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The paper relates to practical aspects of insertion modeling. Insertion modeling system is an environment for the 
development of insertion machines, used to represent insertion models of distributed systems. The architecture of 
insertion machines and insertion modeling system IMS is presented. Insertion machine for constraint 
programming is specified as an example, and as a starting point of ‘verifiable programming’ project. 

Introduction 
Insertion modeling is the approach to 

modeling complex distributed systems based 
on the theory of interaction of agents and 
environments [1–3]. Mathematical foundation 
of this theory was presented in [4]. During the 
last decade insertion modeling was applied to 
the verification of requirements for software 
systems [5–9]. First time the theory of 
interaction of agents and environments was 
proposed as an alternative to well known 
theories of interaction such as Milner’s CCS 
[10] and pi-calculus [11], Hoare’s CSP [12], 
Cardelli’s mobile ambients [13] and so on. 
The idea of decomposition of a system to a 
composition of environment and agents 
inserted into this environment implicitly exists 
in all theories ofinteraction and for some 
special case it appears explicitly in the model 
of mobile ambients. 
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Another source of ideas for insertion 
modeling is the search of universal 
programming paradigms such as Gurevich’s 
ASM [14], Hoare’s unified theories of 
programming [15], rewriting logic of 
Meseguer [16]. These ideas were taken as a 
basis for the system of insertion programming 
[17] developed as the extension of algebraic 
programming system APS [18]. Now this 
system initiated the development of insertion 
modeling system IMS which started in 
Glushkov Institute of Cybernetics. The 
development of this system is based on the 
version of APS enhanced by the former 
student of the author V.Peschanenko. The first 
version of IMS and some simple examples of 
its use are available from [19].  

To implement the insertion model in 
IMS one must develop insertion machine with 
easily extensible input language, the rules to 
compute insertion functions and a program of 
interpretation and analyzing of insertion 
models. The architecture, input languages and 
examples of insertion machines and insertion 
modeling system are considered in the paper. 

1. The Architecture of 
Insertion Modeling System 
Insertion modeling system is an 

environment for the development of insertion 
machines and performing experiments with 
them. The notion of insertion machine was 
first introduced in [17] and it was used as a 
tool for programming with some special class 
of insertion functions. Later this notion was 
extended for more wide area of applications, 
different levels of abstraction, and multilevel 
structures. 

Insertion model of a system represent 
this system as a composition of environment 
and agents inserted into it. Contrariwise the 
whole system as an agent can be inserted into 
another environment. In this case we speak 
about internal and external environment of a 
system. Agents inserted into the internal 
environment of a system themselves can be 
environments with respect to their internal 
agents. In this case we speak about multilevel 
structure of agent or environment and about 
high level and low level environments. 

As usually, insertion function is 
denoted as E[u] were E is the state of 
environment and u is the state of an agent 
(agent in a given state). E[u] is a new 
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environment state after insertion an agent u. 
So, the expression E[u[v], F[x, y, z]] denotes 
the state of a two level environment with two 
agents inserted into it. At the same time E is 
an external environment of a system F[x, y, z] 
and F is an internal environment of it. All 
agents and environments are labeled or 
attributed transition systems (labeled systems 
with states labeled by attribute labels [9]). The 
states of transition systems are considered up 
to bisimilarity. This means that we should 
adhere to the following restriction in the 
definition of states: if    and  
then . 

/~ EE B
/~ uu B

][~][ // uEuE B

The main invariant of bisimilarity is 
the behavior  of transition system in 
the state E (an oriented tree with edges 
labeled by actions and nodes labeled by 
attribute labels). Therefore the restriction 
above can be written as follows: 
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Behaviors themselves can be 
considered as states of transition systems. If 
the states are behaviors then the relation 
above is valid automatically, because in this 
case beh(E) = E, beh(u) = u. Otherwise the 
correctness of insertion function must be 
proved in addition to its definition. In any 
case we shall identify the states with the 
corresponding behaviors independently from 
their representation. To define finite behaviors 
we use the language of behavior algebra (a 
kind of process algebra defined in [4]). This 
algebra has operation of prefixing, 
nondeterministic choice, termination 
constants   and approximation 
relation. For attributed transition systems we 
introduce the labeling operator for 
behaviors.To define infinite behaviors we use 
equations in behavior algebra. Usually these 
equations have the form of recursive 
definitions . Left hand sides of 
these definitions can depend on parameters 
u . To define the 
attribute labels we use the set of attributes, 
symbols taking their values in corresponding 
data domains. These attributes constitute a 
part of a state of a system and change their 

values in time. All attributes are devided to 
external (observable) and internal 
(nonobservable). By default the attribute label 
of a state is the set of values of all observable 
attributes for this state. 
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The general architecture of insertion 
machine is represented on the fig. 1. 

 

 
 
Fig. 1. Architecture of Insertion 

Machine 
 
The main component of insertion 

machine is model driver, the component 
which controls the machine movement along 
the behavior tree of a model. The state of a 
model is represented as a text in the input 
language of insertion machine and is 
considered as an algebraic expression. The 
input language include the recursive 
definitions of agent behaviors, the notation for 
insertion function, and possibly some 
compositions for environment states. The 
state of a system must be reduced to the 
form . This functionality is 
performed by the module called agent 
behavior unfolder. To make the movement, 
the state of environment must be reduced to 
the normal form 

,...],[ 21 uuE

∑
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actions,  are environment states,

ia

iE ε  is a 
termination constant. This functionality is 
performed by the module environment 
interactor. It computes the insertion function 
calling if it is necessary the agent behavior 
unfolder. If the infinite set I of indices in the 
normal is allowed, then the weak normal form 

GFa +. is used, where G is arbitrary 
expression of input language.  
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Two kinds of insertion machines are 
considered: real type or interactive and 
analytical insertion machines. The first ones 
exist in the real or virtual environment, 
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interacting with it in the real or virtual time. 
Analytical machines intended for model 
analyses, investigation of its properties, 
solving problems etc. The drivers for two 
kinds of machines correspondingly are also 
divided on interactive and analytical drivers.    
      Interactive driver after normalizing the 
state of environment must select exactly one 
alternative and perform the action specified as 
a prefix of this alternative. 

Insertion machine with interactive 
driver operates as an agent inserted into 
external environment with insertion function 
defining the laws of functioning of this 
environment. External environment, for 
example, can change a behavior prefix of 
insertion machine according to their insertion 
function. Interactive driver can be organized 
in a rather complex way. If it has criteria of 
successful functioning in external 
environment intellectual driver can 
accumulate the information about its past, 
develop the models of external environment, 
improve the algorithms of selecting actions to 
increase the level of successful functioning. In 
addition it can have specialized tools for 
exchange the signals with external 
environment (for example, perception of 
visual or acoustical information, space 
movement etc). 

Analytical insertion machine as 
opposed to interactive one can consider 
different variants of making decision about 
performed actions, returning to choice points 
(as in logic programming) and consider 
different paths in the behavior tree of a model. 
The model of a system can include the model 
of external environment of this system, and 
the driver performance depends on the goals 
of insertion machine. In the general case 
analytical machine solves the problems by 
search of states, having the corresponding 
properties(goal states) or states in which given 
safety properties are violated. The external 
environment for insertion machine can be 
represented by a user who interacts with 
insertion machine, sets problems, and controls 
the activity of insertion machine. 

Analytical machine enriched by logic 
and deductive tools can be used for symbolic 
modeling. The state of symbolic model is 
represented by means of properties of the 

values of attributes rather then their concrete 
values. 

General architecture of insertion 
modeling system is represented on fig. 2. 

 

 

 
Fig. 2. Architecture of Insertion 

Modeling System IMS 
 
High level model driver provides the 

interface between the system and external 
environment including the users of the 
system. Design tools based on algebraic 
programming system APS are used for the 
development of insertion machines and model 
drivers for different application domains and 
modeling technologies. Verification tools are 
used for the verification of insertion 
machines, proving their properties statically 
or dynamically. Dynamic verification uses 
generating symbolic model traces by means of 
special kinds of analytical model drivers and 
deductive components. 

The repository of insertion machines 
collects already developed machines and their 
components which can be used for the 
development of new machines as their 
components or templates for starting. Special 
library of APLAN functions supports the 
development and design in new projects. The 
C++ library for IMS supports APLAN 
compilers and efficient implementation of 
insertion machines. Deductive system 
provides the possibility of verification of 
insertion models. 

2. Input Languages of 
Insertion Machines 

Input language of insertion machine is 
used to describe the properties of a model and 
its behavior. This description consists of the 

 16
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following parts: environment description, 
behavior description (including the behavior 
of environment and the behaviors of agents), 
and insertion function. The behavior 
description has the following very simple 
syntax: 

<behavior>::= Delta | bot | 0 | < action > | 
<action> . <behavior> | 
<behavior> + <behavior>| 
<environment state>[<list of named agent 
behaviors separated by ,>]| 
<functional expression> 
<named agent behavior>::=<agent 
name>:<behavior> 
 

Therefore, the language of behavior 
algebra (termination constants, prefixing and 
nondeterministic choice) is extended by 
functionals expressions and explicit 
representation of insertion function. The 
syntax and semantics of actions, environment 
states, and functional expressions are defined 
in the environment description. We shall not 
consider all possibilities and details of 
environment description language restricting 
ourselves by making only some necessary 
comments. 

First of all note, that all main 
components of behavior algebra language 
(actions, environment states, and functional 
expressions) are algebraic or logic expressions 
of base language (terms and formulas). This 
language is a multisorted (multitype) first 
order logic language. The signature of this 
language is defined in the environment 
description. Functional and predicate symbols 
can be interpreted and uninterpreted. 
Interpreted symbols have fixed domains and 
interpretations given by algorithms of 
computing values or reducing to canonical 
forms. All uninterpreted symbols have types 
and their possible interpretations are restricted 
by definite domains and ranges. Uninterpreted 
functional symbols are called attributes. They 
represent the changing part of the 
environment. Attributes of arity 0 are called 
simple attributes, others are called functional 
ones. Predicates are considered as functions 
ranging in Boolean type {0, 1}. If an attribute 
f has functional type τττ →,..),( 21  then 

attribute expressions  are available 
for all other expressions. 

,...),( 21 ttf

2.1. Examples of Insertion 
Machines 

The simplest insertion machines are 
machines for parallel and sequential insertion. 

Insertion function is called sequential 
if E[u, v] = E[u; v] where ”;” means sequential 
composition of behaviors. Special case of 
sequential insertion is a strong sequential 
composition: E[u] = (E; u). This definition 
assumes that actions of agents and 
environment are the same and environment is 
defined by its behaviors. The sequentiality of 
this composition follows from associativity of 
sequential composition of behaviors. Example 
of insertion machine with strong sequential 
insertion is represented on fig. 3. 

 
Model Sequential( 
 interactor rs(P,Q,a)( 
     Delta[P+Q]=Delta[P]+Delta[Q], 
     Delta[a.P]=a.Delta[P], 
     Delta[P]=Delta[unfold P], 
     Q[P]=(Q;P) 
 ); 
 unfolder rs(x,y)( 
      (x;y)=seq(x,y), 
     A=a.A+Delta, 
     C=c.C+Delta 
 ); 
 initial(C[A]); 
 terminal(Delta[Delta]) 
) 
 
Fig.3. Example of Strong Sequential 

Insertion 
 
The function seq is a function from 

IMS library that defines the sequential 
composition of behaviors: 
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The function unfold reduces the 
behavior expression to normal 
form∑ +⋅ εii ua . This insertion machine 

generates a word   with mnac
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nondeterministically chosen  and 
successfully terminates. We can define as the 
condition for the goal state the equality m = n 
and the driver for this machine will terminate 
on traces . 

0, ≥nm

mnac
An example of sequential (not strong) 

insertion is shown on fig. 4.  
 
Model Imperative( 
 insertion rs(P,Q,H,a,x,y,u,v)( 
    E[P+Q]=Delta[P]+Delta[Q], 
    E[define env H.P]=H[P], 
    E[(x:=y).P]=assign proc(E,x,y,P), 
    E[check(u,x,y).P]=if(compute     

                obj(E,u),E[x;P],E[y;P]), 
    E[a.P]=a.Delta[P], 
   E[P]=E[unfold P] 
)where( 
assign_proc:=proc(E,x,y,P)(E.x−−> 
     compute obj(E,y);return E[P]) 
); 
behaviors rs(P,Q,x,y,z,u)( 
   (x;y)=seq(x,y), 
   (u! else Q)=check(u,P,Q), 
   

while(u,P)=check(u,(P;while(u,P)),Delta), 
for(x,y,z,P)=(x;while(y,(P;z))) 
); 
initial( 
   define env obj(i:Nil,x:10,y:Nil, 

fact:Nil); 
    y:=1;for(i:=1,i _ x,i:=i+1,y:=y*i); 
    fact:=y 
 ); 
 terminal rs(E)(E[Delta]=1,E=0) 
) 
 
Fig. 4. Model of Simple Imperative 

Language 
 
This example is a model of simple 

imperative language and can be considered as 
insertion representation of its operational 
semantics. 

Insertion function is called a parallel 
insertion function if  Special 
case of parallel composition is a strong 
parallel insertion: . 

].||[],[ vuEvuE =

]||][ uEuE =
As in the case of strong sequential 

composition this definition assumes that 
actions of environment and agents are the 

same. Example of a model with strong 
parallel insertion is presented on the fig. 5. 

  
Model Parallel( 
interactor rs(P,Q,a)( 
   Delta[P+Q]=Delta[P]+Delta[Q], 
   Delta[a.P]=a.Delta[P], 
   Delta[P]=Delta[unfold P], 
   Q[P]=(Q k P ) 
 ); 
 unfolder rs(x,y,n)( 
   (x;y)=seq(x,y), 

   x k y = synchr(x,y)+ lmrg(x,y)+  
                               +lmrg(y,x)+delta(x,y), 

   x |ˆ 1=x, 
   x |ˆ 2=synchr(x,x)+lmrg(x,x)+ 

                           +delta(x,x), 
      x |ˆ n= x k (x |ˆ(n-1))), 
 ); 
 initial (Delta[((a;b) k (a;b));a+b ]); 
 terminal (Delta[Delta]) 
) 
 
Fig. 5. Example of Strong Parallel 

Insertion 
 
Functions synchr, lmrg, and delta 

from IMS library are used for definition of 
parallel composition. Their meaning can be 
define by the following formulas: 
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2.2. Restrictions on Insertion 
Functions 

The most typical restriction is 
additivity. Insertion function is called additive 
if E[u+v]=E[u]+E[v], (E+F)[u]=E[u]+F[u]. 
Another restriction, which allow to reduce the 
number of considered alternatives when 
behaviors are analyzed is the commutativity 
of insertion function: E[u,v]=E[v,u]. 
Especially the parallel insertion is a 
commutative one. Some additional equations: 
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botuuuu =⊥=Δ= ][,][,0][0  0. 
The state of environment is called 

indecomposable if from E = F[u] it follows 
that E = F and . Equality means 
bisimilarity. The set of all indecomposable 
states constitutes the kernel of a system. 
Indecomposable states (if they exist) can be 
considered as states of environment without 
inserted agents. For indecomposable states 
usually the following equations hold: 

Δ=u

 
=⊥⊥=Δ= ][,][,0]0[ EEEE . 

 
In [3] the classification of insertion 

functions was presented: one-step insertion, 
head insertion, and look-ahead insertion. Later 
we shall use insertion functions with the 
following main rule: 

 

),,,,,,(,
]:[]:[
::,
//

//

cbaEP
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c

ba

βα
βα

βα
⎯→⎯

⎯→⎯⎯→⎯  

 
where P is a continuous predicate. Continuous 
means that the value of this predicate depends 
only on some part of behavior tree in the 
environment state E, which has a finite height 
(prefix of the tree E of finite height). Hereby, 
this rule refers to a head insertion. The rules 
for indecomposable environment states and 
for termination constants should be added to 
the main rule. 

The next rule 
 

),,(,
][][

:,
//

//

caEP
uEuE

uuEE
c

ba

⎯→⎯
⎯→⎯⎯→⎯ β

 

 
is the particular case for the head 

insertion rule in combination with additivity 
and parallel insertion or commutativity 
requirements. Such rule will be named 
permitted rule. It could be interpreted by as 
follows: agent can execute the action a, and 
environment permits to execute this action. 
Predicate E for permitted rule will be named 
permitted predicate. 

3. Constraint Programming 
Constraint programming is a powerful 

paradigm for solving combinatorial search 
problems that draws on a wide range of 

techniques from artificial intelligence, 
computer science, databases, programming 
languages, and operations research. Constraint 
programming is currently applied with 
success to many domains, such as scheduling, 
planning, vehicle routing, configuration, 
networks, and bioinformatics [24]. 

The Constraint programming paradigm 
has some resemblance to traditional 
Operations Research (OR) approach, in that 
the general path to a solution is: 

- analyzing the problem to solve, in 
order to understand clearly which are its parts; 

- determining which conditions 
(relationships) hold among those parts: these 
relationships and conditions are key to the 
solving, for they will be used to model the 
problem; 

- stating such conditions 
(relationships) as equations; to achieve this 
step not only the right variables and 
relationships must be chosen: as we will see, 
Constraint programming usually offers a 
series of different constraint systems, some of 
which are better suited than others for a given 
task; 

- setting up these equations and 
solving them to produce a solution; this is 
usually transparent to the user, because the 
language itself has built-in solvers [25]. 

There are, however, notable 
differences with OR, mainly in the possibility 
of selecting different domains of constraints, 
and in the dynamic, generation of those 
constraints. This seamless combination of 
programming and equation solving accounts 
for some of the unique components of 
Constraint Programming: 

- the use of sound mathematical 
methods: well-known and proved algorithms 
are provided as intrinsic, builtin components 
of Constraint programming languages and 
tools; 

- the provision of means to perform 
programmed search, especially in Constraint 
programming (were search is implicit in 
language itself); 

- the possibility of developing 
modular, hybrid models, when necessary: 
many Constraint programming systems offer 
different constraint systems, which can be 
combined to model the various parts of the 
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problem using the tool more adequate for 
them; 
 

-  the flexibility provided by the 
programming language used, which allows 
the programmer to create the equations to be 
solved dynamically, possibly depending on 
the input data. 

As with any other computational 
approach, all problems are amenable to be 
tackled with Constraint programming; 
notwithstanding, there are some types of 
problems which can be solved with 
comparatively little effort using Constraint 
programming based tools. Those applications 
share some general characteristics:  

 
- No general, efficient algorithms 

exist (NP-completeness): pecifictechniques 
(heuristics) must be used. These are usually 
problems with a heavy combinatorial part, and 
enumerating solutions is often impractical 
altogether. A fast program using usual 
programming paradigms is often too hard and 
complicated to produce, and normally it is so 
tied to the particular problem that adapting it 
to a related problem is not easy. 

- The problem specification has a 
dynamic component: it should be easy to 
change programs rapidly to adapt. This has 
points in common with the previous item: 
Constraint programming tools have builtin 
algorithms which have been tuned to show 
good behavior in a variety of scenarios, so 
updating the program to new conditions 
amounts to changing the setting up of the 
equations. 

-  Decision support required: either 
automatically in the program or in 
cooperation with the user. Many decisions can 
be encoded in mathematical formulae, which 
appear as rules and which are handled by the 
internal solvers, so (although, of course, not 
always) there is no need to program explicit 
decision trees [26]. 
 

Among the applications with these 
characteristics, the following may be cited: 
planning, scheduling, resource allocation, 
logistics, circuit design and verification, finite 
state machines, financial decision making, 
transportation, spatial databases, etc. 

4. Insertion Machine for Constraint 
Programming 

Some example of insertion machines 
and restrictions for insertion function are in 
[3, 9, 23]. In this section we try to show how 
to use insertion modeling for constraint 
programming [26]. The problems of 
constraint programming, where a main goal is 
behavior of the system, is the closest to the 
insertion modeling. For example, the problem 
of wolf-goat-cabbage [27] (A farmer wishes 
to transfer (by boat) a wolf, a goat, and a 
cabbage from the left bank of a river to the 
right bank. If left unsupervised, the wolf will 
eat the goat and the goat will eat the cabbage, 
but nothing will happen as long as the farmer 
is near. Beside the farmer there is only a place 
for one item in the boat). 

Let’s consider a formalization of this 
problem in insertion modeling. Let E be the 
next environment: 

 
obj( 
constraints : rs(x, y, z)( 
  obj(Wolf : left,Goat : left, x, 

Ferryman : right) = 0, 
  obj(Wolf : right, Goat : right, x,  

Ferryman : left) = 0, 
  obj(x, Goat : left,Cabbage : left,  

Ferryman : right) = 0, 
  obj(x, Goat : right,Cabbage : right,  

Ferryman : left) = 0, 
  obj(Wolf : z, x, y, Ferryman : z) = 1, 
  obj(x, Goat : z, y, Ferryman : z) = 1, 
  obj(x, y,Cabbage : z, 

Ferryman : z) = 1 
); 
initial : obj( 
  Wolf : left, 
  Goat : left, 
  Cabbage : left, 
  Ferryman : left 
 ) 
) 
 

where initial is initial state where all creatures 
are in left bank of the river, constraits are 
constraint equations with right part of 0 define 
non possible cases (0 is the neutral element of 
non-deterministic choice + of insertion 
modeling) and with 1 if ferryman could 
transport those creatures in that case. These 
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both values are covered by two different states 
of ferry: 1 is just before ferry and 0 - after.  

The corresponded input data could be 
defined in the following way: 
(ferry Wolf || ferry Goat || ferry 
Cabbage).assetion_constraints 

So, the transition relation of the system 
is defined in fig. 6. 

 
1)(],[][ =⎯⎯ →⎯ ϕϕϕ sconstraintpp i

ferryx  

1)(
0)(,0][

=¬∨
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ϕϕ
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0)(
],[][ int_

=¬
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ϕϕ
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pp sconstraassertion
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,0][ int_

=
⎯⎯⎯⎯⎯ →⎯

ϕ
ϕ

sconstraint
p sconstraassertion

 

 
Fig. 6. Relations of System’s 

Transitions 
where iϕ   a new environment state without 
acception of constration equation. 

Insertion modeling system has found 1 
goal trace - all creatures are in other coast and 
10 visited traces - those traces cover all 
possible behaviors of such system. 

Typically IMS generated trace is 
defined by user. It could look like sequence of 
actions or environment states etc. For this 
example, to simplify the view of the traces we 
propose to use one uninterpreted action 
transport: 

),,),.(( xFerrymanFerrymanctransport iϕ=¬
where operation «.» returns state of the 
ferryman and «¬» returns other coast. So, goal 
state trace has the next view:  

init 
transport(right, Ferryman, Shegoat) 
transport(left, Ferryman,Nil) 
transport(right, Ferryman,Wolf) 
transport(left, Ferryman, Shegoat) 
transport(right, Ferryman,Cabbage) 
transport(left, Ferryman,Nil) 
transport(right, Ferryman, Shegoat) 
 
Fig. 7. Example of Goal State Trace 
where init is the initial state and Nil 

means that ferryman is ferried along. In 
general case, insertion machine for constraint 
programming should use: 

- assetion_constraints agents action 
in agent behavior and initial state. 

- environment description should 
have non empty section constraints. 

Conclusion 
The main concepts of insertion 

modeling system has been considered in the 
present paper. The system was successfully 
used for the development of prototypes of the 
tools for industrial VRS (Verification of 
Requirement Specification) system and 
research projects in Glushkov Institute of 
Cybernetics. Now it is used for the 
development of program verification tool and 
‘verifiable programming’ project, and for 
constraint programming. The system 
continues its enhancement and new features 
are added while developing new projects. The 
far goal in the developing of IMS consists of 
getting of sufficiently rich cognitive 
architecture to its basis, which could be used 
in the artificial intelligence research.  
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