В.Е. Приходько

ИССЛЕДОВАНИЕ ПРОДОЛЬНО-СЖАТЫХ СТЕРЖНЕЙ ПЕРЕМЕННОЙ ЖЕСТКОСТИ

Оценивание несущей способности конструкции помимо прочностного расчета должна включать вопросы устойчивости всей системы и отдельных ее элементов. В первую очередь это очень важно для самолетостроения, так как многие элементы конструкции планера работают на сжатие и могут потерять устойчивость при напряжениях, значительно меньших, чем разрушающие [1].

В большинстве конструкций применяются стержни с неизменной по их длине жесткостью, а для уменьшения массы целесообразно использовать стержни переменной жесткости. Такие стержни рассматривались в источниках [2, 3], но стержни металлические, изготовление которых – сложный и дорогостоящий процесс.

Развитие технологии изготовления изделий из композиционных материалов (КМ) привело к тому, что стало возможным получение конструкций различной формы, при этом сам процесс получения таких изделий значительно проще и экономичнее, нежели аналогичных металлических. Например, такие изделия можно получить путем подмотки пултрузионного стержня, либо методом ручной выкладки по шаблонам и т.п.

При эйлеровой форме потери устойчивости критическую силу определяют из дифференциального уравнения изогнутой оси, справедливого для любого участка стержня, в пределах которого продольная сила неизменна [3]:

$$-\frac{d^{2}}{dx^{2}}\left\{EI(x)\frac{d^{2}v(x)}{dx^{2}}\right\} + P\frac{d^{2}v(x)}{dx^{2}} = 0, \qquad (1)$$

где v(x) – форма изгиба оси стержня;

EI – жесткость стержня;

Р-сжимающая нагрузка.

При расчете стержня переменного сечения (рис.1) уравнение (1) становится однородным дифференциальным уравнением четвертого порядка с переменными коэффициентами.

Рисунок 1 – Продольно-сжатый стержень переменной жесткости

Аналитически такого вида уравнения (1) решаются очень редко, и чаще всего прибегают к использованию приближенных методов, к которым относится и энергетический метод Ритца – Тимошенко. Согласно этому методу изначально задаются предполагаемой формой изгиба в виде суммы функций с неопределенными множителями *a_i* (*i*=1,...,*n*) [3]:

$$\mathbf{v}(x) = \sum_{i=1}^{n} \mathbf{a}_i \mathbf{f}_i.$$
 (2)

Здесь под *f_i* понимаются функции от *x*, удовлетворяющие геометрическим граничным условиям задачи, т.е. таким, которые относятся к прогибам и углам поворота, независимо от *a_i*.

Формула полной потенциальной энергии стержня имеет вид [3]

$$\Im = \frac{1}{2} \int_{0}^{L} EI(x) \left[\frac{d^2 v(x)}{dx^2} \right]^2 dx - \frac{1}{2} P \int_{0}^{L} \left[\frac{dv(x)}{dx} \right]^2 dx.$$
(3)

Разрешающие уравнения для определения критических усилий представляют собой такую систему:

$$\frac{\partial \mathbf{\mathcal{P}}}{\partial \mathbf{a}_1} = \mathbf{0}, \, \frac{\partial \mathbf{\mathcal{P}}}{\partial \mathbf{a}_2} = \mathbf{0}, \dots, \, \frac{\partial \mathbf{\mathcal{P}}}{\partial \mathbf{a}_n} = \mathbf{0}. \tag{4}$$

Определитель системы уравнений (4) содержит нагрузку в степени *n*. Решая эту систему, получаем *n* значений *P*. Наименьший корень и будет искомым критическим усилием [2].

Теперь, если в (3) подставить (2), выражение (4) после некоторых преобразований можно записать в виде

$$\frac{\partial \boldsymbol{\vartheta}}{\partial \boldsymbol{a}_{k}} = \sum_{i=1}^{n} \left\{ \int_{0}^{L} \boldsymbol{E}I(x) \frac{d^{2}f_{i}}{dx^{2}} \frac{d^{2}f_{k}}{dx^{2}} dx - \boldsymbol{P} \int_{0}^{L} \frac{df_{i}}{dx} \frac{df_{k}}{dx} dx \right\} \boldsymbol{a}_{i} = 0; \ k = 1...n.(5)$$

Выражение (5) представляет собой систему линейных алгебраических уравнений. Если учесть, что *аi*≠0, то решение (5) будет существовать только в том случае, если *i=k* и если определитель, состоящий из коэффициентов при *аi*, будет равен нулю [2].

Представляет интерес сравнение уровня критической сжимающей силы стержней с постоянной и переменной жесткостью одной и той же массы. Рассмотрим несколько типовых форм изменения жесткости, найдем оптимальную для каждого варианта и подберем форму прогиба для стержней с различными условиями закрепления концов.

Во всех вариантах подбора формы прогиба ограничиваемся четырьмя членами ряда, так как этого достаточно для его сходимости. Погрешность составляет менее 5% [3].

При рассмотрении стержней за EI_0 принимается жесткость в сечении x=L/2, где L – длина стержня.

Для первого и второго вариантов (таблица) уменьшение массы составляет 22,59 и 15,38% соответственно, а отношение критических усилий стержней с переменной и постоянной структурами КМ равно 2,11 и 1,63.

На рис. 2 показаны зависимости процента снижения массы от длины стержня.

Рисунок 2 – Зависимость уменьшения массы стержня от его длины: а – стержень с шарнирным опиранием (вариант 5) и параболической функцией изменения жесткости; б – жестко защемленный с двух сторон стержень (вариант 7); в – жестко защемленный с одной стороны стержень (вариант 6); г – стержень (вариант 8), жестко защемленный с одной и шарнирно закрепленный с другой стороны; д – стержень с шарнирным опиранием (вариант 3) и линейной функцией изменения радиуса; е – стержень с шарнирным опиранием (вариант 4) и линейной функцией изменения толщины стенки

z
Ē
ŏ
¥
S S
Ψ¥
2
0
Ŧ
ē
Σ
e B B
ē
ЭŇ
Ĭ
X
0
Ĕ
\mathcal{C}
ŝ
Ē
ξ
Q
6
Ť
끈
ġ
2
ğ
ž
쁖
Ī
e
Ē
Š
อี
С С С
ã
٩
Ē
ц а
Ž
ap
Ш
T
σ
Ţ
È
Ő
Ц
•

Функция прогиба (изогнутой оси)	$=\sum_{i=1}^{n}a_{i}\sin\frac{\pi xi}{L}, n=14$	$=\sum_{i=1}^{n}a_{i}\sin\frac{\pi xi}{L}, n=14$	$=\sum_{i=1}^{n}a_{i}x^{i}(L-x), n=14$	$=\sum_{i=1}^{n}a_{i}x^{i}(L-x), n=14$	$=\sum_{i=1}^{n}a_{i}x^{i}(L-x), n=14$	$=\sum_{i=1}^{n}a_{i}x^{i+1}, n=14$
	r(x) = (x)		N(X)	(<i>x</i>) <i>n</i>	N(X)	N(X)
функция изменения жесткости	$EI(x) = EI_o \left[(1 - 0, 7) \sin \frac{\pi x}{L} + 0, 7 \right]^3$	$EI(x) = EI_0\left[(1-0,5)\sin\frac{\pi x}{L} + 0,5 \right]$	$El(x) = \begin{cases} El_0 \left[1 - \left(\frac{L}{2} - x\right) \right]^3 & \text{if } x \in \left[0; \frac{L}{2} \right] \\ El(x) = \begin{cases} El_0 \left[1 + \left(\frac{L}{2} - x\right) \right]^3 & \text{if } x \in \left[\frac{L}{2}; L\right] \end{cases}$	$EI(x) = \begin{cases} EI_0 \left[1 - \left(\frac{L}{2} - x\right) \right] & \text{if } x \in \left[0; \frac{L}{2} \right] \\ EI(x) = \begin{cases} EI_0 \left[1 + \left(\frac{L}{2} - x\right) \right] & \text{if } x \in \left[\frac{L}{2}; L \right] \end{cases}$	$EI(x) = EI_0 \left[-2\left(\frac{L}{2} - x\right)^2 + 1 \right]^3$	$EI(x) = EI_0\left[\left(\frac{L}{2} - x\right)^2 + \left(\frac{L}{2} - x\right) + 1\right]^3$
Схема опирания стержня			d d			
Номер варианта	-	5	S	4	5	9

Продолжение таблицы

Функция прогиба (изогнутой оси)	$v(x) = \sum_{i=1}^{n} a_i x^{i+1} (L - x)^{i+1}, n = 14$	$v(x) = \sum_{i=1}^{n} a_i x^{i+1} (L-x), \ n = 14$	$v(x) = \sum_{i=1}^{n} a_i x^i (L - x), \ n = 14$
функция изменения жесткости	$EI(x) = EI_0 \left[-2\left(\frac{L}{2} - x\right)^2 + 1 \right]^3$	$EI(x) = EI_{o}\left[-2\left(\frac{L}{2} - x\right)^{2} + \frac{1}{2}\left(\frac{L}{2} - x\right) + 1\right]^{3}$	$EI(x) = \begin{cases} \frac{1}{3}EI_0 & \text{if } x \in \left[0; \frac{L}{5}\right] \cap \left(L - \frac{L}{5}; L\right] \\ \frac{1}{2}EI_0 & \text{if } x \in \left[\frac{L}{5}; \frac{2}{5}L\right] \cap \\ \cap \left[L - \frac{2}{5}L; L - \frac{L}{5}\right] \\ EI(x) = EI(x) = \begin{cases} EI_0 & \text{if } x \in \left[\frac{2}{5}L; L - \frac{2}{5}\right] \end{cases}$
Схема опирания стержня			
Номер варианта	8		Ø

39

На рис. 2 уменьшение массы представляем в виде

$$\Delta = \frac{G_2 - G_1}{G_2} \cdot 100\%,\tag{6}$$

где G_1 – масса стержня переменной жесткости;

G₂ – масса стержня постоянной жесткости.

Отношение критической силы Р1 к Р2 зависит от длины стержня и имеет вид, который для вариантов 3 – 8 (см. таблицу) показан на рис. 3.

длины:

а – стержень с шарнирным опиранием (вариант 5) и параболической функцией изменения жесткости; б – стержень (вариант 8), жестко защемленный с одной и шарнирно закрепленный с другой стороны; в – жестко защемленный с двух сторон стержень (вариант 7); г – жестко защемленный с одной стороны стержень (вариант 6); д – стержень с шарнирным опиранием (вариант 3) и линейной функцией изменения радиуса; е – стержень с шарнирным опиранием (вариант 4) и линейной функцией изменения толщины стенки

Для девятого варианта (см. таблицу) уменьшение массы не зависит от его длины и составляет 27,5%.

Отношение критической силы Р1 стержня переменной жесткости к критической силе Р2 стержня постоянной жесткости при одинаковых их массах также остается постоянным, т.е. не зависит от длины, и составляет 2,51.

Разработана методика определения критических усилий для стержней переменной жесткости И составлено программное обеспечение для ее реализации. Подобраны оптимальные формы стержней. Показано, ЧТО уровень снижения массы для всех рассматриваемых форм стержней при шарнирном закреплении составляет 15...30%, при других схемах опирания – до 8%.

Величина критических усилий для стержней с шарнирным опиранием и переменной жесткостью в 1,5 – 2,5 раза больше критических усилий стержня постоянной жесткости. В остальных случаях увеличения критических усилий не наблюдалось.

Учитывая простоту изготовления стержней с переменной жесткостью из КМ, их применение для уменьшения массы конструкции целесообразно и достаточно эффективно.

Список использованных источников

1. Дибир А.Г. Устойчивость продольно сжатых стержней / А.Г. Дибир, О.В. Макаров, Н.И. Пекельный: учеб. пособие. – Х.: Нац. аэрокосм. ун-т им. Н.Е. Жуковского«Харьк. авиац. ин-т», 2008. – 43 с.

2. Вольмир А.С. Устойчивость деформируемых систем / А.С. Вольмир – М.: Наука, 1967. – 984 с.

3. Биргер И.А. Прочность. Устойчивость. Колебания: справ.: в 3 т. – Т. 3 / под ред. И.А. Биргера, Я.Г. Пановко – М.: Машиностроение, 1968. – 568 с.

Поступила в редакцию 20.04.2011. Рецензент: д-р техн. наук, проф. Я.С. Карпов, Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Харьков