Г.И. Костюк, д-р техн. наук, К.П. Исяк, О.О. Бруяка

## ПЕРСПЕКТИВЫ ПОЛУЧЕНИЯ НАНОСТРУКТУР В ОБЪЕМЕ ДЕТАЛИ ПРИ ДЕЙСТВИИ ПОТОКОВ ПЛАЗМЫ

#### Введение

Для получения нанокристаллических структур на поверхности, как известно, необходимо создание определенных температур (или скорости ее нарастания), давлений в необходимом объеме и наличия атома металла, вокруг которого формируется наноструктура.

Как показано в работах [1-10], действие заряженных частиц на конструкционные материалы приводит к появлению на глубине довольно высоких температур, при действии индивидуальных ионов разных сортов и зарядности и электронов в зоне теплового воздействия есть вероятность появления температурных напряжений значительной величины, что подтверждает возможность появления локальных зон, где достигаются условия появления наноструктур. Для того чтобы такие условия реализовались в значительном объеме: действие высоких температур и напряжений также необходимо обеспечить максимальное заполнение объема полями температур с повышенными температурами и в то же время сохранить зоны с максимальными градиентами температур, когда реализуются высокие значения температурных напряжений. Очевидно, простым увеличением плотностей ионного и электронного тока этого достичь будет нельзя, так как с ростом плотности тока градиенты температур в зоне действия соседних частиц снижаются, а, следовательно, снижаются величины температурных напряжений и условия образования наноструктур не выполняются.

выполнялась рамках программы Работа в Министерства образования и науки "Новые и ресурсосберегающие и технологии в промышленности агропромышленном энергетике. И комплексе" (подсекция 13 – "Аэрокосмическая техника и транспорт") и по темам "Создание физико-технических основ повышения качества материала аэрокосмических конструкций" и "Разработка технологических основ интегрированных технологий плазменно-ионной обработки деталей аэрокосмической техники", а также в рамках хоздоговорных работ и договоров о сотрудничестве.

#### Состояние вопроса

В работах [16-19] исследовано влияние размера зерна на физикомеханические и электрические свойства материалов, так в работах [16-18]обнаружено наличие максимума микротвердости в зависимости от размера зерна.. В работе [17] наблюдалось слабое влияние размера зерна на микротвердость нитрида в магнетронных нанокомпозитах nc – TiN/αSi<sub>3</sub>N<sub>4</sub> при различных температурах отжига, тогда как для вакуумнодуговых нанокомпозитов есть размеры зерен, для которых реализуется максимальная микротвердость рис. 1 - 4.

В работах [1-5] получены высокие значения микротвердости для покрытия 0.8ZrN+0.2HfN при комбинированной обработке до 45 ГПа, повышение износостойкости и стойкости режущего инструмента до 20 раз, а при нанесении только покрытия 0.8ZrN+0.2HfN микротвердость составляла около 35ГПа, что превышает микротвердость отдельных более 2 компонентов чем В раза, все ЭТО дает возможность предполагать, что даже при нанесении только покрытия реализуется появление наноструктур, тогда как дополнительная электроннолучевая модификация позволит получать более эффективные наноструктуры с улучшенными свойствами и на значительной глубине (до 1 мм).



Рисунок 1 – Зависимость микротвердости от процентного состава TiN в покрытии TiB2+TiN (размер кристаллов 3-10,2нм)



размера зерна по данным работы [19]



Рисунок 2 – Микротвердость покрытия в зависимости от размера кристалла [17]



Рисунок 4 – Зависимость микротвердости от размера зерна по данным работы [19]



Рисунок 5 – Зависимость микротвердости Hv от размера зерна дисперсных фаз, выделяющихся в нанокристаллических сплавах, получаемых кристаллизацией аморфных сплавов: 1-Fe<sub>73.5</sub>Cu<sub>1</sub>Nb<sub>3</sub>Si<sub>13.5</sub>B<sub>9</sub>; 2 – Fe<sub>81</sub>Si<sub>7</sub>B<sub>12</sub>; 3 – Fe<sub>5</sub>Co<sub>70</sub>Si<sub>15</sub>B<sub>10</sub>; 4- Pd<sub>81</sub>Cu<sub>7</sub>Si<sub>12</sub> [16]

За счет действия ионов различных сортов, энергий, зарядности и электронов и их плотностей токов есть возможность сохранения достаточных температур (за счет соответствующего распределения температур по глубине обеспечивается высокая средняя температура), в то же время, выбирая расположение по глубине (варьируя энергии, зарядности и сорта ионов и электронов) обеспечиваем высокие градиенты температур. Следовательно, в довольно большом объеме материала будут действовать значительные по величине напряжения, т.е. будут выполняться условия для получения нанокристаллических структур.

Поэтому, несколько модернизировав модель действия индивидуальных частиц на конструкционные материалы [1,10] получим модель, учитывающую необходимые факторы (в частности, в модели не учитывалась зарядность иона и характер их сложного взаимовлияния в довольно большом рассматриваемом объеме) и одновременное действие электронов.

# 1. Модель действия индивидуального иона и электрона на конструкционный материал

Взаимодействие потоков заряженных частиц и плазменных потоков материалами связано с реализацией широкого с конструкционными теплофизических, столкновительных, круга процессов: термомеханических термоусталостных, диффузионных, время термохимических И плазмохимических, HO В настоящее отсутствуют работы, учитывающие эти факторы и, тем более, их взаимосвязь. Все эти процессы влияют как на характер теплообмена в объеме детали, так и на поверхности, поэтому учет этих процессов необходим как В балансе энергии элементарном объеме В металлической мишени, так и в теплообмене на поверхности мишени, т.е. в граничных условиях.

### 1.1. Баланс тепла в элементарном объеме детали

Изменение количества тепла в единичном объеме (первое слагаемое в левой части равенства) реализуется за счет: перемещения потока частиц вдоль обрабатываемой поверхности или перемещения мишени относительно потока плазмы со скоростью Vn (второе слагаемое), теплофизических процессов: влияние на теплообмен

скорости распространения тепла (третье слагаемое), конечной теплопроводности (первое слагаемое справа), смещения фронта (второе слагаемое), плавления слагаемое); испарения (третье столкновительных процессов: объемного источника тепла за счет действия частицы (четвертое слагаемое), затраты энергии на смещение (пятое слагаемое); термоупругих, термопластических атомов И термоусталостных процессов, определяющих энергию деформирования материала элементарного объема (шестое слагаемое); диффузионных теплоперенос процессов, определяющих диффундирующим термохимических материалом (седьмое слагаемое); процессов, связанных с реализацией химических реакций между материалом мишени и бомбардирующими ионами или же между компонентами сплавов и композитных материалов (восьмое слагаемое) и ленцджоулев нагрев за счет растекания тока (девятое слагаемое - для ионного и электронного потоков) и энергия кристаллизации (последнее слагаемое).

$$C[T] \cdot \gamma[T] \frac{dT(x, y, z, t)}{dt} + C[T] \cdot \gamma[T] \frac{\partial T(x, y, z, t)}{\partial y} \cdot V_n + + C[T] \cdot \gamma[T] \cdot \tau_p \frac{d^2 T(x, y, z, t)}{dt^2} = \nabla \lambda[T \cdot \nabla T](x, y, z, t) + + C[T] \cdot \gamma[T] \cdot V_{\text{TM}} \frac{\partial T(x, y, z, t)}{\partial x} - - A \cdot L_{\star} \cdot \gamma[T] \frac{dV_{\star}}{dt} + B \cdot j_{i,e} \cdot \mu_{i,e} \frac{\partial E_{i,e}}{\partial x} - E_{\dots M} \cdot S_{\dots M} \frac{j_{i,e}}{\lambda_{cpie}} \pm \pm D \frac{dW(x, y, z, t)}{dt} \pm m_a \cdot C_a[T_a] \frac{dn_a}{dt} (T_a - T(x, y, z, t)) \pm \pm P_{T,X_{\star}}(n_A, n_B, T, t_{e_{\star}}) \frac{dn_{A(B)}}{dt} L_{T,X,P} + \rho[T] \cdot j^2(x, y, z, t)$$

$$(1)$$

где C[T] и ү[T] – теплоемкость и плотность материала мишени, соответствующие температуре T;

т<sub>р</sub> – время релаксации температуры на один Кельвин;

V<sub>n</sub> – скорость перемещения плазменного, электронного или ионного потока или мишени относительно него;

L<sub>пл</sub> и L<sub>т.х.Р</sub> – удельные теплота плавления и термохимической реакции;

V<sub>ф</sub>[T] – скорость смещения фронта испарения;

V<sub>пл</sub> – объем расплавленного металла;

j<sub>i,e</sub> – плотность тока ионов, электронов или плазменного потока;

µ<sub>i,e</sub> – коэффициент аккомодации иона и электрона;

 $\partial E_{i,e}$ 

*д* – потери энергии иона и электрона на глубине мишени;

Е<sub>см</sub> – энергия смещения атомов;

S<sub>см</sub> -- число смещенных атомов в результате действия иона или электрона;

λ<sub>ср і,е</sub> – средняя линейная длина свободного пробега ионов и электронов

в материале мишени;

W(x, y, z, t)-энергия деформирования единичного объема мишени;

m<sub>a</sub> – масса диффундирующего атома;

 $C_a[T_a]$  – теплоемкость диффундирующего материала при температуре Та;

 $P_{T.X}(n_A, n_B, T, t_{B3})$  – вероятность термохимической реакции, зависящая от концентрации реагентов  $n_A$  и  $n_B$ , температуры T и времени взаимодействия  $t_{B3}$ ;

 $n_A$  и  $n_B$  – концентрация реагента, определяющего возможность реакции;  $\rho[T]_{(r)}$  – удельное электрическое сопротивление при температуре T;

j(x, y, z, t) – плотность тока с учетом растекания тока.

W<sub>кр</sub> - энергия кристаллизации.

Энергию деформирования единичного объема определим как:

$$W = G \begin{bmatrix} \varepsilon_{xx}^{2} + \varepsilon_{yy}^{2} + \varepsilon_{zz}^{2} + 2(\varepsilon_{xy}^{2} + \varepsilon_{yz}^{2} + \varepsilon_{zx}^{2}) + \\ + \frac{\mu}{1 - \mu} \ell^{2} - \frac{2(1 + \mu)\alpha_{1}}{1 - 2\mu} \ell(T(x, y, z, t) - T) \end{bmatrix},$$
(2)

где  $2\varepsilon_{ik} = 2\varepsilon_{ki} = \frac{\partial u_k}{\partial i} + \frac{\partial u_i}{\partial k}$  (k, i = x, y, z);  $\ell = \varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}$ ,

 $\epsilon_{xx}, \epsilon_{yy}, \epsilon_{zz} - удлинения;$ 

 $\epsilon_{xy}, \epsilon_{yz}, \epsilon_{zx}$  – сдвиги относительно соответствующих осей;

u<sub>x</sub>, u<sub>y</sub>, u<sub>z</sub> – перемещение относительно соответствующих осей;

α<sub>!</sub> – коэффициент линейного расширения материала мишени;

μ – коэффициент Пуассона (отношение поперечной деформации к продольной, значения μ заключены между 0 и 0,5);

G – модуль сдвига (модуль второго рода);

Tн – начальная температура. Для железа G = 3,5...5,3·10<sup>10</sup> H/м<sup>2</sup>, μ = 0,23...0,31.

Деформация сдвигов є<sub>ік</sub> не могут задаваться произвольно, они связаны дифференциальными соотношениями - условиями совместности:

$$\frac{\partial^{2} \varepsilon_{xx}}{\partial y^{2}} + \frac{\partial^{2} \varepsilon_{yy}}{\partial x^{2}} = 2 \frac{\partial^{2} \varepsilon_{xy}}{\partial x \partial y}; \quad \frac{\partial^{2} \varepsilon_{xx}}{\partial y \partial z} = \frac{\partial}{\partial x} \left[ -\frac{\partial \varepsilon_{yz}}{\partial x} + \frac{\partial \varepsilon_{zx}}{\partial y} + \frac{\partial \varepsilon_{xy}}{\partial z} \right]$$

$$\frac{\partial^{2} \varepsilon_{yy}}{\partial z^{2}} + \frac{\partial^{2} \varepsilon_{zz}}{\partial y^{2}} = 2 \frac{\partial^{2} \varepsilon_{xy}}{\partial z \partial y}; \quad \frac{\partial^{2} \varepsilon_{yy}}{xy \partial z} = \frac{\partial}{\partial y} \left[ -\frac{\partial \varepsilon_{zx}}{\partial y} + \frac{\partial \varepsilon_{xy}}{\partial z} + \frac{\partial \varepsilon_{yz}}{\partial x} \right]$$

$$\frac{\partial^{2} \varepsilon_{xx}}{\partial z^{2}} + \frac{\partial^{2} \varepsilon_{zz}}{\partial x^{2}} = 2 \frac{\partial^{2} \varepsilon_{zx}}{xz}; \quad \frac{\partial^{2} \varepsilon_{zz}}{\partial y \partial x} = \frac{\partial}{\partial z} \left[ -\frac{\partial \varepsilon_{yx}}{\partial z} + \frac{\partial \varepsilon_{yz}}{\partial x} + \frac{\partial \varepsilon_{xz}}{\partial x} \right]$$
(3)

этими условиями проверяется правильность определения удлинений и сдвигов, а их корректировка – вводом дополнительных напряжений.

Для определения удлинений  $\epsilon_{xx}$ ,  $\epsilon_{yy}$ ,  $\epsilon_{zz}$  и сдвигов  $\epsilon_{xy}$ ,  $\epsilon_{yz}$ ,  $\epsilon_{zx}$  воспользуемся выражением термоупругого потенциала перемещений  $\Phi$ .

$$\Delta \Phi - \frac{1 - 2\mu}{2(1 - \mu)} \cdot \frac{\gamma}{G} \cdot \frac{\partial^2 \Phi}{\partial t^2} =$$

$$= \frac{1 + \mu}{1 - \mu} \cdot \alpha_1 \cdot [T(x, y, z, t) - T_{\cdot}],$$
(4)

где ү – плотность материала мишени.

Учитывая, что решение задачи проводится в подвижной системе координат и при выходе на стационарный или близкий к нему режим, второе слагаемое в левой части уравнения (4) становится незначительным, получим:

$$\Delta \Phi = \frac{1+\mu}{1-\mu} \cdot \alpha_1 \cdot [T(x, y, z, t) - T].$$
(5)

По величине термоупругого потенциала перемещений и по известным соотношениям находим величины удлинений и сдвигов:

$$\varepsilon_{ik} = \frac{\partial^2 \Phi}{\partial i \partial k}, \quad (i, k = x, y, z)$$
 (6)

Величины температурных напряжений определим по выражению:

$$\sigma_{ik} = 2G \left( \frac{\partial^2 \Phi}{\partial i \partial k} - \Delta \Phi \cdot \delta_{ik} \right), \tag{7}$$

где  $\delta_{ik}$  подчиняется условиям:  $\delta_{ik} = 0$  при  $i \neq k$  (i, k = x, y, z)  $\delta_{ik} = 1$  при i = k.

В седьмом слагаемом формулы (1), учитывающем теплоперенос диффундирующим материалом, масса диффундирующего атома определяется как:

$$m_a = M \cdot m_p, \tag{8}$$

где М – атомный вес наносимого материала;

m<sub>p</sub> – масса протона.

Изменение концентрации диффундирующих атомов в единицу времени можно при t < t<sub>k</sub> определить как:

 $\frac{\mathrm{dn}_{\mathrm{a}}}{\mathrm{dt}} = \frac{\mathrm{j}}{\mathrm{e} \cdot \mathrm{z} \cdot \sqrt{\alpha \tau}}$ 

При t ≥ t<sub>к</sub>

$$\frac{\mathrm{dn}_{\mathrm{a}}}{\mathrm{dt}} = \frac{\mathrm{j}}{\mathrm{e} \cdot \mathrm{z} \cdot \mathrm{L}_{\mathrm{D}}},\tag{9}$$

где ј – плотность тока;

е – заряд электрона;

z – зарядовое число наносимого материала;

L<sub>D</sub> – толщина детали;

 $t_k$  – время, за которое деталь прогреется на всю толщину,  $t_k = L_D^2/\alpha$ ;

α – коэффициент температуропроводности.

Формула для расчета коэффициента диффузии:

$$K_{\mu\mu\phi} = a_d \cdot d_{\theta}^2 \cdot V_0 \cdot exp(-U/(kT))$$
(10)

......

где а<sub>d</sub> – множитель порядка 0,1, определяемый типом кристаллической решетки;

d<sub>э</sub> – расстояние между ближайшими эквивалентными положениями вакансий в кристалле;

 $V_0$  – величина порядка частоты атомных колебаний в кристалле (10<sup>12</sup> – 10<sup>14</sup> с<sup>-1</sup>);

U – потенциальный барьер, который необходимо преодолеть вакансии при смещении в соседнее положение;

k – постоянная Больцмана;

Т – абсолютная температура.

 $q_n(x,\tau)$  – объемная плотность теплового потока излучения на расстоянии (o,l, $\delta$ ) за время износа  $\tau$ ,  $\delta = 10^{-5} \div 10^{-4}$  – толщина слоя, в котором поглощается энергия ионизирующего излучения, 1-R – поглощательная и  $\alpha$  – коэффициент поглощения.

### 1.2. Теплообмен на поверхности детали

Тепловой поток на поверхности мишени создается за счет:

процессов: 1. Столкновительных тепла, выделяемого на действия поверхности вследствие электрона или иона (первое слагаемое отводится тепловой поток распыленными справа). С частицами (третье слагаемое), С термоэлектронами (четвертое слагаемое), для ионов - отводится тепловой поток с ионно-ионной вторичной эмиссией или ионной эмиссией (пятое слагаемое), потенциальной ионно-электронной эмиссией (шестое слагаемое), ионно-электронной кинетической эмиссией (седьмое слагаемое), характеристическим рентгеновским излучением (восьмое слагаемое), тормозным рентгеновским излучением слагаемое), (девятое переходным излучением (десятое слагаемое), электронов для осуществляется теплоотвод с вторичными электронами (одиннадцатое с вторичными фотонами (двенадцатое слагаемое), с слагаемое), переходным излучением Черенкова (тринадцатое слагаемое), С излучением (четырнадцатое слагаемое), с тормозным рентгеновским (пятнадцатое слагаемое), характеристическим излучением С рентгеновским излучением (семнадцатое слагаемое).

2. Теплофизических процессов: отводится тепловой поток с испаренным материалом (восемнадцатое слагаемое), с ушедшим материалом в жидкой фазе, если создаются условия для его выброса (девятнадцатое слагаемое), с тепловым излучением нагретой поверхности (двадцатое слагаемое) и с конденсированными атомами, ранее испаренными (двадцать первое слагаемое).

3. Плазмохимических процессов, реализующихся за счет реакций потока плазмы или потока ионов с распыленным и испаренным материалом мишени или с адсорбиро излучением.

Передача энергии также осуществляется за счет излучения потока ионов, электронов или плазмы (последнее слагаемое):

$$-\lambda[T]\frac{\partial T(x, y, z, t)}{\partial x} = F_{i,e} + q(r) - F_{pacn} - F_{M.9.} - -[F_{ee} + F_{e\phi} + F_{u.9} + F_{nu} + F_{x,pu} + F_{mpu} + F_{nu_{-}}]_{e} - [F_{uu,e} + F_{u.9.9} + F_{u.9.9} + F_{x.pu} + F_{mpu} + F_{nu_{-}}]_{i} - F_{ucn} - F_{nn} - \sigma \mathcal{E}T^{*}(0, y, z, t) \pm F_{\kappa ond} + F_{nx} + \sigma \mathcal{E}_{c}T^{*}_{c},$$
(11)

где о – постоянная Стефана-Больцмана;

ε и ε<sub>c</sub> – степень черноты поверхности мишени и среды;

T<sub>c</sub> – температура среды.

Рассмотрим более подробно каждое слагаемое в формуле (11):

Плотность теплового потока вследствие действия налетающих частиц равна:

$$F_{i,e} = \mu_{i,e} E_{i,e} J_{i,e} - K_{\text{orp } i,e} J_{i,e} E_{\text{orp } i,e}, \qquad (12),$$

где  $\mu_{i,e}$  — коэффициент аккомодации иона или электрона, определяющий максимальную долю энергии, которую ион или электрон может передать атому;

Е<sub>і.е</sub> – энергия налетающих частиц;

К<sub>отр і,е</sub> – коэффициент отражения ионов или электронов;

Еотр і,е – энергия отраженных частиц.

Кнудсен определили коэффициент аккомодации как:

$$\mu = \lim_{E_1 \to E_0} \frac{E_2 - E_0}{E_1 - E_0},$$

(13)

где Е<sub>о</sub> – энергия налетающей частицы;

Е<sub>1</sub> – энергия атомов на поверхности;

Е<sub>2</sub> – энергия покидающей частицы.

# 2. Результаты расчета полей температур и температурных напряжений при действии потока плазмы и получение наноструктур

Исследованы теплофизические процессы при действии плазменного потока в широком диапазоне интенсивности потока частиц.

Для индивидуальных частиц (j≤j<sup>°</sup><sub>кр</sub>) и потока как сплошной среды (j≤j<sup>°</sup><sub>КР</sub>) можно пользоваться результатами, приведенными в [1]. Исследование проведем в основном для случая взаимовлияния соседних частиц (j<j<sup>°</sup><j<sup>°</sup><sub>КР</sub>).

Для индивидуальных частиц (j≤j<sup>\*</sup><sub>кр</sub>) и потока как сплошной среды (j≤j<sup>\*</sup><sub>КР</sub>) можно пользоваться результатами, приведенными выше. Исследование проведем в основном для случая взаимовлияния соседних частиц (j<j<sup>\*</sup><j<sup>\*</sup><sub>КР</sub>).

1. Рассмотрим три случая теплового действия плазмы на деталь. Действие частиц плазменного потока как индивидуальных тепловых источников, т.е. случай отсутствия наложения температурных полей соседних ионов и электронов (j≤j<sup>2</sup>кр).

2. Совместное тепловое действие ряда частиц при наложении их температурных полей (j≤j'≤j''<sub>КР</sub>).

3. Действие плазменного потока как сплошной среды (j≥j"к<sub>Р</sub>).

Рассмотрим действие электронов и ионов средних энергий в плазменном потоке при условии, что ј≤ј'ко. Если плотность тока лежит между первой и второй критической, т.е. когда наблюдается наложение полей ОТ действия температурных соседних частиц, задача усложняется. Проанализируем действие только четырех тепловых источников, первые два из которых - это ионы с энергией É<sub>i</sub>, а остальные - электроны с энергией É<sub>e</sub> (рис. 6), причем в рассматриваемой области выделяется только четвертая часть энергии каждой из четырех частиц. Эта область ограничивается прямоугольным параллелепипедом со сторонами, равными расстоянию между частицами в потоке l<sub>r</sub>, и высотой, равной максимальной глубине проникновения температурного поля. Тепловые источники - электроны - действуют в точках А(0, 0, 0) и  $C(0, I_r, I_r)$ , в точках же  $B(0, I_r, 0)$  и  $D(0, 0, I_r)$  действуют ионы (вдоль вертикалей, проходящих через эти точки).

В общем случае рассмотрение температурных полей в зоне действия плазменного потока проводилось при плотностях тока, равных критической промежуточных значениях. Такое первой И при рассмотрение позволяет выявить все экстремальные ситуации И правомочность оценить разделения теплофизических задач ПО плотностям тока (интенсивностям) в плазменном потоке.

На рис. 7 представлена картина распределения температур в зоне действия на деталь из железа (стали) плазменного потока с ионами азота (средняя энергия É<sub>i</sub>=800 эВ) и электронами (É<sub>e</sub>=3 эВ) на следующих поверхностях:

1) x=0; 2) x=0,75 $\lambda_{cp}$ ; 3) x=1,5 $\lambda_{cp}$  (где  $\lambda_{cp} = 1/2(\lambda_e + \lambda i_i)$  за время  $t = \frac{\tau_{bi} + \tau_{be}}{2} = \tau_{bcp}$ , t=2 $\tau_{bcp}$ , t=10 $\tau_{bcp}$ . Плотности тока в плазменном потоке составляли:

j=j'<sub>кр</sub>=7×10<sup>6</sup> A/м<sup>2</sup> (рис.2а); j=8×10<sup>7</sup> A/м<sup>2</sup> (рис. 7, б); j=j''<sub>кр</sub>=0,3×10<sup>8</sup> A/м<sup>2</sup> (рис.7, в). Видно, что при малых плотностях тока температурные поля в зоне действия частиц остаются такими же, как при действии иона с энергией 800 эВ и электрона с энергий 3 эВ, максимальная температура наблюдается в зоне действия ионов и составляет величину 2100 К, тогда как в зоне действия электрона температура значительно ниже. На рассмотренных глубинах распределения температур отличаются значительно, наблюдается несколько более высокие температуры на  $0,75\lambda_{cp}$ . Распределение температур глубине ПО исследованным поверхностям существенно неоднородное.



Рисунок 6 – Дальнейшее увеличение плотности тока до второй критической, приводит к выравниванию распределения температур

8×10<sup>7</sup> А/м<sup>2</sup> ДО При потоке увеличении плотности тока В наблюдается наложение температурных полей соседних частиц, характер изменения температур В исследованных плоскостях становится более равномерным. В центральной части рассматриваемых поверхностей величины температур заметно увеличиваются, HO максимальная температура остается такой же, как и в предыдущем случае. Однако и в этом случае градиенты температуры существенны, а характер распределения температуры на исследованных глубинах сохраняется (рис. 7, б).

Дальнейшее увеличение плотности тока до второй критической, приводит к выравниванию распределения температур - они приближаются к максимальным. Не значительный градиент температур наблюдается по диагонали, где действуют электроны (рис. 7, в). Дальнейшее увеличение плотности тока привадит к выравниванию распределения температур по поверхности.

При действии плазменного потока на алюминиевую деталь (É<sub>i</sub>=800 эВ, É<sub>e</sub>=38 эВ, ионы титана) характер распределения температур по глубине изменяется, наблюдается их различие. Так, при плотности тока, критической (j=j<sup>'</sup>кр, a), равной первой рис. 8, просматривается существенная неоднородность температур по глубине мишени и в исследованных плоскостях. Характер распределения в зоне действия частиц такой же, как при действии ионов с энергией 800 эΒ (максимальная температура 637 К наблюдается на глубинах x=0,6λ<sub>cp</sub> для ионов). Реализуются значительные градиенты температур. При увеличение плотности тока в пучке до 3×10<sup>7</sup> А/м<sup>2</sup> (рис. 8, б) происходит некоторое их выравнивание в исследованных плоскостях, максимальная температура и немонотонность ее по глубине сохраняются, градиенты падают по сравнению с предыдущими случаями.



Рисунок 7 – Температурные поля в зоне действия плазменного потока на железо  $/E_{cp}$ = 8009B, Ecp<sub>l</sub> = 39B/ при различных плотностях тока: a - j = j<sup>l</sup><sub>kp</sub> =7.10<sup>6</sup> A/m<sup>2</sup>; б - j = 8.10<sup>7</sup> A/m<sup>2</sup>; в - j<sup>ll</sup><sub>kp</sub> = 3,3 ·10<sup>8</sup> A/m<sup>2</sup> (T<sub>max</sub>=2,1.10<sup>3</sup> К ионы азота)

Дальнейшее увеличение плотности тока до второй критической (2,1×10<sup>8</sup> Ам<sup>2</sup>, рис. 8, в) приводит к выравниванию распределения температур в исследованных плоскостях и приближению их к максимальной в диагональной плоскости действия электронов. Таким образом, увеличение плотности тока приводит к выравниванию температурных полей. После завершения цикла облучения наблюдается выравнивание температурных полей по поверхностям и некоторый рост температуры в глубине, после чего она снижается.

Исследование полей температур показало наличие высоких по градиентов температур, ЧТО говорит величине 0 возможности реализации температурных напряжений значительных по величине. Результаты расчета температурных напряжений представлены на рис. 9 и 10. Так для случая действия плазменного потока с ионами азота E<sub>i</sub>=800 эΒ И E<sub>e</sub>=3 эВ на железо реализуются максимальные температурные напряжения 1,4<sup>.</sup>10<sup>9</sup> Н/м<sup>2</sup> на глубине 0,6 Х<sub>ср</sub> при плотности тока равной первой критической (7·10<sup>6</sup> A/м<sup>2</sup>) с ростом плотности тока происходит снижение при плотностях тока j=8·10<sup>6</sup> и становятся совсем незначительными при плотностях токов равных второй критической j=6,3·10<sup>8</sup> A/м<sup>2</sup>. Причем для первой критической плотной тока температурные напряжения на поверхности достигают значений 5,7<sup>10<sup>8</sup></sup> H/м<sup>2</sup>, которые с ростом плотности тока снижаются (рис. 9).



Рисунок 8 – Температурные поля на поверхностях X=0, X=0,  $\delta_{cp}$  и X=1,2  $\lambda_{cp}$  в зоне действия плазменного потока E<sub>i</sub> = 800эВ - Ти, E<sub>e</sub> = 3,8эВ с плотностью токов: a - j = j<sup>I</sup><sub>kp</sub> =2,7<sup>.</sup>10<sup>6</sup> A/m<sup>2</sup>;6 - j = 3<sup>.</sup>10<sup>7</sup> A/m<sup>2</sup>; в - j = j<sup>II</sup><sub>kp</sub> = 3,7<sup>.</sup> 10<sup>7</sup> A/m<sup>2</sup> на алюминиевую мишень.T<sub>max</sub> = 637 К

В случае действия плазменного потока с ионами титана E<sub>i</sub>=800 эВ и электронами, E<sub>e</sub>=3 эВ на алюминиевую деталь при плотности тока  $=2.7 \cdot 10^6 \text{ A/m}^2$ равной первой критической плотности тока (j'<sub>кр</sub> максимальные значения темпераурных напряжений реализуются на глубине равной 0,6 λ<sub>ср</sub> и равны 5,4·10<sup>8</sup> Н/м<sup>2</sup> в тоже время на поверхности и на глубине авной 1,2 Хср они малы. С ростом плотности тока до второй критической ( $j_{\kappa p}^{\parallel} = 2,1 \ 10^8 \ A/m^2$ ) они существенно снжаются даже на глубине X = 0,6X<sub>ср</sub>. В этом случае температурные напряжения на поверхности и на глубине равнй 1,2 Хср незначительны, что связано с теплофизическими и механическими характеристиками обрабатываемой детали (рис. 10).

Интегральное действие плазменного быть потока может рассмотрено как для случая действия потока частиц как сплошной среды [1] но там динамика температур и температурных напряжений существенно незначительна И высоких значений температур И температурных напряжений ожидать не следует, а тем более высоких скоростей нарастания температур.



Рисунок 9 – Температурные напряжения в зоне действия плазменного потока на железо (сталь):  $E_i = 800$  B, Ee = 3 B,  $\sigma_{np} = 1.4 \ 10^9 \text{H/m}^2/\text{ a - } j = j^I_{kp} = 7.10^6 \text{ A/m}^2$ ;  $6 - j = 8.10^7 \text{ A/m}^2$ ;  $B - j^{II}_{kp} = 6.3.10^8 \text{ A/m}^2$ 



Рисунок 10 – Поля температурных напряжений в зоне действия плазменного потока на молибден / $E_{cp}$  0 800эВ, Ecp<sub>l</sub> = 3эВ/ при различных плотностью тока: a - j =  $j_{kp}^{l}$  =2,7<sup>·</sup>10<sup>6</sup> A/m<sup>2</sup>; б - j = 3<sup>·</sup>10<sup>7</sup> A/m<sup>2</sup>; в - j<sub>Ilkp</sub> = 2,1 ·10<sup>8</sup> A/m<sup>2</sup>,  $\sigma_{max}$  = 5,4<sup>·</sup>10<sup>8</sup> H/m<sup>2</sup>

#### Выводы

Показано, что достигаются требуемые температуры и скорости нарастания температур, величины температурных напряжений (давлений) достаточные для получения наноструктур в объеме детали, в то же время для повышения эффективности этого процесса можно подавать в плазменном потоке небольшую долю ионов катализатора.

#### Список использованных источников

1. Костюк Г.И. Физические процессы плазменно-ионных, ионнолучевых, плазменных, светолучевых и комбинированных технологий. Физико-технические основы нанесения покрытий, ионной имплантации и ионного легирования, лазерной обработки и упрочнения, комбинированных технологий: моногр. / Г.И. Костюк. – К.: Изд-во АИНУ, 2002. – Кн. 1. – 587 с.

2. Костюк Г.И. Физико-технические основы напыления покрытий, ионной имплантации и ионного легирования, лазерной обработки и упрочнения, комбинированной технологии. Справочник для расчета физических технологических параметров, ОСНОВНЫХ И оценки возможностей, выбора типа технологий и оборудования. Физикотехнические основы нанесения покрытий, ионной имплантации и легирования, лазерной обработки ионного И упрочнения, комбинированных технологий: моногр. / Г.И. Костюк. – К.: Изд-во АИНУ, 2002. – Кн. 2. – 441 с.

3. Костюк Г.И. Эффективный режущий инструмент с покрытием и упрочненным слоем: справ. / Г.И. Костюк. – К.: Изд-во АИНУ, 2003. – 414 с.

4. Костюк Г.И. Наноструктуры на базе фуллеренов: Физика, свойства, применение / Г.И. Костюк // Вопросы проектирования и производства конструкций летательных аппаратов: сб. науч. тр. Нац. аэрокосм. ун-та им. Н.Е. Жуковского «ХАИ». – Вып. 3(50). – Х., 2007. – С. 78 – 96.

5. Костюк Г.И. Об аномально высокой микротвердости слоев из одно- и многокомпонентных покрытий из нитридов, карбидов и карбонитридов металлов / Г.И. Костюк, Л.В. Лобанова, И.А. Сыпченко, А.Н. Куринный // Вісті Академії інженерних наук України: Науковотехнічний та громадський часопис Президії Академії інженерних наук України. – Вип.3 (30). – Київ, 2006. – С. 222 – 231.

6. Костюк Г.И. Трибологические свойства алмазоподобных углеродных покрытий и возможные области их применения / Г.И. Костюк, И.А. Сыпченко // Вісті Академії інженерних наук України: Науковотехнічний та громадський часопис Президії Академії інженерних наук України. – Вип.3 (30). – Київ, 2006. – С. 251 – 259. 7. Костюк Г.И. Научные основы создания современных технологий: учеб. пособие / Г.И. Костюк. – Х.: Нац. аэрокосм. ун-т, 2008. – 551 с.

8. Костюк Г.И. Физико-технические основы роботизированного производства / Г.И. Костюк. – Х.: Харьк. авиац. ин-т, 2006. – 614 с.

9. Гречихин Л.И. Физика наночастиц и нанотехнологий / Л.И. Гречихин. – Минск: УП «Технопринт», 2004. – 397 с.

10. Kostyuk G.I. The effective cutting tools having the coating and hardened layers: monograph-reference book / G.I. Kostyuk. – Kharkov: "KHAI", 2007. – 633 p.

11. Шнейдер П. Инженерные проблемы теплопроводности / П. Шнейдер. – М.: Иностр. лит-ра, 1960. – 488 с.

12. Аксенов И.И. Вакуумная дуга в эрозионных источниках плазмы / И.И. Аксенов. – Изд-во НИИ «ХФТИ», Х., 2005. – 211 с.

13. Хаякава С. Физика космических лучей. Кн. 2.: Ядернофизический аспект / С. Хаякава. – М.: Мир, 1973. – 701 с.

14. Готт Ю.В. Взаимодействие частиц с веществом в плазменных исследованиях / Ю.В. Готт. – М.: Атомиздат, 1978. – 271 с.

15. Гусев А.И. Нанокристаллические материалы: методы получения и свойства / Изд-во РАН, Уральское отделение, Екатеринбург, 1998. – 302 с.

16. Гусев А.И. Наноматериалы, наноструктуры, нанотехнологии / А.И. Гусев. – М.: «Физматлит»2005, 416 с.

17. Решетняк Е.Н. Синтез упрочняющих наноструктурных покрытий / Е.Н. Решетняк, В.И. Стрельницкий // Вопросы атомной науки и техники, 2008. – №2. – С. 119 – 130.

18. Андриевский Р.А. Наноматериалы: концепция и современные проблемы / Р.А. Андриевский // Физика металлов и металловедение, 2003. – Т. 91. – № 1. – С. 50 – 56.

19. Гончаров А.А. Состав, структура и свойства наноструктурных пленок боридов тантала / А.А. Гончаренко, П.И. Игнатенко, В.В. Петухов, В.А. Коновалов и др. // ЖТФ, 2006. – Т. 76.