УДК 629.735.33.027

МОДЕЛИРОВАНИЕ УСЛОВИЙ ВЗАИМОДЕЙСТВИЯ ОСНОВНЫХ ЭЛЕМЕНТОВ ПОДВИЖНОГО УЗЛА ПРИ КОСОСИММЕТРИЧНОМ ЕГО НАГРУЖЕНИИ

Введение

Подвижные узлы являются весьма распространенным конструктивом соединяющим либо отдельные части, либо целые самолетные агрегаты между собой [1].

Такой вид соединений сосредотачивает в себе разнообразные усилия, напряжения и контактные давления, которые существенным образом сказываются на долговечности по износу и выносливости их основных деталей при кососимметричном (М) нагружении.

В подавляющем большинстве предыдущих исследований рассматривались узлы с симметричным нагружением (Р), и поэтому проблему их долговечности удалось частично решить [1, 2, 3].

При моментном нагружении узла (рис. 1) исследований выполнено крайне мало [3], хотя кососимметричность по своей природе привносит во взаимодействие основных деталей существенную неравномерность, которую по данным работы [4] принято оценивать через коэффициенты избыточности погонных усилий в зонах трения.

Рисунок 1 – Перемещения в шарнирном узле с кососимметричным нагружением (М): θ – угол перемещения между стыкуемыми деталями узла; 1, 2 – положение оси стыкующей детали до и после нагружения; 3 – Q_{1max}, Q_{2max} – погонные нагрузки в стыкуемых деталях В работе [4] оценку долговечности подвижного узла на трение и износ предложено вести на основе неравенства

$$\alpha_{q}^{M}\left(\boldsymbol{\Phi}_{y}^{M}\right) \leq \alpha_{q}^{M}\left(N\right),\tag{1}$$

где $\alpha_q^M \left(\Phi_y^M \right)$ – коэффициент избыточности погонных усилий в зоне трения обусловленный параметрами узла Φ_y^M , а $\alpha_q^M \left(N \right)$ – допустимая величина коэффициента избыточности погонных усилий в зоне трения, обусловленная заданной долговечностью подвижного узла на износ.

В указанной работе принято, что коэффициент избыточности является функцией не только неравномерности Q₁ и Q₂ (рис.1), но и уровня нагрузки действующей, на узел *K*^M:

$$\alpha_q = \frac{q_{i\,max}}{q_{np}},\tag{2}$$

$$\alpha_q^M = \frac{\alpha_q}{K^M};\tag{3}$$

где *q_{пp}* – предельно допустимая величина обмятия стыкуемых деталей узла; *K^M* = *M*/*M_p* – отношение величины действующего момента к его расчетной (разрушающей) величине.

Поскольку величины α_q^M при кососимметричном нагружении превышают 1,0 [4], то при реализации неравенства (1) возникает необходимость установления взаимосвязей типа $\alpha_q^M (\boldsymbol{\Phi}_y^M)$ и $\alpha_q^M (N)$.

Постановка задачи исследований

Основная задача данной статьи заключается в разработке модели взаимодействия стыкуемых и стыкующей деталей подвижного узла и оценке коэффициентов избыточности погонных усилий $\alpha_q^M \left(\Phi_y^M \right)$ в контактном взаимодействии основных элементов узла с целью возможности использования полученных данных для реализации условия (1)

Расчетная модель кососимметрично нагруженного шарнирного узла

На рис. 2 представлена расчетная модель шарнирного узла с кососимметричным нагружением (*M*).

Учитывая приведенное конструктивное исполнение подвижного узла и воспринимаемый им вид нагрузки, полагаем, что нижний стыкуемый элемент остается неподвижным (обминаются лишь его поверхности Γ_1),

а верхний стыкуемый элемент поворачивается на угол θ рис. 1.

Рисунок 2 – Расчетная модель узла с кососимметричным нагружением (*M*) Пусть функция $\vartheta_i(x)(x \in \Gamma_i)$ характеризует обмятия стыкуемых деталей узла. Полагаем, что

$$\vartheta_2(\mathbf{x}) = \theta \mathbf{x} + \mathbf{y}(\mathbf{x}) - \Psi_2(\mathbf{x}),$$
 (4)

где y(x) – неизвестная функция, характеризующая прогиб оси стыкующей пордсборки [3]; θ – угол поворота верхнего стыкуемого элемента вокруг точки 0; $\Psi_2(x)$ – функция, характеризующая неровности поверхности контакта между стыкуемыми элементами и стыкующей подсборкой. Принято, что положительное перемещение направлено вдоль оси у, а положительное направление угла поворота – против часовой стрелки. В ситуации, изображенной на рис. 2, а, верхний стыкуемый элемент опускается и поворачивается по часовой стрелке: $\theta < 0$.

На рис. 2, б рассматривается правая часть верхнего стыкуемого элемента, а касание происходит на верхнем стыкуемом элементе.

На рис. 2, в, г представлена левая часть верхнего стыкуемого элемента, а касание происходит на нижней части детали.

В ситуации, изображенной на рис. 2, б, обминается верхняя часть верхней детали в направлении оси у, т.е. $\vartheta(x) \ge 0, x \epsilon \Gamma_2$ (здесь и далее под Γ_2 мы понимаем ту часть поверхности верхней детали, на которой осуществляется контакт со стыкующей подсборкой в нагруженном состоянии).

В ситуации, показанной на рис. 2, в, г, обминается нижняя часть левого верхнего стыкуемого элемента в направлении, противоположном оси у, т.е. $\vartheta(x) \le 0, x \epsilon \Gamma_2$.

Теоретически может возникнуть ситуация, когда при кососимметричном нагружении угла конструктивного элемента одновременно будет осуществляться контакт левой части верхнего стыкуемого элемента со стыкующей подсборкой одновременно по ее верхней и нижней частям. В этом случае функция $\Psi_2(x)$, входящая в выражение (4), соответствует обеим поверхностям контакта Γ_2 .

Моделирование взаимодействий деталей узла

Обозначим через $q_n(x)$ погонную нагрузку, действующую на верхний стыкуемый элемент (положительное направление вверх):

$$q_n(x) = G_p(x)\vartheta(x), \tag{5}$$

где G_p - модуль смятия материала стыкуемых элементов.

Для верхней стыкуемой детали выражение (2) примет вид

$$\int_{\Gamma_2} G_{p2}(x) \vartheta(x) x dx - M = 0.$$
 (6)

Подставляя значения $\vartheta(x)$ из выражения (1) в уравнение (3), получим

$$\theta \int_{\Gamma_{2}} G_{p2}(x) x^{2} dx + \int_{\Gamma_{2}} G_{p2}(x) y(x) x dx - \int_{\Gamma_{2}} G_{p2}(x) \Psi_{2}(x) dx - M = 0, (7)$$

где *у*(*x*) – перемещения оси стыкующей детали [4] узла.

Введем обозначения

$$r = \int_{\Gamma_2} G_{\rho_2}(x) dx, \ S = \int_{\Gamma_2} x G_{\rho_2}(x) dx, \ t = \int_{\Gamma_2} x^2 G_{\rho_2}(x) dx, \quad (8)$$

$$R_{2} = M + \int_{\Gamma_{2}} G_{p2}(x) \Psi_{2}(x) x dx.$$
(9)

Используя соотношения (8), (9), запишем уравнение (7) в виде $t\theta = R_2 - \int_{\Gamma_2} G_{p2} y(x) x dx$,

откуда

$$\theta = \frac{R_2 - \int_{\Gamma_2} G_p(x) y(x) x dx}{t}.$$
(10)

Пусть *q*₂(*x*) – погонная нагрузка (рис. 3), действующая на стыкующую подсборку. По второму закону Ньютона имеем

$$q_{2}(x) = -q_{n}(x) = -\tilde{G}_{p2}(x)(\theta x + y(x) - \Psi_{2}(x)).$$
(11)

Используя полученные выражения для θ ,имеем

$$q_{2}(x) = \frac{\tilde{G}_{p2}}{t} \left[-\left(R_{2} - \int_{\Gamma_{2}} G_{p2}(x)y(x)xdS\right)S + \left(R_{2} - \int_{\Gamma_{2}} G_{p2}(x)y(x)dx\right)rx - \right] - \tilde{G}_{p2}(x)y(x) + \tilde{G}_{p2}(x)\Psi_{2}(x)^{-(12)}$$

Воздействие нижней детали на стыкующую подсборку характеризуется погонной нагрузкой

$$q_{1}(x) = -\tilde{G}_{p1}(x)(y(x) - \Psi_{1}(x)).$$
(13)

Количественная оценка $q_1(x)$ и $q_2(x)$ показывает что погонные усилия по лини контактов стыкуемых (Γ_1, Γ_2) и стыкующей деталей носит ярко выраженный кососимметричный характер (рис. 3).

Рисунок 3 – Распределение погонных усилий по длине стыкующей подсборки узла при его кососимметричном нагружении

Полученные выражения (12,13) в сочетании с (3) позволяют количественно оценить изменение коэффициентов избыточности погонных усилий в зонах трения подвижного узла (рис. 4).

Рисунок 4 – Значения α_q^M по линии контактов стыкуемых (1, 2) и стыкующей (3) деталей: а – при $\psi_1 = \psi_2 = 0$; б – при $\psi_1(x) > 0$ и $\psi_2(x) > 0$

На этом рисунке показаны изменения α_{q1}^{M} и α_{q2}^{M} при нулевых отклонениях по линии контакта ($\psi_1 = \psi_2 = 0$) – вариант «а» и при значениях $\psi_1(x) > 0$ и $\psi_2(x) > 0$ – вариант «б».

Как следует из приведенных данных значения α_{q1}^{M} и α_{q2}^{M} намного превышают 1, 0, что и является первопричиной усиленных и неконтролируемых износов в этих зонах трения.

Анализируя данные, приведенные на рис. 4, б, нетрудно заметить, что при наличии $\psi_1(x) > 0$ и $\psi_2(x) > 0$ вызванных износом узла в процессе эксплуатации, значения коэффициентов избыточности погонных усилий α_q^M заметно снижаются, что можно объяснить увеличением площадей контактов в зонах трения по мере их износа.

Экспериментальная оценка результатов взаимодействий в подвижном узле

Подтверждение адекватности распределения $\alpha_q^M(x)$ и изношенности поверхности в подвижных узлах проведено на специальном стенде, обеспечившем испытание подвижных узлов в условиях, максимально приближенных к эксплуатационным [5, 6].

Правильность расчетного метода определения коэффициентов α_q^M проверялась на подвижных узлах из предположения, что форма изношенных втулок по длине после окончания периода приработки копирует упругую ось стыкующей подсборки. Для проведения экспериментов такого рода выбраны узлы с парой "бронза – хромированная сталь", поскольку в такой паре изнашивается только втулка.

Рисунок 5 – Изменение выработки *h* в различных зонах контакта: 1, 2, 3 – сечения по длине втулки δ_H при δ/d =0,35 и δ_H/d =0,75;

——– линейный износ; • – при *К^м* =0,2; ⊽,о,∆ – при *К^м* =0,4

Очевидно что, линейный износ полностью копирует изменение коэффициента α_q^M по координате X, что позволяет говорить о достоверности определения расчетным путем.

Из данных приведенных на рис. 5, также следует, что форма изношенной поверхности ($h_1 > h_2 > h_3$) предопределяет не только величины износов, но и угол поворота θ между стыкуемыми деталями узла при его кососимметричном нагружении.

Расчетное значение этого угла определяется по выражению (8), а экспериментальные данные – из соотношения

$$\theta_{\mathfrak{z}} = \frac{h_1 - h_3}{\delta_H}.$$
(15)

Замеры h_1 и h_3 осуществлялись в узлах с d =28,40,60 мм при различных соотношениях δ_H/d в установившемся процессе их изнашивания (N>10⁴). Результаты определения θ_3 таким путем приведены на рис. 6.

Рисунок 6 – Влияние относительной нагрузки K^{M} и геометрических параметров δ_{H}/d на величину угла θ — расчетные значения;

 ∇ , о, Δ – экспериментальные данные 1 – K^{M} =0,1; 2 – K^{M} =0,2; 3 – K^{M} =0,3

Сравнительная оценка определения угла поворота стыкуемых деталей узла при кососимметричном его нагружении показывает, что расчетные значения достаточно близко согласуются с данными эксперимента. Это еще раз подтверждает достоверность приведенного в статье моделирования взаимодействий основных элементов кососимметрично нагруженного узла.

Выводы

1. В статье разработаны физическая и математическая модели взаимодействий стыкуемых и стыкующей деталей узла при кососимметричном его нагружении.

2. С помощью таких моделей решена задача оценки обмятий в зонах трения узла в виде:

 – коэффициентов избыточности погонных усилий в зонах контакта стыкуемых и стыкующей деталей;

 – углового взаимного перемещения стыкуемых деталей, обусловленного кососимметричным нагружением узла. 3. Путем испытаний натурных подвижных узлов на трение и износ экспериментально подтверждена достоверность расчетного определения обмятий в зонах трения и углового смещения стыкуемых деталей узла, обусловленного кососимметричностью его нагружения.

4. Полученные результаты являются необходимой частью построения ресурсных моделей подвижных узлов.

Список использованных источников

1. Селихов, А.Ф. Система классификации конструктивных нерегулярностей планера самолета [Текст] / А.Ф. Селихов, С.И. Галкин // Тр. ЦАГИ, 1976. – Вып. №1739. – С. 1–49.

2. Сухарев, И.П. Прочность шарнирных узлов машин [Текст] справ. пособие / И.П. Сухарев //– М. Машиностроение, 1987. – 168 с.

3. Рябков, В.И. Исследование влияния конструктивнотехнологических особенностей соединений на напряженное состояние их элементов [Текст] / В.И. Рябков, С.Е. Шеметов // Вопросы проектирования самолетных конструкций. – Х., сб. науч. тр. – Вып. 2. ХАИ. – С. 52–58.

4. Бычков, С.А. Основные положения метода обеспечения долговечности подвижных самолетных узлов [Текст] /С. А. Бычков, А.В. Лось // Открытые информационные и компьютерные интегрированные технологии: – сб. науч. тр. – Нац. аэрокосм. ун-та "Харьк. авиац. ин-т". – Вып. 62 – Х. – 2013. – С. 46–54.

5. Волох, И.Н. Разработка методики и средств стендовых испытаний шарнирных узлов [Текст] /И.Н. Волох // Вопросы оптимизации самолетных конструкций: сб. науч. тр. Нац. аэрокосм. ун-т "Харьк. авиац. инта". – Х., 1986. – Вып. 2. – С. 47–52.

6. Трофимов, В.А. Методы улучшения триботехнических характеристик подвижных узлов шасси, выполненных из титановых сплавов [Текст] /В.А. Трофимов //Авиационно-космическая техника и технология. – Х. – 2001. – Вып. 24. – С. 143–150.

Поступила в редакцию 29.11.2013. Рецензент: д-р техн. наук, проф. С.А. Бычков, ГП «Антонов», г. Киев.