}(x=0, y)$

	-		
у	$\mu = 0$	$\mu = 0,0735$	$\mu = \infty$
0	0,579	0,583	0,583
0,1	0,546	0,549	0,549
0,2	0,463	0,460	0,431
0,3	0,337	0,341	0,343
0,4	0,221	0,224	0,225
0,5	0,129	0,132	0,130
0,6	0,0674	0,0514	0,0615
0,7	0,0318	0,0365	0,0350
0,8	0,0037	0,0168	0,0188
0,9	0,0031	0,006	0,009
1,0	0	0	0

Таблица 3 — Распределение параметра $\overline{S}(x = 0, y)$

у	$\mu = 0$	$\mu = 0,0735$	$\mu = \infty$
0	0	0	0
0,1	0,230	0,232	0,2657
0,2	0,405	0,410	0,4608
0,3	0,492	0,501	0,582
0,4	0,496	0,504	0,616
0,5	0,430	0,445	0,586
0,6	0,339	0,357	0,527
0,7	0,245	0,267	0,470
0,8	0,158	0,187	0,431
0,9	0,0773	0,1165	0,412
1,0	0	0,049	0,4065

что при $y = \pm 1$ отсутствуют касательные напряжения, что, конечно же, не имеет места. Более того, из соображений физического характера следует, что уравновешивание действующей нагрузки осуществляется, в основном, потоками касательных сил, развивающимися в стенках нервюр. Из сказанного следует, что, полагая $\mu = 0$, нельзя уже опираться на принятую схему закрепления, а нужно рассматривать схему, в которой будет учтена работа стенок нервюр. Проще всего это можно сделать, если вдоль сторон $y = \pm 1$ приложить потоки касательных сил, уравновешивающие действующую нагрузку.

Случай $\mu = \infty$ можно трактовать так, как-будто при $y = \pm 1$ панель связана с весьма жесткой стенкой, которая в первом приближении может моделировать стенку нервюры.

На рис. 1 приведены графики изменения нормальных (при y = 0) напряжений, характеризуемых параметром \overline{T} , и касательных (при y = 1) напряжений, характеризуемых параметром \overline{S} . Указанные параметры связаны с соответствующими напряжениями равенствами:

$$\sigma_{x} = \overline{T} \frac{2P}{bh_{x}}, \qquad \tau = \overline{S} \frac{2P}{bh}$$

Приведенные графики показывают, что уравновешивание нагрузки происходит за счет потоков касательных сил. Хотя решение задачи строилось в предположении u = 0 при $x = \overline{\ell}$, одновременно оказалось, что и $\frac{\partial u}{\partial x} = 0$ при $x = \overline{\ell}$, что говорит о полном отсутствии нормальных $x = \overline{\ell}$ (касательные напряжения напряжений при здесь также отсутствуют). На том же рисунке точками, взятыми в кружочек, нанесены результаты расчета по МКЭ^{*)} панели в составе кессона при $\alpha = \frac{1}{3}$. Совпадение результатов для параметра \overline{T} при малых значениях xболее чем хорошее, при $x > 0,25\overline{\ell}$ по МКЭ получаются более высокие значения параметра \overline{T} , но поскольку уровень этих величин очень мал, то данное расхождение несущественно. Изменение параметра \overline{S} при малых х качественно различно: МКЭ обнаруживает максимум этого параметра в окрестности начала координат, а при $\mu = \infty$ наблюдается монотонное падение *S*, причем при $x < 0,25\ell$ по МКЭ получаются более низкие уровни касательных напряжений, а при $x > 0.25\overline{\ell}$ – более высокие (результаты расчетов по МКЭ для параметра \overline{S} при $x > 0,25\overline{\ell}$

^{*)} Расчеты были выполнены по оригинальной программе, любезно предоставленной авторам канд. физ. - мат. наук Н.Н. Свирковым (г. Киев).

не приведены, чтобы не загромождать рисунок), что является следствием завышения в данном расчете жесткости стенок нервюр.

2. Влияние ширины "языка" на напряженное состояние панели

В качестве исходных взяты параметры реальной панели: $\rho = 0,00705$, $\mu = 0,0735$. Для панели изделия $\alpha = 0,2735$, при $\alpha = 0$ нагружение соответствует сосредоточенной силе, а случай $\alpha = 1$ соответствует действию распределенной по всей ширине панели погонной нагрузки; промежуточное значение $\alpha = \frac{1}{3}$ взято по той причине, что при таком значении получены результаты по МКЭ.

Рисунок 2 – Влияние ширины «языка» на напряженное состояние панели

Результаты расчетов основного параметра напряженного состояния (параметра $\overline{T} = \frac{Tb}{2P}$) при x = 0 приведены на рис. 2.

Там же пунктирной линией показано изменение параметра \overline{T} при $\alpha = \frac{1}{3}$ и $x = \frac{1}{26} \frac{\overline{\ell}}{kb}$ (эта линия проходит через центры прямоугольных конечных элементов), результаты, полученные вычислением по МКЭ этого же параметра, показаны штрихпунктирной линией (жирные точки относятся к центрам тяжести конечных элементов).

Анализ графиков при x = 0 и различных α показывает, что влияние параметра α на напряжения σ_x существенно вблизи начала координат, где эти напряжения достигают максимальных значений. Параметр \overline{T}_{max} при этом уменьшается от $\overline{T} = 1,886$ ($\alpha = 0$) до $\overline{T} = 0,5$ ($\alpha = 1$). Изменение α от $\alpha = 0,2735$ до $\alpha = \frac{1}{3}$ приводит к уменьшению \overline{T}_{max} в $\frac{1,446}{1,32} = 1,11$ раз, т.е. в реальном диапазоне изменения параметра α его влияние на напряженное состояние панели в зоне нагружения невелико. Это влияние ощущается только в нагруженном сечении обшивки.

Список использованных источников

1. Халилов С.А. Передача направленной по полету локальной нагрузки на крыльевую панель. Модель второго уровня / С.А. Халилов, С.И. Весельский, О.В. Макаров // Открытые информационные и компьютерные интегрированные технологии: сб. науч. тр. Нац. аэрокосм. ун-та им. Н.Е. Жуковского «ХАИ». – Вып. 44.–Х., 2009.– С.117–126.

2. Весельский С.И. Исследование влияния параметров подкрепления на напряженное состояние панели, вызванное локальными нагрузками. Сообщение 1 // Вопросы проектирования и производства конструкций летательных аппаратов: сб. науч. тр. Нац. аэрокосм. ун-та им. Н.Е. Жуковского «ХАИ». – Вып. 60.–Х., 2009.– С.43–52.

Поступила в редакцию 14.02.10. Рецензент: д-р физ.-мат. наук, проф. А. Г. Николаев, Национальный аэрокосмический университет им. Н. Е. Жуковского «ХАИ», Харьков