ВЛИЯНИЕ ФОРМЫ КРЫЛА В ПЛАНЕ НА ПАРАМЕТРЫ РАЗБЕГА САМОЛЕТА ТРАНСПОРТНОЙ КАТЕГОРИИ ПРИ ВЗЛЕТЕ

Введение

Во взлетно-посадочных режимах происходят изменения не только площади крыла и кривизны профиля путем использования выдвижных закрылков, но и формы крыла в плане из-за увеличения его сужения, т.е. коэффициента его формы. С учетом этого обстоятельства исследовано влияние коэффициента формы крыла в плане на величину скорости отрыва и на длину разбега самолета при взлете. Сформирована модель количественной оценки такого влияния.

Взлетно-посадочные характеристики являются одними из наиболее важных параметров пилотируемых самолетов [1, 2]. Среди взлетных характеристик следует выделить прежде всего взлетную дистанцию L_{взл.д}, длину разбега L_p (рис. 1), дистанцию прерванного взлета, скорость отрыва V_{отр} и т. п.

Рисунок 1 – Основные параметры взлета самолета

На участке разбега самолет перемещается по взлетно-посадочной полосе (ВПП) со скоростью от $V_p = 0$ до скорости отрыва V_{otp} .

При оценке разбега самолета принимают, что весь разбег совершается на основных опорах шасси, угол атаки α_p и угол отклонения тяги α_m в процессе разбега считаются постоянными [1].

В условиях таких допущений длина разбега L_p при взлете самолета с достаточной точностью определяется выражением [2]

$$L_{p} = \frac{V_{o\tau p}^{2}}{2g \left[K_{1}t_{0} - f_{\kappa} - \frac{\rho_{0}C_{Xp}S_{\kappa p}}{6m_{0}}V_{o\tau p}^{2} \right]},$$
 (1)

где K_1 – коэффициент, позволяющий учитывать падение тяги двигателей по скорости и потери в воздухозаборниках (для ТРД при стандартной атмосфере $K_1 = 0,9$; для $t_H = +30$ °C и давлении 730 мм рт.ст. – $K_1 = 0,813$); f_k – коэффициент трения качения $0,02 \le f_k \le 0,08$, $f_k = 0,02$ – по сухому бетону, $f_k = 0,04$ – по твердому грунту); C_{Xp} – коэффициент лобового сопротивления при разбеге.

При этом величина скорости отрыва, входящая в выражение (1), оценивается соотношением

$$V_{\text{otp}} = \sqrt{\frac{2m_0}{\rho_0 C_{\text{Yotp}} S_{\text{KP}}}},$$
(2)

где S_{кр} – площадь крыла на участке разбега; m₀ – взлетная масса самолета; C_{Уотр} – коэффициент подъемной силы крыла с учетом влияния средств его механизации.

Для уменьшения скорости $V_{\text{отр}}$ чаще всего используют механизацию задней кромки крыла путем применения закрылков различной конфигурации (рис. 2) [4]. При этом существенно возрастает и $C_{\rm y}$, и площадь крыла $S_{\rm kp}$, что приводит к прогнозируемому снижению величины $V_{\rm otp}.$

Такой способ снижения V_{отр} широко используется у современных самолетов (особенно с большой взлетной массой m_0), что, в свою очередь, приводит к существенному уменьшению длины разбега L_p (см. формулу (1)).

Рисунок 2 – Влияние механизации задней кромки крыла на изменение характеристики $C_y(\alpha)$ и корневой хорды (x_{B3}) [4]

Однако при использовании выдвижных закрылков происходит не только изменение C_y и $S_{\kappa p}$, но и значительное возрастание корневой хорды крыла из-за увеличения $x_{вз}$, что приводит к изменению формы крыла в плане, которая, в свою очередь, приводит к изменению величины $C_{y_{взл}}$.

Характер и, главное, степень такого влияния в настоящее время практически не исследованы, что и составляет предмет данной статьи.

При использовании выдвижных закрылков во взлетно-посадочных режимах происходит увеличение корневой хорды крыла ($b_{kop} + x_{B3}$) при сохранении величины концевой хорды (b_{kohq}), что приводит к изменению формы крыла по виду в плане, т. е. к увеличению сужения крыла η_{B3} . Задача заключается в оценке влияния η_{B3} на скорость отрыва V_{otp} и длину L_{p} .

Решение задачи

На рис. 3 показано изменение исходной формы крыла (АВСД) при использовании выдвижного закрылка во взлетном режиме (см. рис. 2), что приводит к увеличению площади крыла (S_{ABC3KE}) на величину $x_{B3}\ell_3$. На этом же рисунке изображена конфигурация эквивалентного крыла S_{ABCE} , примерно равного по площади реальному крылу во

Рисунок 3 – Геометрия трапециевидного крыла по виду в плане: АВСД – исходное базовое крыло; АВСЗЖЕ – конфигурация крыла во взлетно-посадочном режиме; АВСЕ – эквивалентное крыло во взлетно-посадочном режиме

Следует отметить, что сужение эквивалентного крыла возросло $(\eta_{B3} > \eta)$, поскольку увеличилась корневая хорда на величину плоскостного смещения выдвижного закрылка X_{B3} (см. рис. 2):

 $b_{KOP B3} = b_{KOP} + X_{B3}$.

Как известно [1], величина сужения оказывает существенное влияние на многие характеристики крыла, в том числе и на потребную величину С_У. Исследуем этот процесс применительно к эквивалентному крылу во взлетном режиме.

Величину подъемной силы крыла конечного размаха определим по известной теореме Н. Е. Жуковского.

$$Y = \Gamma \rho V I, \qquad (3)$$

где Г – величина циркуляции скорости; р, V – плотность и скорость набегающего потока; I – размах крыла.

Наряду с таким определением подъемной силы ее величину можно найти исходя из геометрии крыла [2]:

$$Y = C_y S \frac{\rho V^2}{2}, \qquad (4)$$

где С_У – коэффициент подъемной силы, определяемый геометрией профиля крыла в его сечении; S – площадь крыла.

Из сопоставления выражений (3), базирующегося на величине циркуляции скорости, и (4), в основе которого лежит геометрия крыла, получим уравнение их связи

$$\Gamma = \frac{1}{2}C_{y}\frac{S}{I}V.$$
 (5)

Поскольку предметом исследования данной работы является сравнительная оценка крыльев с различной геометрией, то необходимо определиться с параметрами, которые обеспечивали бы эквивалентность рассматриваемых крыльев. Такими условиями являются равенства

$$S = S_{3KB}$$
; $V = V_{3KB}$ и $\Gamma = \Gamma_{3KB}$, (6)

т. е. рассматриваются крылья с одинаковой величиной площади, равной циркуляцией и при равных скоростях набегающего потока. В таком случае на основе выражения (5) получим

$$\frac{C_{y}}{C_{y}} = K_{c}.$$
(7)

Условие (7) принято называть коэффициентом формы крыла К_ф [5], отражающим адекватность геометрии сечения и геометрии крыла в плане, что и дает основание для его использования в качестве критерия при сравнении крыльев с различной геометрией как по параметрам сечений, так и по параметрам крыла самолета в плане.

Применительно к взлетному режиму запишем выражение (7) со своими индексами:

$$K_{\phi B3} = \frac{C_{y}}{C_{y 3 K B B3}}.$$
(8)

В исследованиях, представленных в работе [5], установлено, что коэффициент формы для простого трапециевидного крыла (см. рис. 3) является функцией его сужения (табл. 1).

Таблица 1 – Значение К_ф крыльев простых форм по виду в плане

Крыло по виду в плане	Значение коэффициента формы	
Эллиптическое (прямое)	$K_{\phi(\mathfrak{s})} = 1,081$	
Трапециевидное (несоставное)	$K_{\text{cp}(\text{Tp})} = \frac{4}{3} \frac{\left(\eta_{\text{Tp}}^2 + \eta_{\text{Tp}} + 1\right)}{\left(\eta_{\text{Tp}} + 1\right)^2}$	

На рис. 4 показаны численные значения коэффициента формы простого трапециевидного крыла от его сужения. Здесь К_{фэ} – коэффициент формы эллиптичного крыла [5].

Рисунок 4 – Влияние сужения η на величину коэффициента формы простого трапециевидного крыла К_ф

Важным является тот факт, что крылу с сужением η = 3 соответствует коэффициент К_{фэ}, т. е. коэффициент формы эллиптичного крыла, обладающего минимальной величиной индуктивного сопротивления.

Коэффициент формы эквивалентного крыла во многом зависит от типа выдвижного закрылка: одно-, двух- или трехщелевой формы (см. рис. 2).

Как показывает статистический анализ, величина Х_{вз} изменяется в

пределах (0,15...0.25) b_{кор}. Если считать, что сужение исходной формы крыла равняется 3,0 (см. рис. 4), то сужение эквивалентного крыла на разбеге увеличивается на 15...25 %, т. е. становится равным 3,45...3,70.

При таком изменении сужения на разбеге коэффициент формы эквивалентного крыла изменяется в пределах К_{ф вз} = 1,1...1,14, т.е. увеличивается на 10...14 %, что и является причиной увеличения скорости отрыва

$$V_{\text{отр экв}} = \sqrt{\frac{2m_0 K_{\phi \text{ экв. вз}}}{\rho_0 C_{\text{у отр}} S}},$$
(9)

а значит, и длины разбега

$$L_{p} = \frac{m_{0}K_{\phi \ \text{экв. B3}}}{q\left(K_{1}t_{0} - f_{\kappa} - \frac{C_{Xp}K_{\phi \ \text{экв. B3}}}{C_{y \ \text{отp}}}\right)\rho_{0}C_{y \ \text{отp}}S_{\kappa p}}.$$
(10)

Из выражения (9) следует, что увеличение скорости отрыва самолета с эквивалентным трапециевидным крылом возрастает пропорционально корню квадратному из коэффициента формы крыла при взлете т. е. на величину $\sqrt{K_{\phi\ 3 KB.\ B3}}$. Проведя оценку влияния увеличенного сужения крыла на длину разбега, можно сделать вывод о том, что длина разбега увеличивается пропорционально абсолютной величине $K_{\phi\ 3 KB.\ B3}$.

Таким образом, использование выдвижных закрылков при разбеге приводит к увеличению корневой хорды крыла ($b_{kop} + X_{B3}$) и при неизменной концевой хорде (b_{kohq}) – к изменению формы крыла по виду в плане, в частности существенно увеличивает сужение крыла ($\eta_{B3} > \eta$ (см. рис. 3)).

Такое изменение геометрии крыла по виду в плане приводит, в свою очередь, к изменению коэффициента формы крыла (см. табл. 1), а следовательно, и к изменению потребной величины С_{У экв. вз} (см. формулу (8)).

$$C_{Y \ \mathsf{_{3KB.}B3}} = \frac{C_{Y}}{K_{\phi \ \mathsf{B3}}}. \tag{11}$$

При численной оценке $C_{y_{\ 3KB. B3}}$ следует иметь в виду, что изменение коэффициента формы крыла на разбеге определяется в основном величиной X_{B3} . Результаты оценки таких изменений, где учтено и влияние на основные параметры при разбеге скорости отрыва и длины не только коэффициента формы эквивалентного крыла $K_{\phi \ 3KB}$, но и конфигурации профиля (одно-, двух- и трехщелевых выдвижных закрылков), приведены в табл. 2

Таблица 2 – Влияние конфигурации профиля и коэффициента формы крыла по виду в плане К_{ф.экв вз} на основные параметры при разбеге самолета

	Конфигурация профиля на разбеге			
Параметры	X _{B3}	X _{B3}	X _{B3}	
Суотр	1,81	2,84	3,18	
С _{У экв вз}	1,63	2,49	2,73	
Х _{вз} В _{кор}	0,12	0,21	0,24	
К _{ф экв. вз}	1,098	1,11	1,14	
V _{отр экв}	1,047·V _{отр}	1,05 · V _{отр}	1,07·V _{отр}	
L _{рэкв}	1,1·L _p	1,14∙L _p	1,16·L _p	
Исходный профиль крыла С _у =1,2				

Значения параметров здесь приведены в относительных величинах, что позволяет наиболее наглядно и точно оценить влияние геометрии крыла на наиболее важные параметры самолета при его разбеге.

При летных испытаниях самолета А-300-600 [6] и других зарубежных и отечественных самолетов обнаружено, что величина их скоростей отрыва и дистанций разбега несколько выше, чем найденные путем использования выражений типа (1) и (2).

Приведенные в данной статье исследования позволяют избежать таких расхождений при определении $V_{\text{отр}}$ и L_{p} расчетным путем

Выводы

1. Впервые предложена модель оценки влияния конфигурации профиля и формы крыла по виду в плане на основные параметры самолета на этапе его разбега, т. е. на величину скорости отрыва и длину дистанции разбега.

2. Решение задачи осуществлено с учетом изменения хорды крыла в корневом сечении, вызванного смещением закрылка в предельно заднее положение, что приводит к увеличению сужения крыла и изменению его коэффициента формы по виду в плане. 3. Путем введения понятия эквивалентного крыла с увеличенным сужением проведена количественная оценка изменения его коэффициента формы и получены выражения для оценки скорости отрыва и длины разбега самолета с таким эквивалентным крылом.

4. В относительных величинах проведена количественная оценка влияния коэффициента формы крыла по виду в плане при разбеге самолета на величину V_{otp} и L_p . Показано, что величина скорости отрыва увеличивается на 5...7 %, а длина разбега – на 10...16 %, что в предыдущих моделях должной оценки не получило.

5. Предложенная модель с успехом может быть использована не только для более точного определения V_{отр} и L_p, но и для оптимизации X_{вз}, связывающего изменение кривизны профиля и геометрии крыла по виду в плане на этапе разбега самолета.

Список использованных источников

1. Егер, С.М. Проектирование самолетов [Текст] / С.М. Егер, Н.К. Лисейцев. – М. : Машиностроение, 1983. – 492 с.

2 Торенбик, Э. Проектирование дозвуковых самолетов [Текст] / Э. Торенбик. – М. : Машиностроение, 1983. – 648 с.

3. Авиационные правила АП27. Нормы летной годности винтокрылых аппаратов нормальной категории [Текст]. – М. : МАК, 2000. – 548 с.

4. Капитанова, Л. В. Анализ эффективности базовых средств механизации крыла самолета [Текст] / Л.В. Капитанова // Авиационнокосмическая техника и технология. – Х.: Нац. аэрокосм. ун-т им. Н. Е. Жуковского "Харьк. авиац. ин-т", 2006. – Вып. 10/36. – С. 14 – 18.

5. Утенкова, В.В. Понятие коэффициента формы крыла самолета по виду в плане и модели его определения [Текст] / В.В. Утенкова // Вопросы проектирования и производства конструкций летательных аппаратов. – Х. : Нац. аэрокосм. ун-т им. Н. Е. Жуковского "Харьк. авиац. ин-т", 2005. – Вып. 42(3). – С. 94 – 101.

6. Haftmaan, B. Take of dray prediction for Airbus A300-600 and A310 compared with flight test [Teκcτ] // B. Haftmaan, F. Debbeler, H. Gielen // J Aircraft, – 1988. – Vol. 25, №12, – P. 1088 – 1096.

Поступила в редакцию 15.10.2014. Рецензент: д-р техн. наук, проф. А.Г. Гребеников, Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», г. Харьков.