## МОДЕЛИРОВАНИЕ ФИЗИКО-МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

Анализ напряженно-деформированного состояния (НДС) тонкостенных конструкций из композиционных материалов (КМ) базируется на известных расчетных схемах, которые в сочетании с теорией слоистого КМ и различными критериями прочности позволяют получить достаточно достоверные результаты. При расчете тонкостенных силовых элементов из КМ компонентами нормальных и касательных напряжений из плоскости, как правило, пренебрегают. Однако в нерегулярных зонах конструкции эти внутренние силовые факторы могут превышать напряжения в плоскости конструкции. Сказанное выше свидетельствует о необходимости использования более точных методов расчета и соответствующих критериев прочности, учитывающих трехмерное напряженное состояние изделий из КМ. Проведение такого анализа зачастую оказывается невозможным, поскольку большинство справочников по КМ содержат, как правило, упругие и прочностные характеристики в плоскости однонаправленного слоя. В связи с этим проблема разработки методов прогнозирования полного комплекса упругих и прочностных свойств композитов является достаточно актуальной.

Согласно гипотезе о макрофизической определимости А.А. Ильюшина [1] каждой точке среды может быть поставлен в соответствие макрообразец (конечных размеров), находящийся в однородном напряженно-деформированном состоянии и на котором могут быть в принципе изучены все процессы, протекающие в исследуемой точке среды. Микроскопически неоднородный композиционный материал также может быть идеализирован как макроскопически однородный континуум с некими идентичными (осредненными) деформативными свойствами. Такая идеализация в теории эффективного модуля осуществляется выделением представительного элемента (элементарной ячейки) композита, в котором однородное НДС осуществляется только «в среднем» и описывается эффективными определяющими соотношениями

$$\{\tilde{\sigma}\} = \left[\overline{S}\right] \{\tilde{\varepsilon}\}; \qquad (1)$$

$$\{\tilde{\mathbf{\varepsilon}}\} = \left[\bar{C}\right] \{\tilde{\mathbf{\sigma}}\},\tag{2}$$

где  $[\bar{S}], [\bar{C}]$  – матрицы эффективных упругих жесткостей и податливостей материала;

 $\{\tilde{\sigma}\}, \{\tilde{\epsilon}\}$  – средние по объему *V* представительного элемента векторы напряжений и деформаций:

$$\{\tilde{\sigma}\} = \frac{1}{V} \int_{V} \{\sigma\} dV; \quad \{\tilde{\varepsilon}\} = \frac{1}{V} \int_{V} \{\varepsilon\} dV.$$
(3)

Таким образом, упругие характеристики композита могут быть получены теоретически на основе эффективных определяющих соотношений. Для представительного элемента неоднородного КМ решение граничной задачи возможно двумя методами [2]:

1) при наложении однородных граничных условий в перемещениях эффективные определяющие соотношения записываются в виде (1);

2) в случае однородных граничных условий в напряжениях связь между средними напряжениями и средними деформациями представительного элемента устанавливается зависимостями (2).

Для описанных граничных задач решения для действительных напряжений о и действительных деформаций є могут быть получены либо аналитически, либо численно [2]. При аналитическом подходе, как правило, вводятся дополнительные предположения, позволяющие упростить решение и в конечном итоге получить простые выражения для определения эффективных характеристик. При численном анализе НДС элементарной ячейки композита может быть использован метод конечных элементов (МКЭ). Такой подход позволяет в большей степени учесть все структурные особенности композиционного материала [2].

В данной статье рассматривается методика постановки численного эксперимента для определения упругих и прочностных характеристик углепластика на основе ткани полотняного плетения RC200P и эпоксидного связующего 5-211Б. Технические характеристики ткани приведены в табл. 1. Геометрическая модель элементарной ячейки углеткани показана на рис. 1.



Рисунок 1 – Геометрическая модель ткани полотняного плетения

| Параметры                                      | Основа                   | Уток                     |
|------------------------------------------------|--------------------------|--------------------------|
| Тип плетения                                   | полотняное               |                          |
| Тип и марка волокон                            | Tenax <sup>®</sup> HTA40 | Tenax <sup>®</sup> HTA40 |
| Плотность материала волокон, г/см <sup>3</sup> | 1,76                     | 1,76                     |
| Линейная плотность нитей, текс                 | 200                      | 200                      |
| Плотность нитей на 1 см                        | 4,9                      | 4,9                      |
| Толщина ткани, мм                              | 0,25                     |                          |
| Поверхностная плотность, г/м <sup>2</sup>      | 195                      |                          |

Таблица 1 – Технические характеристики углеткани RC200P

В представительном элементе рассматриваемого композита можно выделить три отдельных однородных компонента, свойства которых считаются известными: нить основы, нить утка и чистое связующее, заполняющее свободный объем между нитями.

При построении конечно-элементной модели элементарной ячейки рассматриваемого композита использовались следующие предположения:

- поперечное сечение нитей считается прямоугольным и постоянным вдоль идеализированной траектории нити;

- компоненты композита считаются однородными, при этом материал связующего является изотропным, а материал нитей основы и утка – анизотропным.

Последнее допущение является вполне справедливым, поскольку пряжа ткани представляет собой комплексную нить, сформированную из определенного количества элементарных волокон, и при пропитывании связующим материалы нитей основы и утка можно трактовать как трансверсально-изотропный относительно собственных главных осей (рис. 2).



Рисунок 2 – Оси ортотропии материалов нитей основы и утка

Физико-механические характеристики однонаправленного композита определяются известными соотношениями микромеханики КМ (полуэмпирические соотношения Халпина – Цая, Чамиса или др.) в зависимости от степени объемного содержания наполнителя.

Оценка коэффициента объемного заполнения нити  $k_f$  для исследуемого композита проводилась по микрофотографиям среза плоских образцов (рис. 3) и составила в среднем 0,7. Значения эффективных упругих характеристик для однонаправленного КМ, полученные по соотношениям Чамиса [2], приведены в табл. 2.



Рисунок 3 – Микрофотографии среза плоских образцов

Таблица 2 – Осредненные физико-механические характеристики нитей, пропитанных связующим

| Параметр              | Связующее<br>5-211Б | Волокно<br>НТА40 | Однонаправленный КМ<br><i>k<sub>f</sub></i> =0,7 |
|-----------------------|---------------------|------------------|--------------------------------------------------|
| Е₁, ГПа               | 2.4                 | 230              | 162,02                                           |
| Е₂, ГПа               | 5,4                 | 15               | 9,63                                             |
| $\mu_{12}$            | 0.25                | 0,2              | 0,245                                            |
| $\mu_{23}$            | 0,33                |                  | 0,346                                            |
| G <sub>12</sub> , ГПа | 1.26                | 27               | 6,22                                             |
| G <sub>23</sub> , ГПа | 1,20                | 7                | 4,01                                             |
| F <sub>1t</sub> , МПа | 90                  | 3950             | 2783,0                                           |
| F <sub>2t</sub> , МПа | 00                  | -                | 71,6                                             |
| F <sub>1c</sub> , МПа | 104                 | 2700             | 1902,0                                           |
| F <sub>2c</sub> , МПа | 104                 | _                | 93,0                                             |
| F <sub>12</sub> , МПа | 40                  |                  | 34,8                                             |

Расчетная модель элементарной ячейки композита в виде неоднородного твердого тела приведена на рис. 4.

Для определения эффективных упругих характеристик исследуемого КМ необходимо решить ряд задач с моделированием соответствующих граничных условий. Далее путем осреднения компонентов действительного напряженного (или деформированного) состояния по эффективным соотношениям (2) или (1) определяются упругие свойства композита.



Рисунок 4 – Дискретизация элементарной ячейки композита на призматические (hex) и клиновидные (wedge) конечные элементы

Задача определения прочностных свойств композитов является более сложной и требует рассмотрения условий прочности отдельно для каждого компонента с привлечением соответствующих критериев прочности. Для трансверсально-изотропного композита принято выделять шесть прочностных характеристик относительно осей ортотропии: по два предела прочности на растяжение и сжатие, предел прочности на сдвиг в плоскости однонаправленного слоя и предел прочности на межслойный сдвиг. По аналогии с упругими свойствами приведенные характеристики прочности для однонаправленных композитов достаточно достоверно описываются соотношениями микромеханики.

В данной работе при оценке прочностных характеристик тканого композита условия прочности записывались для нитей основы и утка в виде критерия максимальных напряжений. Необходимо отметить, что для пряжи ткани могут быть использованы и энергетические критерии Цая – Ву, Хилла и др. Прогнозирование процесса разрушения связующего может быть выполнено с привлечением соответствующих критериев прочности для однородных изотропных материалов [2].

Значения эффективных упругих и прочностных характеристик, полученные экспериментальным путем и анализом МКЭ элементарной ячейки исследуемого КМ, приведены в табл. 3. Необходимо отметить, что величины эффективных упругих констант, вычисленные МКЭ для разных граничных условий, образуют так называемую «вилку» Фойгта – Рейса [3], т.е. определяют ограничения сверху и снизу на эффективные модули упругости композита. В большинстве случаев средние экспериментальные показатели упругих характеристик оказываются ближе к верхним границам расчетных значений, т.е. полученным по зависимостям (2) с моделированием граничных условий в перемещениях.

| Параметр                                                                                           |                        | МКЭ               |                   |                    |  |  |
|----------------------------------------------------------------------------------------------------|------------------------|-------------------|-------------------|--------------------|--|--|
|                                                                                                    |                        | Граничные условия | Граничные условия | Эксперимент*       |  |  |
|                                                                                                    |                        | в напряжениях     | в перемещениях    |                    |  |  |
| Упругие характеристики,<br>ГПа                                                                     | E <sub>1</sub>         | 30,2              | 52,7              | $49,7 \pm 8,4\%$   |  |  |
|                                                                                                    | E <sub>2</sub>         | 28,7              | 52,7              | 51,3 ± 8,9%        |  |  |
|                                                                                                    | E <sub>3</sub>         | 7,7               | 8,4               | —                  |  |  |
|                                                                                                    | $\mu_{12}$             | 0,126             | 0,064             | $0,060 \pm 15,0\%$ |  |  |
|                                                                                                    | $\mu_{21}$             | _                 | —                 | 0,075 ± 13,9%      |  |  |
|                                                                                                    | $\mu_{23}$             | 0,454             | 0,467             | _                  |  |  |
|                                                                                                    | $\mu_{31}$             | 0,093             | 0,083             | _                  |  |  |
|                                                                                                    | G <sub>12</sub>        | 3,14              | 3,45              | $2,92 \pm 11,6\%$  |  |  |
|                                                                                                    | G <sub>23</sub>        | 1,95              | 1,97              | —                  |  |  |
|                                                                                                    | G <sub>31</sub>        | 1,92              | 2,03              | _                  |  |  |
| Прочность,<br>МПа                                                                                  | F <sub>1t</sub>        | 532,2             | 926,2             | $532,5 \pm 5,7\%$  |  |  |
|                                                                                                    | F <sub>2t</sub>        | 555,1             | 871,1             | 550,9 ± 11,7%      |  |  |
|                                                                                                    | F <sub>3t</sub>        | 39,1              | 53,6              | —                  |  |  |
|                                                                                                    | <b>F</b> <sub>12</sub> | 90,3              | 90,7              | 93,6 ± 3,6%        |  |  |
|                                                                                                    | F <sub>23</sub>        | 52,7              | 52,9              | _                  |  |  |
|                                                                                                    | F <sub>31</sub>        | 62,9              | 64,5              | _                  |  |  |
| * Результаты получены по испытаниям 21 образца в соответствии со стандартами<br>ASTM D3039 и D3518 |                        |                   |                   |                    |  |  |

Таблица 3 – Физико-механические характеристики углепластика

Полученные по критерию максимальных напряжений прочностные характеристики для элементарной ячейки композита с заданием граничных условий в напряжениях практически совпадают с экспериментальными значениями.

## Список использованных источников

1. Победря Б.Е. Механика композиционных материалов / Б.Е. Победря. – М.: Изд-во Моск. ун-та, 1984. – 336 с.

2. Tong L., Mouritz A.P., Bannister M.K. 3D Fibre Reinforced Polymer Composites. – Amsterdam: ELSEVIER, 2002. – 241 p.

3. Принципы создания композиционных полимерных материалов / А.А. Берлин, С.А. Вольфсон, В.Г. Ошмян, Н.С. Ениколопов. – М.: Химия, 1990. – 240 с.

Поступила в редакцию 16.12.2010. Рецензент: д-р техн. наук, проф. Я.С. Карпов, Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Харьков