ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ДОЛГОВЕЧНОСТИ ОБРАЗЦОВ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ, ПОЛУЧЕННЫХ ЛАЗЕРНЫМ РАСКРОЕМ ДЛЯ ПАНЕЛЕЙ ПЛАНЕРА САМОЛЕТА

В последние годы в отечественной и зарубежной практике все шире применяют лазерные технологии для раскроя панелей планера самолета из алюминиевых сплавов [1–2]. Это связано с рядом преимуществ лазерного раскроя (ЛР) по сравнению с фрезерованием и другими технологическими процессами, в том числе высокой производительностью процесса, быстрой окупаемостью капитальных затрат на оборудование (0,5 – 1 год) [2] и др.

Стоимость лазерного раскроя погонного метра листа из алюминиевого сплава при энергетических затратах в США составляет 1 кВт/ч электроэнергии в 0,55\$ и 1м³ азота 0,92\$ при толщине листа 1,5 мм – 0,043\$, а при толщине листа 3 мм – 0,2\$, что соответствует производительности (90...250) м/ч, значительно превосходящей раскрой фрезерованием [2].

В то же время лазерный раскрой листов из алюминиевых сплавов имеет характерные особенности, связанные с их оптическими и теплофизическими характеристиками: низкой поглощательной способностью для лазерного излучения и большой теплопроводностью [1, 3].

В связи с этим на границе реза в зависимости от основных параметров лазерного раскроя (скорости резания, мощности лазерного излучения и давления вспомогательного газа), связанных с параметрами его последствия (микротвердостью в зоне термического влияния (3TB), ее протяженностью (шириной) и шероховатостью в совокупности с гратами – заусенцами и застывшими каплями реза), возникают предпосылки для снижения долговечности панели в условиях эксплуатации самолета [4].

В нашей работе [4] приведены результаты микроструктурного анализа зоны термического влияния образцов тонколистовых материалов различной толщины из неупрочняемых алюминиевых сплавов АМцМ, АМцН, АМг2М, АМг6М, упрочняемых Д16АМ, 1163AMB, АК-1чУТ1ВК, АК4АТ1, Д16АТ, а также сталей 30ХГСА и 12Х18Н10Т после их раскроя на установке PLATINO 2040 производства фирмы PRIMA INDASTRIA (Италия) с лазером на углекислом газе серии серии CP 4000 по оптимальным режимам. Исследована микротвердость этих материалов в зоне термического влияния по сравнению с замеренной на образцах, раскроенных фрезерованием. Выявлены особенности и степень чувствительности различных материалов к нагреву при лазерной резке. Приведены также результаты испытаний образцов из данных листовых материалов, полученных лазерным раскроем и фрезерованием, на прочность при растяжении и дан их анализ.

Из этого анализа следует, что статическая прочность образцов, вырезанных лазерным лучом и фрезерованием, практически одинакова, а охрупчивание материала в ЗТВ может отразиться на долговечности панелей планера самолета из алюминиевых сплавов.

В связи с этим в [5] предложен экспериментально-теоретический метод оптимизации параметров процесса лазерной резки образцов материалов по критерию максимальной долговечности, которые находят из системы уравнений, связывающих долговечность с параметрами относительных факторов последствия процесса лазерной резки (микротвердости зоны термического влияния, протяженности этой зоны и высоты микронеровностей). Каждый из этих параметров последствия процесса лазерной резки выражен через относительные факторы причины снижения долговечности – параметры процесса: скорость лазерной резки, давление вспомогательного газа и мощность лазерного излучения – регрессионными зависимостями аналогичного вида.

В работе [6] описан предложенный нами трехуровневый алгоритм оптимизации режимов лазерного раскроя заготовок силовых панелей из алюминиевых сплавов планера самолета в серийном производстве по критерию их максимальной долговечности.

Алгоритм основан на реализации экспериментальнотеоретического метода прогнозирования снижения долговечности образцов материалов в зависимости от изменения их свойств в ЗТВ лазерного реза, связанных с параметрами режимов данного технологического процесса их математическими моделями в виде регрессионных зависимостей второго порядка.

Реализация многоуровневого алгоритма для серийного производства позволяет определить близкие к оптимальным параметры режима лазерного раскроя для различных типов материалов.

Однако реализация результатов, изложенных в работах [5, 6] требует значительного объема экспериментальных исследований долговечности образцов, полученных ЛР.

Известно, что испытание образцов материалов на долговечность (усталость) чрезвычайно трудоемкий и затратный по средствам и времени процесс. С другой стороны, заключение о долговечности того или иного конструкционного материала всегда имеет ряд существенных оговорок, ограничивающих его четкими граничными условиями [7].

Стандарт [8] различает многоцикловую усталость, соответствующую базе 10⁶ циклов нагружения, и малоцикловую усталость, ограниченную базой 4.10⁴ циклов нагружения (табл. 1) [9].

Номер п/п	Наименование сплава	Марка сплава	<i>N_{мцу}</i> , 10 ⁴ циклов
		1420TF1	10,5
		1421TC1	15
1	Сплавы системы	>1461	25
I	AI — Li	1460	30-50
		1464	20-25
		1468	>25
2	Сплавы системы AI –Cu – Mg, AI –Cu – Mg – Fe – Ni	1163AT (216)	11
3	Сплавы системы AI –Zn – Mg – Cu, AI –Zn – Mg	1973T2 (7150, T76)	22
		9504T2	16
4	AI - Zn - Mg	B96 Ц3 – T2	20
	AI - ZII - IMg - Cu	В96 Ц-3Т12	22

Таблица 1 – Малоцикловая усталость некоторых алюминиевых сплавов

Оговариваются характер цикла нагружения, вид и размеры образца, уровень нагрузки, условия проведения испытаний и оборудование, а также требования к точности геометрических размеров образцов и к объему их партий, гарантирующему приемлемую степень точности результатов.

Отмеченный выше далеко не полный перечень требований и условий свидетельствует о том, что экспериментальные исследования сравнительной долговечности образцов материала панелей планера самолета, полученных лазерным раскроем и фрезерованием, могут быть ограничены временным интервалом в тысячи часов и объемом сотен образцов. Поэтому были предприняты приемлемые обоснованные ограничения программы с учетом исследований, проведенных в [4 – 6], и следующих из них выводов, а также ряда публикаций других авторов [2 – 3].

Прежде всего объем испытаний был ограничен наиболее распространенным по применению в панелях крыльев и фюзеляжей гражданских самолетов сплавом Д16АТ. Кроме этого на образцах, вырезанных лазерной резкой для испытаний на долговечность в центре рабочей зоны выполнялось отверстие диаметром 4 мм, которое значительно увеличивало ЗТВ в критическом сечении образца и, соответственно, параметры ее влияния $H_{\mu(20) \ 3TB}$, t_{3TB} и Rz, а следовательно, существенно снижало долговечность образцов по сравнению с аналогами без концентратора напряжений в виде отверстия, сокращая время испытаний.

С учетом всего отмеченного выше была разработана сокращенная программа исследований долговечности при малоцикловой усталости

образцов. Этой программой было предусмотрено изготовление всех партий образцов из сплава Д16АТ из одного листа материала толщиной δ=3 мм и δ=1мм и проведение исследований:

- микротвердости образцов, вырезанных фрезерованием;

– микротвердости в ЗТВ, ширины этой зоны, а также средней величины микронеровностей в зоне резания образцов, вырезанных лазерным лучом на установке Platino 2040 HS.

Образцы для испытаний на долговечность имели геометрические параметры, указанные на рис. 1, соответствующие IV типу образцов по ГОСТ 25.502-79.

Рисунок 1 – Геометрические параметры образца пластины с отверстием

Образцы изготавливались в объеме трех серий. Первая серия в количестве трех образцов, предназначенных для определения исходной микротвердости материала Д16АТ, имела размеры 20х20х3 мм. Вторая серия изготавливалась вырезкой из листа фрезерованием на режимах, принятых при резке панелей планера самолета в серийном производстве. Число образцов второй серии равно пяти. Третья серия образцов изготавливалась лазерной резкой на установке Platino 2040 HS в количестве 35 штук по пять образцов в каждой группе. Каждая группа из пяти образцов вырезалась на разных режимах лазерной установки.

Испытания образцов на долговечность проводилось на гидравлической машине немецкого производства ЦДМ-10Пу без вариатора частот на постоянной частоте 11,3 Гц.

Испытания образцов по данной программе производилось при отнулевых циклах при максимальной нагрузке P = 1404 кгс и напряжениях $\sigma_{ep_{max}^{min}} = 0...130$ МПа до разрушения после выхода машины на рабочий режим по истечении шести часов при температуре в лаборатории 20°С и

режим по истечении шести часов при температуре в лаборатории 20°С и влажности, соответствующей требованиям стандарта [8].

На рис. 2 приведены фотографии типовых разрушений образцов некоторых из испытанных партий. Как видно, все образцы разрушались в ослабленной рабочей зоне по отверстию.

Рисунок 2 – Типичный характер разрушения образцов различных партий

Режимы лазерной резки, соответствующие каждой группе двух серий образцов, а также число циклов малоцикловой усталости и их отношение к базовому значению приведены в табл. 2 и 3. Базовое среднее значение циклов малоцикловой усталости для партий фрезерованных образцов $T_{u\,db}$ =232400 циклов.

На испытанных партиях образцов проводили замеры микротвердости $H_{\mu(20)}$, ширины ЗТВ t_{3TB} и средних значений микронеровностей Rz образцов всех групп третьей партии в трех сечениях рабочей части по стандартным методикам. Результаты замеров приведены в табл. 4 и 5.

Для практической реализации предложенного ранее экспериментально-теоретического метода оптимизации параметров процесса лазерной резки образцов материалов из алюминиевых сплавов по критерию максимальной долговечности \overline{N}_{μ} (относительное значение циклов малоцикловой усталости для партий образцов, раскроенных лазером) сначала необходимо определить неизвестные коэффициенты *α_i* для множественной линейной^{*)} модели регрессионного анализа:

$$\overline{N}_{u_{i}} = \alpha_{0} + \alpha_{1} X_{i1} + \alpha_{2} X_{i2} + \alpha_{3} X_{i3}, \qquad (1)$$

где i = 1...n – номер выборки наблюдений, α_1 , α_2 , α_3 – коэффициенты регрессии, которые показывают, на какую величину в среднем изменится относительное значение циклов малоцикловой усталости $\overline{N}_{\mathcal{U}}$; α_0 – свободный член, который также подлежит определению; $X_1 = \overline{H}_{\mu(20)3TB}$; $X_2 = \overline{t}_{3TB}$, $X_3 = \overline{Rz}$.

Таблица 2 – Режимы лазерной резки и среднее значение малоцикловой усталости образцов алюминиевого сплава Д16АТ при δ =3мм

δ,	Номер	<i>V</i> ,	\overline{V} V	P ,	$\overline{P} = \overline{P}$	W ,	$\overline{W} - W$	$N_{\mu c p}$,	Nucp
MM	партии	м/мин	$V = \overline{V_{6a3}}$	МПа	' P _{max}	кВт	$W = \overline{W_{max}}$	•10 ³ ц	
	1	4	1	1,3	1	3	1	184,76	0,795
	2	2,5	0,61	1	0,77	2,25	0,75	135,95	0,585
	3	0,9	0,225	0,6	0,46	1,5	0,5	108,07	0,465
3	4	4	1	1	0,77	2,25	0,75	146,41	0,63
	5	2,45	0,61	0,6	0,46	1,5	0,5	101,09	0,435
	6	4	1	0,6	0,46	1,5	0,5	149,9	0,645
	7	0,9	0,225	1,3	1	3	1	125,5	0,54

Таблица 3 – Режимы лазерной резки и среднее значение малоцикловой усталости образцов алюминиевого сплава Д16Т при δ=1мм

δ,	Номер	<i>V</i> ,	\overline{V} V	Ρ,	$\overline{P} - \underline{P}$	<i>W</i> ,	$\overline{W} - W$	$N_{\mu cn}$,
ММ	партии	м/мин	$v = \frac{1}{V_{6a3}}$	МΠа	' P _{max}	кВт	$W = \frac{W}{W_{mi}}$	·10 ³ u
			0.10					10 4
	1	10	1	0,998	0,76	3	1	0,92
	2	7	0,7	0,998	0,76	3	1	0,683
	3	4	0,4	0,6	0,46	0,9	0,3	0,543
1	4	10	1	1,3	1	1,6	0,53	0,735
	5	7	0,7	0,6	0,46	3	1	0,507
	6	4	0,4	0,998	0,76	0,9	0,3	0,753
	7	7	0,7	1,3	1	2,25	0,75	0,63

^{*)}Как отмечалось ранее, для построения нелинейных множественных моделей регрессионного анализа требуется существенное увеличение количества образцов материала, а следовательно, и непомерный рост трудоемкости испытаний по затратам времени и средств. Поэтому в силу большой трудоемкости экспериментов на данном этапе ограничились использованием только линейной модели регрессии. Не учитывались также случайные ошибки наблюдения, не зависящие друг от друга.

Таблица 4 – Параметры последействия лазерной резки образцов из алюминиевого сплава Д16АТ толщиной δ=3 мм

δ,	Номер	<i>Н_{µ(20)}3тв</i>		t _{3TB} ,	Īorp	Rz,		N _{ц ср} ,	N _{ц ср}
мм	партии	МПа	П	ММ	1 31B	ММ	ΠZ	·10 ³ ц	
	1	1000	2	0,25	0,08	0,011	3,667·10 ⁻³	184,76	0,795
3	2	900	1,8	0,3	0,1	0,030	10,0·10 ⁻³	135,95	0,585
	3	690	1,38	0,4	0,133	0,04	13,33·10 ⁻³	108,07	0,465
	4	890	1,78	0,25	0,091	0,02	6,667·10 ⁻³	146,41	0,63
	5	900	1,8	0,3	0,1	0,055	18,33·10 ⁻³	101,09	0,435
	6	970	1,94	0,25	0,085	0,015	5·10 ⁻³	149,9	0,645
	7	750	1,6	0,4	0,133	0,035	11,66·10 ⁻³	125,5	0,54

Таблица 5 – Параметры последействия лазерной резки образцов из алюминиевого сплава Д16АТ толщиной δ=1 мм

δ,	Номер	<i>Н_{µ(20)}3тв</i>	Π	t _{3TB} ,	Īатр	Rz,	D7	N _{ц ср} ,
ММ	партии	МПа	П	ММ	•37D	ММ	I \Z	·10 ³ ц
	1	470	0,94	0,07	0,07	0,015	0,015	0,92
	2	670	1,34	0,015	0,015	0,03	0,03	0,683
	3	860	1,72	0,155	0,155	0,045	0,045	0,543
1	4	470	0,94	0,08	0,08	0,025	0,025	0,735
	5	670	1,34	0,12	0,12	0,05	0,05	0,507
	6	470	0,94	0,085	0,085	0,02	0,02	0,753
	7	860	1,72	0,14	0,14	0,035	0,035	0,63

Примечание

$$\overline{H}_{\mu(20)3TB} = \frac{H_{\mu(20)3TB}}{H_{3TB0}};$$

H_{3TB 0} =500 МПа;

$$\overline{t}_{3TB} = \frac{t_{3TB}}{\delta_0}; \ \overline{Rz} = \frac{Rz}{\delta_0}$$

В матричной форме регрессионная модель (1) имеет следующий вид:

или

$$(\overline{N}_{\mathcal{U}}) = [X](\alpha)$$
 (2)

$$\begin{bmatrix} N_{u_{1}} \\ \cdots \\ \overline{N}_{u_{i}} \\ \cdots \\ \overline{N}_{u_{n}} \end{bmatrix} = \begin{bmatrix} 1 & X_{11} & X_{12} & X_{13} \\ \cdots & \cdots & \cdots \\ 1 & X_{i1} & X_{i2} & X_{i3} \\ \cdots & \cdots & \cdots \\ 1 & X_{n1} & X_{n2} & X_{n3} \end{bmatrix} \begin{bmatrix} \alpha_{0} \\ \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \end{bmatrix},$$
(3)

где (\overline{N}_{μ}) – вектор-столбец наблюдаемых значений результативного признака (относительное значение циклов малоцикловой усталости); [X] – матрица наблюдаемых значений аргументов (параметры последействия лазерной резки); (α) – вектор-столбец неизвестных коэффициентов регрессии, которые не обходимо определить. В первом столбце матрицы [X] указывается единица при свободном члене α_0 , т.к. предполагается, что существует переменная последействия лазерной резки, которая во всех наблюдениях принимает значения, равные единице.

Для оценки вектора-столбца (α) использован метод наименьших квадратов, согласно которому в качестве оценки принимают векторстолбец $\left(\tilde{\alpha}\right)$, минимизирущий сумму квадратов отклонений наблюдаемых значений матрицы \overline{N}_{u} от их модельных значений:

$$\left(\tilde{\boldsymbol{\alpha}}\right) = \left([\boldsymbol{X}]^T [\boldsymbol{X}] \right)^{-1} [\boldsymbol{X}]^T (\overline{\boldsymbol{N}}_{\mathcal{U}}), \tag{4}$$

где $[X]^T$ – транспонированная матрица $[X]; ([X]^T [X])^1$ – матрица, обратная матрице $[X]^T [X]$.

Реализация алгоритма пошагового регрессионного анализа для результатов испытаний на малоцикловую усталость партий образцов толщиной δ =3 мм и δ =1 мм привела к следующим регрессионным уравнениям:

$$\overline{N}_{\mu(\delta=3)} = 0,202 + 0,257 \ \overline{H}_{\mu(20)3TB} + 1,121\overline{t}_{3TB} - 18,863\overline{Rz},$$
 (5)

$$\overline{N}_{\mu(\delta=1)} = 1,022 - 0,017 \ \overline{H}_{\mu(20)3TB} + 0,066 \overline{t}_{3TB} - 10,339 \overline{Rz}.$$
 (6)

Для последующей реализации предложенного метода необходимо было бы при уже известных регрессионных коэффициентах α_i опреде-

15

лить те оптимальные параметры последствия лазерного излучения $(\overline{H}_{\mu(20)}3TB \, opt , \, \overline{t}_{3TB \, opt} , \, \overline{Rz}_{opt})$, которые обеспечивали $\overline{N}_{\mu_{max}}$ и были бы структурно связаны (регрессионными зависимостями, полученными в результате серии экспериментов) с относительными параметрами лазерного излучения ($\overline{V}, \, \overline{P}, \, \overline{W}$) – косвенными факторами снижения долговечности. Для чего, как уже отмечалось выше, необходимо большое количество трудоемких испытаний, требующих существенных затрат времени и средств.

Для поиска оптимальных параметров последствия лазерного излучения ($\overline{H}_{\mu(20)}$ 3*TB opt*, $\overline{t}_{3TB opt}$, \overline{Rz}_{opt}), которые бы обеспечивали $\overline{N}_{\mu_{max}}$, была сформулирована, а затем решена задача оптимизации линейного математического программирования [10]

$$\overline{N}_{\mu} = \alpha_0 + \alpha_1 \overline{H}_{\mu(20)3TB} + \alpha_2 \overline{t}_{3TB} + \alpha_3 \overline{Rz} \to max$$
(7)

в интервалах изменения таких параметров:

$$\begin{aligned}
\overline{H}_{\mu(20)3TB \min} &\leq \overline{H}_{\mu(20)3TB} \leq \overline{H}_{\mu(20)3TB \max}, \\
\overline{t}_{3TB_{\min}} &\leq \overline{t}_{3TB} \leq \overline{t}_{3TB_{\max}}, \\
\overline{Rz}_{\min} \leq \overline{Rz} \leq \overline{Rz}_{\max}.
\end{aligned}$$
(8)

Для регрессионных уравнений (5) – (6), полученных в результате испытаний на малоцикловую усталость партий образцов толщиной δ =3 мм и δ =1 мм после лазерного раскроя, интервалы изменения величин параметров были равны соответственно:

– для δ=3 мм

$$1,3 \le \overline{H}_{\mu(20)3TB} \le 2,$$

$$0,08 \le \overline{t}_{3TB} \le 0,133,$$

$$3,6 \cdot 10^{-3} \le \overline{Rz} \le 19 \cdot 10^{-3},$$
(9)

– для δ=1 мм

$$\begin{array}{l} 0,9 \leq \overline{H}_{\mu(20)3TB} \leq 1,8, \\ 0,07 \leq \overline{t}_{3TB} \leq 0,155, \\ 0,015 \leq \overline{Rz} \leq 0,05. \end{array} \tag{10}$$

Решение задач данного класса не носит принципиальных трудностей, а их алгоритмы изложены в литературе, например, в работе [10].

Проанализируем результаты нахождения решения задачи максимизации (7) для всех партий образцов (табл. 4 и 5) толщиной δ =3 мм и δ =1 мм при нахождении оптимальных параметров $H_{\mu(20)3TB}$, \bar{t}_{3TB} , Rzв заданных интервалах поиска (9) и (10) (табл. 6).

Как следует из табл. 6, для образцов алюминиевых сплавов толщиной δ =3 мм, вырезанных лазером, следует ориентироваться на $\overline{H}_{\mu(20)3TB opt}$ =2; $\overline{t}_{3TB opt}$ =0,133; \overline{Rz}_{opt} =3,667·10⁻³, а для образцов сплавов толщиной $\delta = 1$ мм соответственно – $\overline{H}_{\mu(20)}$ *3TB opt* =0,9; $\overline{t}_{3TB opt} = 0,155$; $\overline{Rz}_{opt} = 0,015$.

Таблица 6 – Результаты нахождения оптимальных параметров последствия лазерного раскроя $\overline{H}_{\mu(20)3TB}$, \overline{t}_{3TB} , \overline{Rz} для партий алюминиевых образцов толщиной δ =3 мм и δ =1 мм

	Оптимальные па			
Толщина партий алю- миниевых образцов	Относительная микротвердость $\overline{H}_{\mu(20)3TB}$ opt	Относительная ширина ЗТВ <i>Ī зтв opt</i>	Относительная шероховатость Rz _{opt}	Значение целевой функции $\overline{N}_{u_{max}}$
δ=3мм	2	0,133	3,667·10 ⁻³	0,798
δ=1мм	0,9	0,155	0,015	0,862

Проанализируем возможность нахождения параметров лазерного излучения \overline{V} , \overline{P} , \overline{W} , которые бы обеспечивали уровень максимальной относительной малоцикловой усталости $\overline{N}_{\mu max}$, соответствующей оптимальным значениям последствия лазерного раскроя $\overline{H}_{\mu(20)3TB opt}$, $\overline{t}_{3TB opt}$, \overline{Rz}_{opt} или любым другим их значениям, полученным после лазерного раскроя.

Для этого сначала были получены аналогичные по структуре (1) множественные регрессионные модели, связывающие уровень максимальной относительной малоцикловой усталости $\overline{N}_{u_{max}}$ с параметрами лазерного излучения \overline{V} , \overline{P} , \overline{W} (см. табл. 2 и 3). В результате реализации алгоритма пошагового регрессионного анализа получены следующие выражения:

$$\overline{N}_{u_{(\delta=3)}} = 0,134 + 0,262\overline{V} - 0,859\overline{P} + 1,232\overline{W}$$
, (11)

$$\overline{N}_{\mathcal{U}(\delta=1)} = 0.41 + 0.275\overline{V} + 0.17\overline{P} - 0.068\overline{W}.$$
(12)

Учитывая, что левые части (относительная малоцикловая усталость) регрессионных зависимостей (5) – (6) и (11) – (12) равны, то очевидно имеет место соответствие или бинарное отношение между множеством параметров последствия лазерного раскроя ($\overline{N}_{\mu}(\overline{H}_{\mu(20)})3TB$, \bar{t}_{3TB} , \overline{Rz}) и множеством параметров непосредственно лазерного излучения $\overline{N}_{\mu}(\overline{V}, \overline{P}, \overline{W})$:

$$\overline{N}_{\mathcal{U}}(\overline{H}_{\mu(20)})$$
 ($\overline{t}_{3TB}, \overline{Rz} \rightarrow \overline{N}_{\mathcal{U}}(\overline{V}, \overline{P}, \overline{W}).$ (13)

Так, для полученного максимального уровня относительной малоцикловой усталости $\overline{N}_{\mu_{max}}$ и соответствующих ему оптимальных параметров последствия лазерного раскроя $\overline{H}_{\mu(20)3TB\,opt}$, $\overline{t}_{3TB\,opt}$, \overline{Rz}_{opt} для всех партий алюминиевых образцов толщиной δ =3 мм и δ =1 мм могут быть получены комбинации соответствующих им режимов лазерного излучения \overline{V} , \overline{P} , \overline{W} . Проанализируем результаты нахождения этих комбинаций \overline{V}_{opt} , \overline{P}_{opt} , \overline{W}_{opt} для всех партий образцов в интервалах изменения параметров:

$$\overline{V}_{min} \leq \overline{V} \leq \overline{V}_{max},
\overline{P}_{min} \leq \overline{P} \leq \overline{P}_{max},$$

$$\overline{W}_{min} \leq \overline{W} \leq \overline{W}_{max}.$$
(14)

Для регрессионного уравнения (11) эти величины соответственно были равны:

– для **δ=**3 мм

 $\begin{array}{l} 0,125 \leq \overline{V} \leq 1, \\ 0,45 \leq \overline{P} \leq 1, \\ 0.5 \leq \overline{W} \leq 1. \end{array} \tag{15}$

– для δ=1 мм

$$0,4 \le V \le 1,$$

$$0,45 \le \overline{P} \le 1,$$

$$0.3 \le \overline{W} \le 1.$$
(16)

Сужение возможных комбинаций для параметров режима лазерной резки было осуществлено путем исключения заведомо нерациональных режимов лазерной резки: предпочтения отдавались тем режимам, которые обеспечивали максимальную производительность $\overline{V}_{opt} \to \overline{V}_{max}$ при минимальных энергозатратах $\overline{W}_{opt} \to \overline{W}_{min}$.

Например, в результате лазерного раскроя алюминиевых образцов толщиной δ =3 мм были получены следующие относительные параметры последствия: $\overline{H}_{\mu(20)}$ 37B=1,7; \overline{t}_{37B} =0,1; \overline{Rz} =6,667·10⁻³. Предложенная практическая реализация экспериментально-теоретического метода оптимизации параметров процесса лазерной резки образцов материалов из алюминиевых сплавов по критерию максимальной долговечности \overline{N}_{μ} позволяет:

по зависимости (5) сразу (не проводя трудоемких экспериментов) определить долговечность панели при относительной малоцикловой усталости N_{umax} = 0,626;

– определить соответствующие этой долговечности такие параметры лазерного излучения: \overline{V} =0,677; \overline{P} =1; \overline{W} =0,953 или \overline{V} =0,976; \overline{P} =1; \overline{W} =0,889.

Выводы

1. Проведены испытания на относительную долговечность семи партий образцов, изготовленных лазерным лучом из алюминиевого сплава Д16АТ толщиной δ =1 мм и δ =3 мм при различных режимах резания, для которых определены относительные параметры последствий режимов $H_{\mu(20)3TB}$, \bar{t}_{3TB} и \bar{R}_z , на основе которых с помощью множественных линейных моделей регрессионного анализа решена задача математического программирования.

2. В результате решения этой задачи впервые по критерию максимальной долговечности установлены диапазоны интервалов оптимальных параметров лазерного резания и соответствующих им факторов его последствия, уровни относительной малоцикловой усталости при толщине образцов δ=1 мм и δ=3 мм.

3. С учетом предпочтительности оптимальных режимов лазерной резки, обеспечивающих выполнение критерия максимальной производительности процесса ($\overline{V}_{opt} \rightarrow \overline{V}_{max}$) при минимальных энергозатратах ($\overline{W}_{opt} \rightarrow \overline{W}_{min}$) получено сужение возможных комбинаций для этих параметров путем исключения не отвечающих данному критерию.

Полученный результат позволяет, не проводя трудоемких экспериментов, определить относительную долговечность панели по факторам последствия процесса и соответствующие ей параметры лазерной резки.

Список использованных источников

1. Гайдачук В.Е. Анализ эффективности технологии лазерной обрезки листовых деталей из алюминиевых сплавов в авиационном производстве / В.Е. Гайдачук, А.И. Костенко // Вопросы проектирования и производства конструкций летательных аппаратов: сб. науч. тр. Нац. аэрокосм. ун-та им. Н.Е. Жуковского «ХАИ». – Х.: ХАИ, 2010. – Вып. 2(62). – С. 85 – 97.

2. Опыт эксплуатации лазерных и плазменных установок для резки на американских заводах / htpp://www.plasma.mk.ua/a exp.php.

3. Панченко В.Я. Лазерные технологии обработки материалов, создаваемые в ИПЛИТ РАН / В.Я. Панченко, В.В. Васильцов, В.С. Голубев //Физика и технология лазерной обработки материалов: сб. тр. ИПЛИТ РАН, 2005. – С. 191 – 197.

4. Костенко А.И. Микроструктурный анализ зоны термического влияния после лазерной резки образцов листовых материалов и их ме-

ханические характеристики / А.И. Костенко // Открытые информационные и компьютерные интегрированные технологии: сб. науч. трудов Нац. аэрокосм. ун-та им. Н.Е. Жуковского «ХАИ». – Вып. 46.– Х.: ХАИ, 2010. – С. 114 – 127.

5. Гайдачук В.Е. Экспериментально-теоретический метод оптимизации параметров процесса лазерной резки образцов материалов из алюминиевых сплавов по критерию максимальной долговечности / В.Е. Гайдачук, А.И. Костенко // Открытые информационные и компьютерные интегрированные технологии: сб. науч. тр. Нац. аэрокосм. ун-та им. Н.Е. Жуковского «ХАИ». – Вып. 48. – Х.: ХАИ, 2010. – С. 53 – 61.

6. Костенко А.И. Многоуровневый алгоритм оптимизации режимов лазерного раскроя заготовок силовых панелей планера самолета в серийном производстве / А.И. Костенко // Вопросы проектирования и производства конструкций летательных аппаратов: сб. науч. тр. Нац. аэрокосм. ун-та им. Н.Е. Жуковского «ХАИ». – Вып. 4(64). – Х.: ХАИ, 2010. – С. 30 – 42.

7. Степанов М.Н. Усталость легких конструкционных сплавов / М.Н. Степанов, Е.В. Гиацинтов. – М.: Машиностроение, 1973. – 320 с.

8. ГОСТ 25.502-79. Расчеты и испытания на прочность в машиностроении. Методы механических испытаний металлов. Методы испытаний на усталость. – М.: Изд-во стандартов, 1986. – 34 с.

9. Белецкий В.М. Алюминиевые сплавы (состав, свойства, технология, применение): справ. / В.М. Белецкий, Г.А. Кривов; под общ. ред. акад РАН И.Н. Фридляндера. – К.: «КИМИНТЕХ», 2005. – 365 с.

10. Лесин В.В. Основы методов оптимизации / В.В. Лесин, Ю.П. Лисовец. – М. : МАИ, 1998. – 344 с.

Поступила в редакцию 04.02.2011 г. Рецензент: д-р техн. наук, проф. А.Г. Гребеников, Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», г. Харьков