МОДЕЛИРОВАНИЕ ПРОЦЕССА ВЫНУЖДЕННЫХ КОЛЕБАНИЙ ЛЕПЕСТКОВОГО КЛАПАНА ПУЛЬСИРУЮЩЕГО ВОЗДУШНО-РЕАКТИВНОГО ДВИГАТЕЛЯ

Самоподдерживающийся рабочий процесс в пульсирующем воздушно-реактивном двигателе (ПуВРД) определяется условием резонансной настройки колебательного движения механического клапана и цикла газообмена.

Авторам не удалось обнаружить в доступной литературе [1, 2 и др.] сведений о характере колебательного процесса механического клапана ПуВРД. Натурные исследования показали [3,4], что собственная частота колебания лепестка клапана может быть равной частоте работы двигателя, а может и кратно её превышать. В [5, 6] приводится информация о безрезультатных попытках скоростной видеосъёмки движущегося лепестка клапана в целях получения какоголибо представления о характере колебательного процесса.

Механические клапаны ПуВРД (рис. 1) могут иметь различное конструктивное исполнение, определяющее облик двигателя в целом. случай применения Например, известен С целью повышения ПуВРД расходонапряженности малоразмерного [7] лепестковореечного клапана (рис. 1б) с известной частотной характеристикой (140 Гц), вокруг которого и построен экспериментальный образец двигателя.

В связи с вышеизложенным остается открытым вопрос о развитии детерминированных методов проектирования на основе модели колебательного движения клапана. Такого рода модель предложена в настоящей статье.

Рисунок 1 – Конструктивные схемы исполнения механического клапана ПуВРД: а – ромашка; б - реечный

УДК 629.735.33

Постановка задачи. Дифференциальное уравнение статического изгиба пластины постоянной толщины при малых перемещениях имеет вид [8]

$$\nabla^2 \nabla^2 w = \frac{q}{D}, \qquad (1)$$

где *w* – прогиб; *q* – внешнее нормальное давление, которое может быть

функцией координат и изменяться во времени; $D = \frac{Eh^3}{12(1-v^2)}$ –

цилиндрическая жёсткость пластины; *E* – модуль упругости; *h* – толщина пластины; *v* – коэффициент Пуассона. Дифференциальный оператор имеет следующий смысл:

$$\nabla^{2}\nabla^{2}w = \left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}}\right)\left(\frac{\partial^{2}w}{\partial x^{2}} + \frac{\partial^{2}w}{\partial y^{2}}\right) = \frac{\partial^{4}w}{\partial x^{4}} + 2\frac{\partial^{4}w}{\partial x^{2}\partial y^{2}} + \frac{\partial^{4}w}{\partial y^{4}}.$$

С учетом интенсивности сил инерции уравнение (1) необходимо дополнить внешней нагрузкой

$$\boldsymbol{p} = -\rho h \frac{\partial^2 \boldsymbol{w}}{\partial t^2}, \qquad (2)$$

где *р* – плотность материала пластины. Тогда уравнение движения пластины приобретает следующий вид:

$$D\nabla^2 \nabla^2 w + \rho h \frac{\partial^2 w}{\partial t^2} = q.$$
(3)

Это дифференциальное уравнение необходимо дополнить краевыми условиями (по два условия на каждом участке границы) из следующего набора:

$$w = 0; \qquad (4)$$

$$\frac{\partial w}{\partial n} = 0; \qquad (4a)$$

$$\frac{\partial^2 w}{\partial n^2} + v \frac{\partial^2 w}{\partial s^2} = 0,; \qquad (5)$$

$$\frac{\partial^3 w}{\partial n^3} + (2 - v) \frac{\partial^3 w}{\partial n \partial s^2} = 0, \qquad (5a)$$

где *п* – нормаль к контуру; *s* – дуговая координата [8, 9].

Начальные условия имеют вид:

– исходная форма поверхности

 $w|_{t=0} = w_0(x, y);$ (6)

- скорость в нулевой момент времени

$$\left. \frac{\partial w}{\partial t} \right|_{t=0} = V_0(x, y). \tag{6a}$$

Таким образом, шесть дополнительных связей (4) – (6а) определяют единственное решение уравнения в частных производных (3).

Прогиб пластины определяется так:

$$W = \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} W_{mn} \cdot X_m(x) \cdot Y_n(y), \qquad (7)$$

где $W_{m,n}$ – коэффициенты, подлежащие определению (их также можно рассматривать как координаты, определяющие форму поверхности прогибов [9]), а X_m , Y_n – известные базисные функции, удовлетворяющие главным граничным условиям задачи.

Лепесток клапана представляет собой тонкую пластину, защемлённую по краю $X = -\frac{a}{2}$ (см. рис. 2). Граничные условия в данном случае принимают вид:

Рисунок 2 – Схема закрепления пластины

Эти условия выполняются, если в качестве базисных функций принять линейные комбинации полиномов Лежандра [10]:

$$X_{m}(x) = \frac{m+1}{m} P_{m-1}(x) + \frac{(2m+1)}{m} P_{m}(x) + P_{m+1}(x);$$

$$Y_{n}(y) = P_{n}(y),$$

где P_i – i-й полином Лежандра первого рода. Изменение аргумента $\left(\frac{2x}{a}, \frac{2y}{b}\right)$, где *а* и *b* – длина и ширина пластины соответственно,

используется для приведения области определения полиномов к интервалу [-1...1].

Из условий приведения следует используемая далее форма записи (7):

$$w = \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} W_{mn} \cdot X_m(\frac{2 \cdot x}{a}) \cdot Y_n(\frac{2 \cdot y}{b}).$$
(9)

Точное решение краевой задачи (3), (8) неизвестно, поэтому воспользуемся приближённым методом, например, методом Ритца.

Моделирование прогиба пластинки. Энергия деформации элемента пластинки, полученная путём суммирования энергии изгиба и энергии кручения [8,9], имеет вид

$$dU = \frac{1}{2}D\left\{\left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2}\right)^2 - 2(1-v)\left(\frac{\partial^2 w}{\partial x^2} \cdot \frac{\partial^2 w}{\partial y^2} - \left(\frac{\partial^2 w}{\partial x \partial y}\right)^2\right)\right\}dxdy.$$
(10)

Потенциальная энергия распределённой нагрузки *q(x,y)* на элементарном участке пластины равна:

$$dQ = -w \cdot q(x, y) dx dy \tag{11}$$

Полную энергию системы даст интеграл [9]:

$$U = \int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{-\frac{a}{2}-\frac{b}{2}}^{\frac{b}{2}} \left[\frac{1}{2} D \left\{ \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} \right)^2 - 2(1-\nu) \left(\frac{\partial^2 w}{\partial x^2} \cdot \frac{\partial^2 w}{\partial y^2} - \left(\frac{\partial^2 w}{\partial x \partial y} \right)^2 \right) \right\} - w \cdot q(x,y) dxdy.$$
(12)

Подстановка выражения (9) в интеграл (12) после интегрирования дает квадратичную функцию от коэффициентов $W_{1,1}$, $W_{1,2}$,.... Эти коэффициенты следует выбрать так, чтобы интеграл (12) принял минимальное значение. Условие минимума полной потенциальной энергии приводит к системе линейных алгебраических уравнений (СЛАУ) относительно $W_{1,1}$, $W_{1,2}$,...:

$$\begin{cases} \frac{\partial U}{\partial W_{1,1}} = 0; \\ \frac{\partial U}{\partial W_{1,2}} = 0; \\ \dots \dots \end{cases}$$
(13)

Урезая сумму (9) m = 1, ..., M, n = 0, ..., N, получим приближенное решение задачи изгиба пластинки.

Точность приведенного приближенного метода расчета прогибов повышается по мере увеличения чисел *М* и *N* членов ряда (9).

Найденные из (13) коэффициенты $W_{m,n}$ полностью определяют решение данной краевой задачи. Примеры решений приведены на рис. 3.

Рисунок 3 – Прогиб лепестка клапана под действием различных нагрузок: а – равномерно распределённая; б – кососимметричная относительно продольной оси

Для исследования точности приближённого решения в зависимости от количества членов ряда (9) при моделировании прогиба прямоугольной пластинки максимальная величина отклонения, вычисленная в пакете Cosmos 2M при использовании 1200 конечных элементов SHELL4, была далее сопоставлена с результатами исследований (табл. 1). Таблица 1 – Зависимость точности величины прогиба прямоугольной пластинки от количества удерживаемых членов аппроксимационного

ряда (9)						
количество членов ряда Лежандра М*N	3*2	4*4	6*5	8*6		
погрешность, %	4.8	1.4	0.7	0.6		

Нахождение собственных частот и форм колебаний. При простых гармонических колебаниях, т.е. когда перемещение во времени происходит гармонически и внешняя нагрузка отсутствует, можно положить, что [8]

$$w(x, y, t) = w(x, y) \cdot \sin(kt), \qquad (14)$$

где *к* – круговая частота собственных колебаний.

Поскольку численно круговая (или циклическая) частота равна числу циклов за 2π секунд, то $k = 2\pi\lambda$, где λ – число полных циклов за единицу времени. Перепишем уравнение (14):

$$w(x, y, t) = w(x, y) \cdot \sin(2\pi\lambda t).$$
(15)

Потенциальная энергия изгиба пластинки при амплитудном значении прогиба имеет вид

$$U_{p} = \frac{1}{2} D \int_{-\frac{a}{2} - \frac{b}{2}}^{\frac{a}{2}} \left\{ \left(\frac{\partial^{2} w(x, y)}{\partial x^{2}} + \frac{\partial^{2} w(x, y)}{\partial y^{2}} \right)^{2} - \frac{\partial^{2} w(x, y)}{\partial x^{2}} + \frac{\partial^{2} w(x, y)}{\partial y^{2}} - \frac{\partial^{2} w(x, y)}{\partial y^{2}} - \frac{\partial^{2} w(x, y)}{\partial x \partial y} \right)^{2} \right\} dxdy.$$
(16)

Кинетическая энергия всей пластинки записывается в виде [8]

$$U_{k} = \frac{1}{2} \int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{-\frac{b}{2}}^{\frac{b}{2}} (q \cdot w(x, y)) dx dy, \qquad (17)$$

где

$$q = \frac{F}{S} = \frac{m \cdot a}{S} = \frac{\rho \cdot V \cdot a}{S} = \rho \cdot h \cdot a = \rho \cdot h \cdot \dot{w}(x, y, t) =$$

$$\partial^{2} \{w(x, y) \sin(2\pi\lambda t)\} = \rho \cdot h \cdot a = \rho \cdot h \cdot \dot{w}(x, y, t) = 0$$
(18)

$$= \rho h \cdot \frac{\partial^2 \{w(x,y) \sin(2\pi\lambda t)\}}{\partial t^2} = -\rho h \cdot 4\pi^2 \cdot \lambda^2 \cdot w(x,y) \sin(2\pi\lambda t),$$

где S – площадь поверхности клапана; *h* – толщина лепестка; ρ – плотность материала. Перепишем (17) с учётом (18), приняв амплитудное значение нагрузки *q*:

$$U_{k} = -\frac{1}{2}\rho h \cdot 4\pi^{2} \cdot \lambda^{2} \cdot \int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{-\frac{b}{2}}^{\frac{b}{2}} (w(x, y) \cdot w(x, y)) dx dy, \qquad (19)$$

Полная энергия системы примет вид

$$U_{0} = \frac{1}{2} D \int_{-\frac{a}{2} - \frac{b}{2}}^{\frac{a}{2} - \frac{b}{2}} \left\{ \left(\frac{\partial^{2} w(x, y)}{\partial x^{2}} + \frac{\partial^{2} w(x, y)}{\partial y^{2}} \right)^{2} - 2(1 - v) \left(\frac{\partial^{2} w(x, y)}{\partial x^{2}} \cdot \frac{\partial^{2} w(x, y)}{\partial y^{2}} - \frac{\partial^{2} w(x, y)}{\partial y^{2}} \right)^{2} - 2(1 - v) \left(\frac{\partial^{2} w(x, y)}{\partial x^{2}} \cdot \frac{\partial^{2} w(x, y)}{\partial y^{2}} - \frac{\partial^{2} w(x, y)}{\partial y^{2}} \right)^{2} - 2(1 - v) \left(\frac{\partial^{2} w(x, y)}{\partial x^{2}} \cdot \frac{\partial^{2} w(x, y)}{\partial y^{2}} - \frac{\partial^{2} w(x, y)}{\partial y^{2}} - \frac{\partial^{2} w(x, y)}{\partial y^{2}} \right)^{2} - 2(1 - v) \left(\frac{\partial^{2} w(x, y)}{\partial x^{2}} \cdot \frac{\partial^{2} w(x, y)}{\partial y^{2}} - \frac{\partial^{2} w(x, y)}{\partial y^{2}} - \frac{\partial^{2} w(x, y)}{\partial y^{2}} - \frac{\partial^{2} w(x, y)}{\partial y^{2}} \right)^{2} - 2(1 - v) \left(\frac{\partial^{2} w(x, y)}{\partial x^{2}} \cdot \frac{\partial^{2} w(x, y)}{\partial y^{2}} - \frac{\partial^{2$$

$$-\left(\frac{\partial^2 w(x,y)}{\partial x \partial y}\right)^2 \Bigg] dxdy - 4\pi^2 \rho h \lambda^2 \cdot \frac{1}{2} \int_{-\frac{a}{2} - \frac{b}{2}}^{\frac{a}{2} - \frac{b}{2}} w(x,y)^2 dxdy .$$
(20)

Уравнения равновесия, составленные по принципу Даламбера в положении амплитудного отклонения системы, приводят к обобщённой задаче на собственные значения:

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{21} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} q_1 \\ q_2 \\ \vdots \\ q_m \end{bmatrix} = \lambda^2 \cdot \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{21} & \cdots & b_{2n} \\ \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{bmatrix} \cdot \begin{bmatrix} q_1 \\ q_2 \\ \vdots \\ q_m \end{bmatrix}, \quad (21)$$

где
$$\begin{bmatrix} q_1 \\ q_2 \\ \vdots \\ q_m \end{bmatrix}$$
 – собственный вектор; λ – собственные значения.

Вычисленные значения собственной частоты первой формы колебаний модели с криволинейными границами сопоставлялись с результатами натурных исследований [3,4] лепестка клапана и решением с помощью МКЭ [11] (табл. 2).

Таблица 2 – Сравнение значений собственных частот (Гц) первой формы колебаний лепестка клапана, полученных экспериментально и путем численного моделирования

Толщина клапана, мм	0.35	0.4	0.53	0.63
Моделирование	154	176	234	278
Натурный эксперимент			237	
МКЭ	149	170	225	267

Первые несколько форм колебаний приведены на рис. 4.

Рисунок 4 – Первые три формы колебания прямоугольной пластины (а, б, в) и их суперпозиция (г)

Задача о вынужденных колебаниях. В задаче о вынужденных колебаниях функция прогиба зависит от времени, т.е. (9) представляется в виде функции

$$w(x, y, t) = \sum_{k=1}^{K} w_k(x, y) \cdot sin(kt), \qquad (22)$$

где k = 1, 2, 3, ..., а $W_k(x, y)$ – прогиб, соответствующий k-му индексу суммирования. Нагрузку P(x, y, t) разложим в ряд Фурье по синусам на интервале $[0...\pi]$:

$$P(x, y, t) = \sum_{k=1}^{K} P_k(x, y) \sin(kt),$$
 (23)

где

$$P_{k}(x,y) = \frac{\int_{0}^{\pi} \{P(x,y,t) \cdot \sin(kt)\} dt}{\int_{0}^{\pi} \{\sin^{2}(kt)\} dt}$$
(24)

- коэффициенты Фурье. Исходя из (11), запишем энергию нагрузки на всей поверхности пластинки за период π:

$$Vn = \int_{0}^{\pi} \int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{-\frac{b}{2}}^{\frac{b}{2}} P(x, y, t) \cdot w(x, y, t) dx dy dt =$$

= $\int_{0}^{\pi} \int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{-\frac{b}{2}}^{\frac{b}{2}} \sum_{k=1}^{K} P_{k}(x, y) sin(kt) \cdot \sum_{k=1}^{K} w_{k}(x, y) \cdot sin(kt) dx dy dt.$ (25)

С учётом ортогональности системы функций *sin(kt)* энергия нагрузки примет вид

$$Vn_{k} = \frac{k\pi}{2} \int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{-\frac{b}{2}}^{\frac{b}{2}} P_{k}(x, y) w_{k}(x, y) dx dy, \qquad (26)$$

где интеграл по времени берётся согласно принципу Гамильтона [12].

Потенциальная энергия деформации и инерционных сил с учётом вида функции прогиба (15) и ортогональности системы функций *sin(kt)* примет вид

$$Vp_{k} = \frac{k\pi}{4} D \int_{-\frac{a}{2} - \frac{b}{2}}^{\frac{a}{2}} \left\{ (w_{k}(x, y)_{xx} + w_{k}(x, y)_{yy})^{2} - \frac{a}{2} - \frac{b}{2} \right\}$$

$$2(1 - y)(w_{k}(x, y)_{xx} + w_{k}(x, y)_{yy})^{2} - \frac{w_{k}(x, y)_{yy}}{2} + \frac{w_{k}(x, y)_{yy}$$

$$-2(1-v)(w_{k}(x,y)_{xx}\cdot w_{k}(x,y)_{yy}-w_{k}(x,y)_{xy}^{2})dxdy; \qquad (27)$$

$$Vi_{k} = \frac{k\pi}{4}k^{2}\rho h \int_{-\frac{a}{2}-\frac{b}{2}}^{\frac{a}{2}} \left\{ w_{k}^{2}(x,y) \right\} dxdy .$$
(28)

Полная энергия системы имеет вид

$$U = \sum_{k=1}^{K} U_k, \quad k = 1, 2, 3, \dots,$$
 (29)

где

$$U_k = V p_k - V i_k - V n_k \,. \tag{30}$$

Далее неизвестные *W_{m.n.k}* находятся методом Ритца.

На рис. 5 показано движение точки на кромке пластины вследствие приложения одной импульсной (а), двух (б, в) и одной неравномерной нагрузок (г).

Выводы

1. Представленная модель механического клапана обеспечивает решение основных проектных задач резонансной настройки ПуВРД.

2. Формы математической записи и ресурсоемкость модели обеспечивают условия для интеграции в состав технологии опережающих численных исследований процесса в ПуВРД [13].

3. Верификация, проведенная с использованием пакетов «Cosmos 2M» и «Ansys», подтверждает достаточную для решения проектных задач точность результатов.

1. Fei Zheng Computational investigation of high speed pulsejets / PhD Thesis, North Carolina State University, Raleigh.

2. Robert R. Erickson A numerical investigation on the influence of engine shape and mixing processes on wave engine performance / PhD Thesis, School of aerospace engineering, Georgia institute of technology.

3. Амброжевич А.В. Аппаратно-программный инструментарий исследования рабочих процессов пульсирующих воздушно-реактивных двигателей // А.В. Амброжевич, И.П. Бойчук, В.Ю. Силевич // Авиационно-космическая техника и технология.— Х., 2008. — Вып. 2. – С. 55-59.

4. Амброжевич A.B. Исследование взаимосвязи между характеристиками ресурсом ПуВРД частотными И клапана \parallel И.П. Бойчук, В.Ю. Силевич // Авиационно-А.В. Амброжевич. космическая техника и технология. – Х., 2009. Вып. 1. – С. 76-79.

5. Ordon R.L. Experimental investigations into the operational parameters of a 50 centimeter class pulsejet engine / M.S. Thesis, North Carolina State University, Raleigh.

6. Kumar A.K.R. Experimental Investigation on Pulsejet Engines / M.S. Thesis, North Carolina State University, Raleigh.

7. Talbot M.C. Experimental Investigation of liquid fueled Pulsejet Engines / M.S. Thesis, North Carolina State University, Raleigh.

8. Пономарев С.Д. Расчеты на прочность в машиностроении / С.Д. Пономарев, В.Л. Бидерман, К.К. Лихарев и др. – М.: МАШГИЗ. 1959. – Т. 3. – 1118 с.

9. Тимошенко С.П. Пластинки и оболочки / С.П. Тимошенко, С. Войновский-Кригер. – М.: Наука, 1966. – 635 с.

10. Минтюк В.Б. Ортонормированный базис для одномерных краевых задач // В.Б. Минтюк // Авиационно-космическая техника и технология. – Х., 2007. – Вып. 5. – С. 32-36.

11. Бойчук И.П. Сравнение механических моделей колебания лепесткового клапана / И.П. Бойчук, С.Н. Ларьков, В.Ю. Силевич // Вопросы проектирования и производства конструкций летательных аппаратов. 2009. – Вып. 3. – С. 26-32.

12. Васидзу К. Вариационные методы в теории упругости и пластичности / К. Васидзу. – М.: Мир, 1987. – 542 с.

13. Амброжевич А.В. Комплексная математическая модель ПуВРД малой тяги и его испытательного стенда / А.В. Амброжевич, С.Н. Ларьков // Радіоелектронні і комп'ютерні системи. 2004. – Вып.4(8). – С. 118-121.

Поступила в редакцию 17.11.2011 г. Рецензент: д-р физ.-мат. наук, проф. А.В. Бастеев, Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», г. Харьков