С.Ф. Мандзюк

ПРОГНОЗИРОВАНИЕ УСТАЛОСТНОЙ ДОЛГОВЕЧНОСТИ ЭЛЕМЕНТОВ АВИАЦИОННЫХ КОНСТРУКЦИЙ ПРИ ДВУХОСНОМ НЕПРОПОРЦИОНАЛЬНОМ НАГРУЖЕНИИ

При эксплуатации элементов конструкций ряд авиационных подвержен воздействию ПО времени переменных величине. И направлению действия нагрузок [1]. Изменение направления действия напряжений характерно, например, для обшивки главных крыла самолета возле мест крепления стоек шасси или механизации. В полете обшивка подвержена циклическому нагружению вдоль размаха крыла, а при пробеге самолета по взлетно-посадочной полосе – еще и вдоль хорды крыла реакциями от нагрузок, приходящихся на шасси. В таких прогнозирование усталостной долговечности случаях элементов необходимо проводить с учетом конструкций взаимного влияния нагрузок.

1. Метод расчета долговечности элементов конструкций при двухосном непропорциональном нагружении

В статье предложен метод расчета усталостной долговечности элементов конструкций с концентраторами напряжений при двухосном Разработанный непропорциональном нагружении. метод является дальнейшим развитием подходов К расчети долговечности ПО напряженно-деформированному С локальному состоянию использованием энергетического критерия усталостного разрушения [2]. Применение данного метода позволяет на основе циклических деформационных характеристик материала И усталостных без экспериментальных исследований долговечности конструктивно подобных образцов выполнять расчеты долговечности конструкций. Это особенно актуально для случаев многоосного нагружения агрегатов или конструкций, поскольку проведение испытаний в таких условиях сопряжено со значительными временными и материальными затратами.

В рамках расчета долговечности по локальному напряженносостоянию выполняют поцикловый деформированному расчет нагружения конструкции с целью определения локальных напряжений и деформаций в наиболее нагруженных зонах. Поскольку при двухосном непропорциональном действии нагрузки наиболее нагруженная точка напряжений [3], мигрировать контуру концентратора может ПО вычисления необходимо проводить вдоль всего контура отверстия или выреза.

Метод отработан на примере пластины с круговым отверстием, как наиболее распространенного неустранимого концентратора напряжений

в авиационных конструкциях. Рассмотренная пластина попеременно нагружена номинальными напряжениями в разных направлениях. В общем случае изменение локальных окружных напряжений по контуру концентратора зависит от циклограмм номинальных напряжений, угла между номинальными напряжениями ϕ и от дуговой координаты θ (рис. 1). На основе циклограмм номинальных напряжений можно получить соответствующие изменения локальных окружных напряжений. На рис. 2 показан пример циклограмм локальных напряжений для четырех точек на контуре отверстия при поочередном действии номинальных напряжений с углом $\phi = 30^{\circ}$.

Рисунок 1 – Распределение окружных напряжений σ_θ по контуру отверстия

Рисунок 2 – Циклограммы номинальных и локальных окружных напряжений

Помимо явных циклов деформирования, реализуемых по каждому направлению нагружения, при смене оси нагружения в точках по контуру отверстия возникают огибающие циклы, которые имеют максимальную амплитуду напряжений [4]. Огибающий цикл встречается один раз за блок нагружения и зачастую вносит относительно небольшое повреждение, однако он оказывает влияние на значения параметров остальных циклов деформирования. Поэтому неучет огибающего цикла может приводить к ошибкам при расчетах накопленного повреждения и усталостной долговечности.

Для определения локальных упругопластических напряжений и деформаций широкое применение находит уравнение Нейбера с поправочной функцией [5]

$$\sigma_{\theta} \cdot \varepsilon_{\theta} = K_T^2 \cdot \sigma_H \cdot \varepsilon_H \cdot F_M, \qquad (1)$$

где σ_θ, ε_θ – локальные окружные упругопластические напряжения и деформации;

σ_{*H*}, ε_{*H*} – номинальные напряжения и деформации;

*К*₇ – теоретический коэффициент концентрации напряжений;

F_M – поправочная функция.

Коэффициент концентрации напряжений вдоль контура отверстия зависит от дуговой координаты θ и угла между номинальными напряжениями ϕ . Величина упругого окружного напряжения

$$\sigma_{\theta} = K_T(\theta, \phi) \cdot \sigma_H.$$

В области многоцикловой долговечности для полосы с отверстием пластическая составляющая номинальной деформации близка к нулю [6]. Тогда выражение (1) можно записать в виде

$$\sigma_{\theta} \cdot \varepsilon_{\theta} = \frac{\overline{\sigma_{\theta}}^2}{E} \cdot F_M.$$
(2)

В работе [7] предложено поправочную функцию вычислять по результатам расчета напряженно-деформированного состояния в концентраторе напряжений методом конечных элементов при заданных условиях нагружения. С учетом (2) функцию *F_M* можно вычислить как

$$F_{M} = \frac{\sigma_{\theta_{MK3}} \cdot \varepsilon_{\theta_{MK3}} \cdot E}{\overline{\sigma_{\theta}}^{2}},$$

где σ_{θ*мкэ*}, ε_{θ*мкэ*} – локальные упругопластические напряжение и деформация, полученные с помощью МКЭ.

В ряде случаев поправочная функция *F_M* имеет достаточно сложный характер, поэтому более удобно получать непосредственные

зависимости между локальными упругими и упругопластическими напряжениями

$$\sigma_{\theta} = f(\overline{\sigma_{\theta}}). \tag{3}$$

Функцию (3) можно получить на основе расчетов по методу конечных элементов с заданием соответствующих граничных условий. Эта зависимость хорошо аппроксимируется полиномом 2 – 3-й степени по методу наименьших квадратов.

Применение (3) позволяет учесть явление перераспределения локальных упругопластических напряжений на контуре концентратора напряжений за пределом упругости. По сути такой подход является отображает интерполяцией МКЭ расчетов И СВЯЗЬ локальных упругопластических напряжений с упругими, учитывая геометрию концентратора напряжений и свойства материала. В зависимости от решаемой задачи расчет проводят с использованием диаграмм монотонного или циклического деформирования материала. Для каждой точки на контуре концентратора будет своя функция зависимости упругопластических напряжений от упругих.

Для описания взаимосвязи напряжений и деформаций используют уравнения типа Рамберга – Осгуда [8] в виде линейного и степенного слагаемых

$$\varepsilon_{\theta} = \frac{\sigma_{\theta}}{E} + \left(\frac{\sigma_{\theta}}{K}\right)^{\frac{1}{m}},\tag{4}$$

где *К*, *т* – параметры уравнения.

При формировании локальных циклов деформирования материала находят применение дополнительные гипотезы, которые фиксируют определенную точку на контуре петли гистерезиса в координатах «напряжение – деформация». Этот прием позволяет использовать среднеинтегральные величины циклических деформационных И усталостных характеристик материала, что значительно упрощает процедуру расчета параметров локальных циклов. Ha практике наиболее широкое применение получила модель фиксирования точки, соответствующей максимальному локальному напряжению И деформации в блоке нагружения (реверс в точке А) [4, 6 - 7].

Согласно модели реверса в точке А начальное деформирование до достижения максимальных окружных напряжений происходит по деформирования монотонной диаграмме материала. Подставляя упругого окружного напряжения зависимость (3) величину В С использованием параметров монотонного деформирования материала уравнении (4), К_с, выполняют расчет максимальных m_{c} В упругопластических напряжений и деформаций.

Совместно решая уравнения (2), (4) с подстановкой параметров циклической кривой деформирования материала, формируют огибающий цикл. Далее простраивают вложенные циклы, возникающие при действии номинальных напряжений с меньшей амплитудой. На рис. 3 показан пример формирования локальных циклов деформирования материала в концентраторе напряжений.

Рисунок 3 – Огибающий и вложенные циклы деформирования материала в концентраторе напряжений

Процедура расчета параметров локальных циклов подробно описана в работе [4]. В результате расчетов локального напряженнодеформированного состояния по контуру концентратора напряжений для каждого цикла в блоке нагружения определяют величины амплитудных $\sigma_{\theta a}$ и средних напряжений $\sigma_{\theta m}$, амплитуды полных $\varepsilon_{\theta at}^{k}$ и остаточных $\varepsilon_{\theta ar}^{k}$ деформаций.

За один блок двухосного непропорционального нагружения накопленное усталостное повреждение в рассматриваемой точке на контуре концентратора напряжений составит

$$D_{\theta\lambda} = \sum_{j=1}^{k} \sum_{i=1}^{n_j} R_{\theta m i j} \cdot W_{\theta r i j}^{\alpha}, \qquad (6)$$

где *і* – номер цикла нагружения на ступени;

j – номер ступени в блоке нагружения;

*R*_{0*mij*} – параметр, учитывающий асимметрию цикла нагружения;

 $W_{\theta r_{ij}}$ – величина рассеянной за цикл нагружения энергии;

α – параметр материала;

*n*_{*i*} – число циклов на j-й ступени нагружения;

k – количество ступеней в блоке нагружения.

f

Величина рассеянной за цикл нагружения энергии равна площади петли гистерезиса в координатах «напряжение – деформация»:

$$W_{\theta r} = K_f \cdot \sigma_{\theta a} \cdot \varepsilon_{\theta a r}^k, \qquad (7)$$

где K_f – коэффициент формы петли гистерезиса. Для алюминиевых сплавов коэффициент формы можно принять постоянным $K_f = 3$ [6].

В работе [9] предложено параметр *R_m* находить с помощью зависимости

$$R_{m} = R \cdot f\left(\frac{\sigma_{m}}{\sigma_{b}}\right), \qquad (8)$$

$$\left(\frac{\sigma_{m}}{\sigma_{b}}\right) = \frac{1 + r \frac{\sigma_{m}}{\sigma_{b}}}{\left[1 - \left(\frac{\sigma_{m}}{\sigma_{b}}\right)^{\nu}\right]^{\frac{\alpha}{m_{1}}}},$$

где *R*, *r*, *v*, *m*₁ – коэффициенты материала, определяемые при симметричном нагружении гладких образцов;

σ_{*b*} – предел прочности материала.

Введение функции $f\left(\frac{\sigma_m}{\sigma_b}\right)$ позволяет вычислять долговечность,

используя циклические деформационные и усталостные характеристики материала, полученные только при симметричном нагружении. Это позволяет существенно уменьшить объем экспериментальных исследований свойств материала.

С учетом уравнений (7) и (8) зависимость (6) примет вид

$$D_{\theta\lambda} = R \cdot K_f^{\alpha} \cdot \sum_{j=1}^k \sum_{i=1}^{n_j} f\left(\frac{\sigma_{\theta m}}{\sigma_b}\right)_{ij} \cdot \left(\sigma_{\theta a i j} \cdot \varepsilon_{\theta a r i j}^k\right)^{\alpha}.$$
 (9)

Таким образом, наиболее опасным местом на контуре отверстия с точки зрения возникновения трещины будет точка, в которой суммарное накопленное повреждение имеет максимальное значение. Тогда количество блоков нагружения до образования трещины составит

$$\lambda = \frac{1}{D_{\theta\lambda max}}$$

2. Численное исследование накопленного повреждения и долговечности образцов при ортогональном асинхронном нагружении

Для экспериментальной проверки предложенной методики спроектированы образцы С отверстием, позволяющие осуществлять поочередное нагружение во взаимно перпендикулярных направлениях Х и Ү. Образцы изготовлены из листа алюминиевого сплава Д16АТ толщиной 1.15 Геометрические MM. размеры показаны на рис. 4.

С помощью метода конечных элементов проведен анализ напряженнодеформированного состояния образцов в упругой и упругопластической постановке с использованием монотонной и циклической диаграмм деформирования материала. По

Геометрические размеры образца

результатам расчета локальных напряжений в точках по контуру отверстия определены функции зависимости упругопластических напряжений от упругих. На рис. 5 показаны зависимости $\sigma_{\theta} = f(\overline{\sigma_{\theta}})$ для точек при $\theta = 0^{\circ}$, 30°, 45° и 90°.

от упругих

Рассмотрено отнулевое нагружение. Максимальная нагрузка циклов по осям X и Y принята одинаковой.

Выполнен расчет параметров локальных циклов $\sigma_{\theta a}$, $\sigma_{\theta m}$, $\varepsilon_{\theta ar}^{k}$ и величин рассеянной энергии $W_{\theta r}^{x}$, $W_{\theta r}^{y}$, $W_{\theta r}^{xy}$ за цикл нагружения. Через $W_{\theta r}^{xy}$ обозначена рассеянная энергия огибающего цикла.

На рис. 6 приведен характер распределения накопленного повреждения по контуру отверстия за блок нагружения, включающего в себя 100 циклов вдоль оси *X* и 100 циклов вдоль оси *Y*. Суммарное накопленное повреждение за блок нагружения составит

$$D_{\theta\lambda} = D_{\theta}^{X} + D_{\theta}^{Y} + D_{\theta}^{XY}$$

где D_{θ}^{X} – повреждение, вносимое нагружением вдоль оси X;

 D_{Θ}^{y} – повреждение, вносимое нагружением вдоль оси Y;

 D_{θ}^{xy} – повреждение от огибающего цикла, возникающего при смене оси нагружения.

Рисунок 6 – Распределение накопленного усталостного повреждения по контуру отверстия при ортогональном асинхронном нагружении

В результате численного анализа установлены места на контуре отверстия с наибольшим накопленным повреждением. При двухосном ортогональном асинхронном нагружении максимальное накопленное повреждение будет в точках на контуре отверстия перпендикулярно к действию нагрузок, т.е. при $\theta = 0^\circ$, 90° , 180° и 270° .

3 Экспериментальное исследование долговечности образцов при ортогональном асинхронном нагружении

Экспериментальное исследование усталостной долговечности образцов с отверстием проведены на универсальной машине серии испытательного УMM. входящей комплекс оборудования. В В эксперименте реализовано попеременное отнулевое нагружение по взаимно перпендикулярным направлениям Х и Ү. Количество циклов нагружения и величины нагрузок по осям Х и У приняты одинаковыми. В испытаниях реализованы нагрузки, соответствующие долговечности 10⁴ – 2·10⁵ циклов до разрушения, что равно 5 – 15 блокам нагружения. Экспериментальное исследование проведено стандартных в лабораторных условиях: температура окружающего воздуха – 22±2°С, относительная влажность – 50±5%, частота нагружения – 11,7 Гц.

На рис. 7 показан образец, установленный в захватах испытательной машины УММ.

Рисунок 7 – Образец, установленный в захватах испытательной машины

В процессе испытаний фиксировали количество циклов до появления усталостных трещин длиной 0,5...1,5 мм. Обнаружение трещин проводилось визуально-оптическим способом. Во всех случаях трещины зарождались на контуре концентратора напряжений перпендикулярно к действующим нагрузкам.

На рис. 8 приведено сопоставление экспериментальных данных и результатов расчета усталостной долговечности по предложенному методу при ортогональном асинхронном нагружении в координатах «максимальное упругое окружное напряжение – усталостная долговечность». Там же круглыми маркерами показаны испытания аналогичных образцов при одноосном нагружении.

Рисунок 8 – Сопоставление экспериментальных и расчетных данных

По результатам экспериментальных исследований и численных расчетов можно сделать вывод о том, что при $N > 10^5$ циклов долговечность при ортогональном асинхронном действии нагрузки совпадает с одноосным. В области меньшей долговечности огибающий ЦИКЛ изменяет параметры вложенных циклов И увеличивает накопленное ИМИ повреждение при ортогональном асинхронном нагружении. Вследствие этого усталостные кривые расходятся.

Выводы

Предложен метод расчета усталостной долговечности элементов авиационных конструкций при двухосном непропорциональном нагружении. Описанный подход является дальнейшим развитием метода расчета долговечности локальному ПО напряженнодеформированному состоянию С использованием энергетического критерия разрушения. Особенностью расчета является необходимость определения накопленного усталостного повреждения для каждой точки по контуру концентратора напряжений. Следует отметить, что при изменении ОСИ нагружения В точках ПО окружности возникают огибающие циклы, которые имеют максимальную амплитуду напряжений в блоке нагружения. От их параметров зависят локальные средние напряжения И амплитудные остаточные деформации вложенных циклов с меньшими амплитудными напряжениями.

экспериментальное Выполнено численное И исследование долговечности образцов при ортогональном асинхронном нагружении. Проведен анализ накопления усталостного повреждения по окружности концентратора напряжений. Установлено, ЧТО при ортогональном асинхронном нагружении в области многоцикловой долговечности максимальное повреждение накапливается в точках перпендикулярно к действию нагрузок. Получено удовлетворительное согласование расчетных и экспериментальных данных.

Список использованных источников

1. Сопротивление усталости элементов конструкций [Текст] / А. З. Воробьев, Б. И. Олькин, В. Н. Стебенев, Т. С. Родченко. – М. : Машиностроение, 1990. – 240 с.

2. Трощенко, В.Т. Энергетический критерий усталостного разрушения [Текст] / В. Т. Трощенко, П. А. Фомичев // Пробл. прочности. – 1993. – №1. – С. 3 – 10.

3. Пономарев, А. Т. Долговечность пластины с концентратором произвольной формы при малоцикловом плоском нагружении [Текст] / А. Т. Пономарев, В. Г. Стопкевич, Е. В. Коробейников // Изв. вузов. Авиационная техника. – 2010. – № 1. – С. 13–18.

4. Мандзюк, С. Ф. Определение параметров локальных циклов деформирования материала в концентраторе напряжений при двухосном асинхронном нагружении [Текст] / С. Ф. Мандзюк // Открытые информационные и компьютерные интегрированные технологии: сб. науч. тр. Нац. аэрокосм. ун-та им. Н.Е. Жуковского «ХАИ». – Вып. 67. – Х., 2015. – С. 45 – 53.

5. Фомичев, П. А. Долговечность элементов конструкций при регулярном и программном нагружениях после предварительной перегрузки [Текст] / П. А. Фомичев, А. А. Черных // Открытые информационные и компьютерные интегрированные технологии: сб. науч. тр. Нац. аэрокосм. ун-та им. Н. Е. Жуковского «ХАИ». – 2011. – № 51. – С. 5 – 16.

6. Фомичев, П. А. Обоснование расчетной кривой усталости элементов конструкций из алюминиевых сплавов [Текст] / П. А. Фомичев // Пробл. прочности. – 2011. – № 4. – С. 5 – 18.

7. Гребенюк, Я. В. Прогнозирование долговечности по локальному напряженно-деформированному состоянию элементов конструкций с геометрическими нерегулярностями: дис. ... канд. техн. наук: 05.07.03; защищена 2004 / Гребенюк Ярослав Владимирович. – Х., 2004. – 204 с.

8. Description of Stress-Strain Curves by Three Parameters [Text] : Technical Note №902 / W. Ramberg, W. R. Osgood. – National Advisory Committee For Aeronautics, Washington, D.C. – 1943. – 29 p.

9. Фомичев, П. А. Учет средних напряжений в методе расчета долговечности по локальному напряженно-деформированному состоянию [Текст] / П. А. Фомичев // Механика разрушения материалов и прочность конструкций: матер V Междунар. науч. конф., Львов, 24 – 27 июня 2014 г. – С. 731 – 736.

Поступила в редакцию 31.03.2015. Рецензент: д-р техн. наук, проф. П.А. Фомичев, Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», г. Харьков.