Ф.М. Гагауз, канд. техн. наук, П.М. Гагауз

МОДЕЛИРОВАНИЕ ФИЗИКО-МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

Анализ напряженно-деформированного состояния (НДС) тонкостенных конструкций из композиционных материалов (КМ) базируется на известных расчетных схемах, которые в сочетании с теорией слоистого КМ и различными критериями прочности позволяют получить достаточно достоверные результаты. При расчете тонкостенных силовых элементов из КМ компонентами нормальных и касательных напряжений из плоскости, как правило, пренебрегают. Однако в нерегулярных зонах конструкции эти внутренние силовые факторы могут превышать напряжения в плоскости конструкции. Сказанное выше свидетельствует о необходимости использования более точных методов расчета и соответствующих критериев прочности, учитывающих трехмерное напряженное состояние изделий из КМ. Проведение такого анализа зачастую оказывается невозможным, поскольку большинство справочников по КМ содержат, как правило, упругие и прочностные характеристики в плоскости однонаправленного слоя. В связи с этим проблема разработки методов прогнозирования полного комплекса упругих и прочностных свойств композитов является достаточно актуальной.

Согласно гипотезе о макрофизической определимости А.А. Ильюшина [1] каждой точке среды может быть поставлен в соответствие макрообразец (конечных размеров), находящийся в однородном напряженно-деформированном состоянии и на котором могут быть в принципе изучены все процессы, протекающие в исследуемой точке среды. Микроскопически неоднородный композиционный материал также может быть идеализирован как макроскопически однородный континуум с некими идентичными (осредненными) деформативными свойствами. Такая идеализация в теории эффективного модуля осуществляется выделением представительного элемента (элементарной ячейки) композита, в котором однородное НДС осуществляется только «в среднем» и описывается эффективными определяющими соотношениями

$$\{\tilde{\sigma}\} = \left[\bar{S}\right] \{\tilde{\epsilon}\}; \tag{1}$$

$$\left\{\tilde{\mathbf{\varepsilon}}\right\} = \left[\bar{C}\right]\left\{\tilde{\mathbf{o}}\right\},\tag{2}$$

где $\left[\overline{S} \right]$, $\left[\overline{C} \right]$ – матрицы эффективных упругих жесткостей и податливостей материала;

 $\{\tilde{\sigma}\}, \{\tilde{\epsilon}\}$ – средние по объему V представительного элемента векторы напряжений и деформаций:

$$\{\tilde{\sigma}\} = \frac{1}{V} \int_{V} \{\sigma\} dV; \quad \{\tilde{\varepsilon}\} = \frac{1}{V} \int_{V} \{\varepsilon\} dV. \tag{3}$$

Таким образом, упругие характеристики композита могут быть получены теоретически на основе эффективных определяющих соотношений. Для представительного элемента неоднородного КМ решение граничной задачи возможно двумя методами [2]:

- 1) при наложении однородных граничных условий в перемещениях эффективные определяющие соотношения записываются в виде (1);
- 2) в случае однородных граничных условий в напряжениях связь между средними напряжениями и средними деформациями представительного элемента устанавливается зависимостями (2).

Для описанных граничных задач решения для действительных напряжений о и действительных деформаций є могут быть получены либо аналитически, либо численно [2]. При аналитическом подходе, как правило, вводятся дополнительные предположения, позволяющие упростить решение и в конечном итоге получить простые выражения для определения эффективных характеристик. При численном анализе НДС элементарной ячейки композита может быть использован метод конечных элементов (МКЭ). Такой подход позволяет в большей степени учесть все структурные особенности композиционного материала [2].

В данной статье рассматривается методика постановки численного эксперимента для определения упругих и прочностных характеристик углепластика на основе ткани полотняного плетения RC200P и эпоксидного связующего 5-211Б. Технические характеристики ткани приведены в табл. 1. Геометрическая модель элементарной ячейки углеткани показана на рис. 1.

Рисунок 1 – Геометрическая модель ткани полотняного плетения

Параметры	Основа	Уток
Тип плетения	полотняное	
Тип и марка волокон	Tenax [®] HTA40	Tenax [®] HTA40
Плотность материала волокон, г/см ³	1,76	1,76
Линейная плотность нитей, текс	200	200
Плотность нитей на 1 см	4,9	4,9
Толщина ткани, мм	0,25	
Поверхностная плотность, г/м ²	195	

Таблица 1 – Технические характеристики углеткани RC200P

В представительном элементе рассматриваемого композита можно выделить три отдельных однородных компонента, свойства которых считаются известными: нить основы, нить утка и чистое связующее, заполняющее свободный объем между нитями.

При построении конечно-элементной модели элементарной ячейки рассматриваемого композита использовались следующие предположения:

- поперечное сечение нитей считается прямоугольным и постоянным вдоль идеализированной траектории нити;
- компоненты композита считаются однородными, при этом материал связующего является изотропным, а материал нитей основы и утка анизотропным.

Последнее допущение является вполне справедливым, поскольку пряжа ткани представляет собой комплексную нить, сформированную из определенного количества элементарных волокон, и при пропитывании связующим материалы нитей основы и утка можно трактовать как трансверсально-изотропный относительно собственных главных осей (рис. 2).

Рисунок 2 – Оси ортотропии материалов нитей основы и утка

Физико-механические характеристики однонаправленного композита определяются известными соотношениями микромеханики КМ (полуэмпирические соотношения Халпина — Цая, Чамиса или др.) в зависимости от степени объемного содержания наполнителя.

Оценка коэффициента объемного заполнения нити k_f для исследуемого композита проводилась по микрофотографиям среза плоских образцов (рис. 3) и составила в среднем 0,7. Значения эффективных упругих характеристик для однонаправленного КМ, полученные по соотношениям Чамиса [2], приведены в табл. 2.

Рисунок 3 – Микрофотографии среза плоских образцов

Таблица 2 — Осредненные физико-механические характеристики нитей, пропитанных связующим

Параметр	Связующее 5-211Б	Волокно НТА40	Однонаправленный КМ $k_f = 0.7$
Е₁, ГПа	2.4	230	162,02
Е2, ГПа	3,4	15	9,63
μ_{12}	0,35	0,2	0,245
μ_{23}	0,33	_	0,346
G ₁₂ , ГПа	1,26	27	6,22
G ₂₃ , ГПа	1,20	7	4,01
F₁t, MΠa	80	3950	2783,0
F _{2t} , MΠa	00	_	71,6
F _{1c} , MΠa	104	2700	1902,0
F _{2c} , MΠa	104	_	93,0
F ₁₂ , МПа	40	_	34,8

Расчетная модель элементарной ячейки композита в виде неоднородного твердого тела приведена на рис. 4.

Для определения эффективных упругих характеристик исследуемого КМ необходимо решить ряд задач с моделированием соответствующих граничных условий. Далее путем осреднения компонентов действительного напряженного (или деформированного) состояния по эф-

фективным соотношениям (2) или (1) определяются упругие свойства композита.

Рисунок 4 — Дискретизация элементарной ячейки композита на призматические (hex) и клиновидные (wedge) конечные элементы

Задача определения прочностных свойств композитов является более сложной и требует рассмотрения условий прочности отдельно для каждого компонента с привлечением соответствующих критериев прочности. Для трансверсально-изотропного композита принято выделять шесть прочностных характеристик относительно осей ортотропии: по два предела прочности на растяжение и сжатие, предел прочности на сдвиг в плоскости однонаправленного слоя и предел прочности на межслойный сдвиг. По аналогии с упругими свойствами приведенные характеристики прочности для однонаправленных композитов достаточно достоверно описываются соотношениями микромеханики.

В данной работе при оценке прочностных характеристик тканого композита условия прочности записывались для нитей основы и утка в виде критерия максимальных напряжений. Необходимо отметить, что для пряжи ткани могут быть использованы и энергетические критерии Цая — Ву, Хилла и др. Прогнозирование процесса разрушения связующего может быть выполнено с привлечением соответствующих критериев прочности для однородных изотропных материалов [2].

Значения эффективных упругих и прочностных характеристик, полученные экспериментальным путем и анализом МКЭ элементарной ячейки исследуемого КМ, приведены в табл. 3. Необходимо отметить, что величины эффективных упругих констант, вычисленные МКЭ для разных граничных условий, образуют так называемую «вилку» Фойгта – Рейса [3], т.е. определяют ограничения сверху и снизу на эффективные модули упругости композита. В большинстве случаев средние экспериментальные показатели упругих характеристик оказываются ближе к верхним границам расчетных значений, т.е. полученным по зависимостям (2) с моделированием граничных условий в перемещениях.

МКЭ	
раничные условия	Эксперимент*
в перемещениях	
52,7	$49,7 \pm 8,4\%$
52,7	51,3 ± 8,9%
8,4	_
0,064	0,060 ± 15,0%
_	0,075 ± 13,9%
0,467	_
0,083	_
3,45	2,92 ± 11,6%
1,97	_
2,03	_
926,2	532,5 ± 5,7%
871,1	550,9 ± 11,7%
53,6	_
-	в перемещениях 52,7 52,7 8,4 0,064 — 0,467 0,083 3,45 1,97 2,03 926,2 871,1

Таблица 3 – Физико-механические характеристики углепластика

90,3

52,7

62.9

 F_{23}

Полученные по критерию максимальных напряжений прочностные характеристики для элементарной ячейки композита с заданием граничных условий в напряжениях практически совпадают с экспериментальными значениями.

Список использованных источников

- 1. Победря Б.Е. Механика композиционных материалов / Б.Е. Победря. М.: Изд-во Моск. ун-та, 1984. 336 с.
- 2. Tong L., Mouritz A.P., Bannister M.K. 3D Fibre Reinforced Polymer Composites. Amsterdam: ELSEVIER, 2002. 241 p.
- 3. Принципы создания композиционных полимерных материалов / А.А. Берлин, С.А. Вольфсон, В.Г. Ошмян, Н.С. Ениколопов. М.: Химия, 1990. 240 с.

Поступила в редакцию 16.12.2010. Рецензент: д-р техн. наук, проф. Я.С. Карпов, Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Харьков

90.7

52,9

64.5

 $93,6 \pm 3,6\%$

^{*} Результаты получены по испытаниям 21 образца в соответствии со стандартами ASTM D3039 и D3518