ПРИМЕНЕНИЕ МЕТОДА РОТОТАБЕЛЬНОГО ПЛАНИРОВАНИЯ ДЛЯ МИНИМИЗАЦИИ ШИРИНЫ ЛАЗЕРНОГО РЕЗА

1. Тепловая модель процесса лазерной резки листовых материалов

Основные количественные соотношения для лазерной резки можно получить из анализа следующей тепловой модели процесса. Тепловой источник мощностью *q*, равной поглощенной материалом доли лазерного излучения *P*, движется прямолинейно по поверхности бесконечной пластины толщиной *S* со скоростью *V* [4].

В соответствии с существующей теорией [1, 4] после воспламенения металла через некоторый промежуток времени устанавливается квазистационарный режим разрушения, при котором его скорость V_P определяется только температурой границы разрушения T_P в зоне обработки. Последнее выполняется, если струя кислорода полностью удаляет расплавленный окисел из зоны резки. Однако на механизм формирования реза существенно влияют и те явления, которые происходят на верхней кромке металла до момента установления квазистационарного разрушения.

В этот переходный период происходит нагревание верхней кромки металла от исходной температуры до T_P и ускорение границы разрушения до скорости V_P . При этом переходный процесс сопровождается перераспределением поглощенной и перешедшей в тепло энергии лазерного излучения [4].

В начальный момент граница разрушения неподвижна, все тепло отводится внутрь металла механизмом теплопроводности, а также расходуется (при достижении на верхней кромке детали температуры плавления металла T_{nn}) на образование прослойки жидкого металла, его окислов и нагрев этой прослойки до температуры T_P . Толщина нагретого слоя вблизи неподвижного фронта разрушения возрастает с течением времени *t* пропорционально \sqrt{t} [4].

Скорость границы разрушения в переходный период остается незначительной по сравнению с квазистационарной. При достижении же температуры T_P скорость границы разрушения резко возрастает до значения V_P [4]. Следовательно, будем считать, что изменение скорости границы разрушения носит ступенчатый характер: после некоторого запаздывания она достигает стационарной скорости движения V_P, определяемой только температурой поверхности металла T_P.

Время t_0 установления квазистационарного разрушения для малых скоростей обработки можно определить [4], учитывая, что нагревание металла происходит движущимся с постоянной скоростью *V* лазерным лучом, сфокусированным в круговое пятно радиусом r_n :

$$t_{0} = \frac{2a}{v^{2}} \left[1 - \sqrt{1 - \frac{kv(T_{\kappa u \pi} - T_{\mu})}{W_{\rho}a}} \right],$$
(1)

где T_{H} – начальная температура металла, *град*; $T_{\kappa u n}$ – температура кипения металла, *град*; W_{P} – плотность лазерной мощности: $W_{P} = \frac{4P}{\pi \cdot d_{\pi}^{2}}$, BT/cm²; P – мощность лазерного излучения, BT; $d_{\pi} = 2r_{\pi}$.

В течение времени *t*₀ лазерный источник переместится по верхней кромке металла на расстояние

$$x_0 = \frac{2a}{v} \left[1 - \sqrt{1 - \frac{kv(T_{\kappa u \pi} - T_H)}{W_p a}} \right].$$
(2)

Кроме того, за это же время *t*₀ на верхней кромке вследствие механизма теплопроводности образуется зона жидкого металла и его окислов шириной (рис. 1, а)

$$x_{\rm S} = \sqrt{a(t_0 - t_{\Pi\Pi})}, \qquad (3)$$

где t_{nn} – время, необходимое для достижения температуры плавления металла T_{nn} .

При этом

$$t_{nn} = \frac{2a}{v^2} \left[1 - \sqrt{1 - \frac{kv(T_{nn} - T_H)}{W_p a}} \right].$$
(4)

88

Рисунок 1 – Механизм разрушения при резке металлов непрерывным лазерным излучением на низких скоростях

Следовательно, если за время t_0 зона жидкого металла распространится в направлении резки на большее расстояние, чем переместится лазерный луч (что характерно для низких скоростей резки), т. е. $X_S = X_0$, то в течение этого времени перед движущимся лазерным лучом на верхней кромке образуется расплавленный участок. При дальнейшем движении лазерного пучка обработка на этом участке происходит только в глубь металла до тех пор, пока луч лазера вновь не достигнет верхней кромки металла (рис. 1, *б*).

Затем снова в течение времени t_0 происходит нагревание верхней кромки металла до температуры T_0 передней частью движущегося лазерного луча при неподвижной границе разрушения, тогда как за счет оставшейся части лазерного луча продолжается резание в глубь металла (рис. 1, *в*). Процесс периодически повторяется.

Таким образом, при малых скоростях резки разрушение в глубь металла происходит двояко. Вблизи переднего края лазерного луча протяженностью X_0 оно протекает периодически (со скоростью V_P^{Π}) в течение времени прохождения лучом расстояния X_S и заключается в нагреве и разрушении детали периодически перемещающимся от поверхности в глубь металла источником тепла. В результате воздействия на металл остальной части сфокусированного луча, равной $(d_{\pi} - x_0)$, разрушение происходит непрерывно (со скоростью V_P^H). При этом поверхность фронта периодически протекающего разрушения наклонена по отношению к направлению резки под углом α_{Π} , образованным скоростью V_P^{Π} и скоростью распространения в металле тепловой волны V_T , а поверхность фронта непрерывного разрушения – под углом α_H , образованным скоростями V_P^H и V (см. ри. 1, *а* и *б*).

Качество лазерного реза оценивают показателями: ширина реза, шероховатость поверхности, наличие грата, неперпендикулярность кромок реза, ширина ЗТВ.

Максимальную толщину разрезаемого металла S для низких и высоких скоростей резки можно определить соответственно по зависимостям [1, 4]

$$S = \frac{x_{S}V_{P}^{\Pi} + (2r_{\pi} - x_{0})V_{P}^{H}}{v}; \qquad (5)$$

$$S = \frac{(2r_{\pi} - x_0)V_P^H}{v}.$$
 (6)

Учитывая, что рез в поперечном сечении на верхней кромке детали формируется при неподвижной границе разрушения, его ширину можно оценить из выражения

$$b_P^{\varepsilon} = 2 \left[r_{\pi} \sqrt{1 - \left(\frac{x_0}{2r_{\pi}}\right)^2 + x_{S}} \right]$$
(7)

При высоких скоростях обработки, когда теплоотводом в поперечном направлении можно пренебречь, ширина реза на верхней кромке

$$b_{P}^{\varepsilon} = 2 \left[r_{\Pi} \sqrt{1 - \left(\frac{x_{0}}{2r_{\Pi}}\right)^{2}} \right], \qquad (8)$$

где

$$x_0 = \frac{\pi \cdot k}{4a} \cdot v \cdot \left[\frac{T_{\kappa u \pi} - T_H}{W_P}\right]^2 \tag{9}$$

В глубинных слоях металла рез формируется при движущейся со скоростью V_P^H границе разрушения. Следовательно, его ширина в нижних слоях реза должна быть меньше, чем на верхней кромке. Эту величину можно уточнить из зависимости

$$b_P^H = 2 \left[r_{\Pi} + \frac{a}{V_P^H} ln \frac{T_{\kappa u \Pi}}{T_{\Pi \Pi}} \right].$$
(10)

2. Метод рототабельного планирования

Рототабельным называют такое планирование, которое позволяет получать модель, способную предсказывать значение параметра оптимизации с одинаковой точностью независимо от направления на равных расстояниях от центра плана [6].

Чтобы определить, какие факторы наиболее существенно влияют на значения ширины реза в заданных режимах обработки, необходимо смоделировать полный факторный эксперимент типа 23 (3 = k – количество факторов, $N = m^k = 23 = 8$ – количество опытов, m – число уровней каждого фактора). Факторы, уровни и интервалы варьирования факторов для материалов – титанового сплава ВТ-5, сталей 45, ВНС-5 и X18Н10T приведены в табл. 1. Для расчета b_P используются зависимости (1) – (6).

		Интервалы		
Факторы	Верхний +1	Основной 0	Нижний -1	варьирования
<i>x</i> ₁ – скорость резания, мм / с.	50	27,5	5	22,5
<i>х</i> ₂ – мощность, Вт	1000	750	500	250
<i>x</i> ₃ – диаметр фокусировки луча, мм	0,4	0,3	0,2	0,1

Таблица 1 – Уровни и интервалы варьирования факторов

Матрица плана эксперимента и результаты теоретического расчета получаемых значений шероховатости поверхностей *у* представлены в табл. 2 – 5.

Таблица 2 – План эксперимента типа 2³ для титанового сплава ВТ-5

номер опыта	<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₁ <i>x</i> ₂	<i>x</i> ₁ <i>x</i> ₃	<i>x</i> ₂ <i>x</i> ₃	$x_1 x_2 x_3$	$y(b_P),$
1	+	-	-	-	+	+	+	-	0,301
2	+	+	-	-	-	-	+	+	0,232
3	+	-	+	-	-	+	-	+	0,271
4	+	+	+	-	+	-	-	-	0,223
5	+	-	-	+	+	-	-	+	0,602
6	+	+	-	+	-	+	-	-	0,46
7	+	-	+	+	-	-	+	-	0,543
8	+	+	+	+	+	+	+	+	0,441

номер опыта	<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$x_1 x_2$	<i>x</i> ₁ <i>x</i> ₃	<i>x</i> ₂ <i>x</i> ₃	$x_1 x_2 x_3$	$y(b_P),$ MKM
1	+	-	-	-	+	+	+	-	0,274
2	+	+	-	-	-	-	+	+	0,223
3	+	-	+	-	-	+	-	+	0,252
4	+	+	+	-	+	-	-	-	0,217
5	+	-	-	+	+	-	-	+	0,548
6	+	+	-	+	-	+	-	-	0,432
7	+	-	+	+	-	-	+	-	0,505
8	+	+	+	+	+	+	+	+	0,433

Таблица 3 – План эксперимента типа 2³ для стали ВНС-5

Таблица 4 – План эксперимента типа 2³ для стали 45

номер опыта	<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₁ <i>x</i> ₂	$x_1 x_3$	$x_2 x_3$	$x_1 x_2 x_3$	$y(b_P),$
1	+	-	-	-	+	+	+	-	0,232
2	+	+	-	-	-	-	+	+	0,21
3	+	-	+	-	-	+	-	+	0,223
4	+	+	+	-	+	-	-	-	0,207
5	+	-	-	+	+	-	-	+	0,465
6	+	+	-	+	-	+	-	-	0,42
7	+	-	+	+	-	-	+	-	0,446
8	+	+	+	+	+	+	+	+	0,415

Таблица 5 – План эксперимента типа 2³ для стали X18H10T

номер опыта	<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$x_1 x_2$	$x_1 x_3$	$x_{2}x_{3}$	$x_1 x_2 x_3$	$y(b_P),$ MKM
1	+	-	-	-	+	+	+	-	0,218
2	+	+	-	-	-	-	+	+	0,206
3	+	-	+	-	-	+	-	+	0,213
4	+	+	+	-	+	-	-	-	0,204
5	+	-	-	+	+	-	-	+	0,436
6	+	+	-	+	-	+	-	I	0,411
7	+	-	+	+	-	-	+	-	0,425
8	+	+	+	+	+	+	+	+	0,408

План типа 2³ позволяет получить раздельные оценки для коэффициентов уравнения регрессии вида

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_{12} x_1 x_2 + \dots$$
(11)

$$+b_{13}x_1x_3+b_{23}x_2x_3+b_{123}x_1x_2x_3$$

Коэффициенты уравнения регрессии (7) определяют по формулам:

$$b_{0} = \frac{\sum_{j=1}^{N} y_{j}}{N}; \ b_{j} = \frac{\sum_{j=1}^{N} x_{ij} y_{j}}{N}; \ b_{jj} = \frac{\sum_{j=1}^{N} x_{ij} x_{lj} y_{j}}{N},$$
(12)

где *i*, *l* – номера факторов; *X_{ij}*, *X_{ij}* – кодированные значения факторов *i* и *l* в *j*-м опыте.

В результате расчетов получены следующие значения коэффициентов:

– для титанового сплава ВТ-5 – $b_0 = 0,3846$; $b_1 = -0,045$; $b_2 = -0,01413$; $b_3 = 0,1278$; $b_{12} = 0,00815$; $b_{13} = -0,0154$; $b_{23} = -0,00437$; $b_{123} = -0,0527$.

– для стали ВНС-5 – $b_0 = 0,3605$; $b_1 = -0,0034$; $b_2 = -0,00875$; $b_3 = 0,119$; $b_{12} = 0,0075$; $b_{13} = -0,01275$; $b_{23} = -0,00175$; $b_{123} = -0,0035$.

– для стали 45 – $b_0 = 0,32725$; $b_1 = -0,01425$; $b_2 = -0,0045$; $b_3 = 0,10925$; $b_{12} = 0,0025$; $b_{13} = -0,00475$; $b_{23} = -0,0015$; $b_{123} = -0,001$.

- для стали X18H10T - $b_0 = 0,3151;$ $b_1 = -0,00788;$ $b_2 = -0,00263;$ $b_3 = 0,10488;$ $b_{12} = 0,0014;$ $b_{13} = -0,0026;$ $b_{23} = -0,00087;$ $b_{123} = -0,0006.$

После подстановки коэффициентов в уравнение (7) оно принимает вид:

– для титанового сплава ВТ-5: $Y = 0,3846 - 0,045x_1 - 0,01413x_2 + 0,1278x_3 + 0,00815x_1x_2 - -0,0154x_1x_3 - 0,0043x_2x_3 - 0,0527x_1x_2x_3;$ – для стали ВНС-5: $Y = 0,3605 - 0,0034x_1 - 0,00875x_2 + 0,119x_3 + 0,0075x_1x_2 - -0,01275x_1x_3 - 0,00175x_2x_3 - 0,0035x_1x_2x_3;$ – для стали 45: $Y = 0,32725 - 0,01425x_1 - 0,0045x_2 + 0,10925x_3 + 0,0025x_1x_2 - -0,00475x_1x_3 - 0,0015x_2x_3 - 0,001x_1x_2x_3;$ Кодирование независимых переменных осуществляется по формуле

$$\boldsymbol{x}_{i} = \tilde{\boldsymbol{x}}_{i} - \frac{\tilde{\boldsymbol{x}}_{i0}}{\Delta \tilde{\boldsymbol{x}}_{i}}.$$
(13)

Вывод

Из полученных уравнений видно, что наибольшее влияние на ширину реза b_p для представленных материалов оказывает диаметр фокусировки луча, затем скорость резки и, наконец, мощность лазерного излучения.

При скорости лазерной резки меньше 0,5 м/мин качество лазерной резки значительно снижается. На поверхности реза появляются рытвины, бесформенные наросты, процесс переходит в так называемый автогенный режим.

Анализ газолазерной резки для рассмотренных групп авиационных листовых металлов позволяет сделать следующие общие выводы.

Титановые сплавы обладают лучшей способностью к резке лазерным излучением, несмотря на повышенные в сравнении с конструкционными сталями прочностные характеристики.

Высокопрочные стали при прочих равных параметрах (мощность излучения, скорость резки) по сравнению с титановыми сплавами при газолазерной резке имеют ограничения по толщине листа. Эти ограничения связаны с различными механизмами изменения теплопроводности данных материалов при нагревании до температуры кипения.

Моделирование распределения температурных полей при газолазерной резке различных групп материалов при варьировании скоростей реза и толщины листов показало различие в ширине реза на входе и выходе луча, которое зависит от скорости реза. Моделирование распределения температурных полей при ГЛР различной толщины показало, что наиболее эффективным технологическим параметром для получения качественного реза является скорость движения лазерного луча.

Список использованной литературы

1. Технологические лазеры: справочник: в 2 т. Т. 1. Расчет, проектирование и эксплуатация [Текст] / Г.А. Абильсиитов, В.С. Голубев, В.Г. Гонтарь [и др.]; под ред. Г.А. Абильсиитова. – М. : Машиностроение, 1991. – 432 c.

2. Андрияхин, В.М. Процессы лазерной сварки и термообработки [Текст] / В.М. Андрияхин. – М.: Наука, 1988. – 176 с.

3. Краткий справочник физико-химических величин [Текст] : справочник / К.П. Мищенко, А.А. Равделяю. – М.: Высшая школа, 1969. – 268 с.

4. Действие излучения большой мощности на металлы: монография [Текст] / С. И. Анисимов [и др.]. – М.: Наука, 1970. – 192 с.

5. Справочник по технологии лазерной обработки: справочник [Текст] / ВС. Коваленко [и др.]. – Київ: Техніка, 1985. – 167 с.

6. Спиридонов, А.А. Планирование эксперимента при исследовании технологических процессов [Текст] / А.А. Спиридонов. – М.: Машиностроение, 1981. – 184 с.

7. Дьяченко, Ю.В. Численное моделирование процессов лазерной резки листовых авиационных материалов [Текст] / Ю.В. Дьяченко, А.В. Маковецкий, Е.Е. Хитрых // Открытые информационные и компьютерные интегрированные технологи: сб. науч. тр. – Х.: Нац. аэрокосм. унт «ХАИ», – 2014. – Вып. 63. – С. 104–114.

Поступила в редакцию 30.11.2017. Рецензент: д-р техн. наук, проф. С.И. Планковский, Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», г. Харьков.