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non-paraMetric siGnal processinG in noise radar

R. B. sINITsyN aNd F. j. yaNovsKy

Noise radar is one of the most interesting technical and scientific ideas implemented in modern radar design. 
Nonparametric methods of signal processing, with some loss in efficiency, give us the opportunity of providing 
the synthesis of procedures that are invariant to changes in the signal form and changes of the interference 
situation. The use of statistical methods for the noise signal processing is closely linked with the latest digital 
signal processing achievements, which give us the possibility of simplifying the technical implementation 
of the noise radar as well as signal processing. Thus the use of digital processing techniques can technically 
implement the idea of noise radar.

Keywords: Noise radar, permutation statistics, copula,  rank, permutations, ambiguity function.

1. introdUction
Noise radar is one of the most interesting techni-

cal and scientific ideas implemented in modern radar 
design.

Scientific interest in the noise radar is associat-
ed with the form of the sounding signal (waveform). 
Typically, the properties of the sounding signal are 
connected with its shape, which is characterized by its 
radar ambiguity function. The form of the ambiguity 
function is connected with the possibility of simulta-
neous measurement of spatial coordinates and veloc-
ity of the target.  

If we use a random process with uniform spec-
trum (a white noise) as a sounding signal, we can 
obtain almost a unique form of the ambiguity func-
tion, which tends to a delta function. This allows us 
to make simultaneous measurement of distance and 
speed with maximum resolution. Certainly, such re-
sults can also be obtained by using other signals, but 
in our opinion, it is essentially more complicated. The 
selection of the waveform creates a coordinate system 
in which the radar measurements exist. The choice of 
a rational system of coordinates simplifies obtaining 
the necessary resolution.

Radar targets are always observed on the back-
ground of random noise, and this requires the use of 
statistical methods for signal processing. Only the sta-
tistical approach allows us to implement scientifically 
optimal signal processing with a fixed level of error.

Nonparametric methods of signal processing, 
with some loss in efficiency, give us the opportunity 
of providing the synthesis of procedures that are in-
variant to changes in the signal form and changes of 
the interference situation.

In recent years, these methods have been based 
on the use of the rank procedures, as well as some rel-
atively new methods, such as kernel estimates of the 
probability density and on such notion as the copula.

The use of statistical methods of processing for a 
random sounding signal is natural for the noise radar. 
This allows us to obtain the most efficient use of sta-
tistical and non-parametric methods with a random 
coordinate system and the random noise generated by 
the radar.

In this paper we will discuss all possible statisti-
cal methods of noise radar signal processing. Among 
them there are the following.

Classical parametric methods of signal process-
ing. Rank signal processing techniques. Processing 
methods based on permutation statistics. Processing 
methods, based on kernel estimates of the probabil-
ity density, as well as methods using copulas, which 
enable us to generalize the concept of the ambiguity 
function.

The use of statistical methods for the noise signal 
processing is closely linked with the latest digital sig-
nal processing achievements, which give us the pos-
sibility of simplifying the technical implementation of 
the noise radar as well as signal processing. Thus the 
use of digital processing techniques can technically 
implement the idea of noise radar.

2. General detection probleM 
deFinition

We can divide the signal space observed by the 
radar into two areas. In one area, as supposed, there 
is a useful signal, in the other there is interference: 
noise or clutter. Signal detection is achieved by using 
a difference of a multivariate probability density in 
observed areas. Thus, the task of detection is reduced 
to checking the hypothesis H 0  about the equality of 
probability density functions and alternative hypoth-
esis H1 :
 H 0 : f fs N( ) ( )x x=                            (1)

 H1 : f fs N( ) ( )x x≠ ,                          (2)

where fs ( )x  is a probability density function of a sig-
nal in the area where we are trying to find a target, 
fN ( )x  is a probability density function of a received 

signal in the area where there is no target.
Let us assume that from the samples received 

from signal and noise (or clutter) areas, it is possible 
to generate the mixed sample

 x = { }x x x xm n1 2, , , , ,… …                      (3)

where x x xm1 2, , ,…  are samples received from the 
noise or clutter area, and x xm n+1, ,… are samples re-
ceived from the signal area. We will suppose that the 
signal and noise (or clutter) samples are statistically 
independent. 

Then the task of testing the hypothesis is reduced 
to checking the hypothesis about the form (shape) of 
the density function of the mixed sample
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The problem of the signal detection in this case is 
reduced to the problem of the form of the probability 
density function.

3. rank and perMUtation  
alGoritHMs

3.1. similar test
If we compare the likelihood function f1 x( ) with 

the solution threshold obtained with the help of the 
empirical permutation distribution, which is derived 
by substituting all permutations of the vector x  in the 
likelihood function, we will obtain the most powerful 
similar test. Such a test has the property of similarity, 
i.e. a fixed level of error of the first kind. The detection 
algorithm built on the basis of this test has stability of 
the false alarm probability.

However, it has an essential disadvantage. The 
number of all permutations is too great, it increases 
with the increase of a number of samples and is equal 
to n! . This fact hampers the practical use of the de-
vices, which have been designed on the basis of using 
the permutation test.

3.2. permutation algorithm
Thus, the suggested algorithm for detecting sig-

nals is reduced to the following procedure:
The likelihood function from the accepted signal 

is computed
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which, after some of identical conversions, can be re-
duced to the following expression 
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Let us take into account only those permutations 
of samples xi , which require the modification of the 
statistic l x( ) . We will remark, that for all permuta-

tions of the statistics x, the product f xN i
i

n
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 re-

mains constant. Therefore in the procedure of deci-
sion making it is possible not to take into account the 
whole set of n!  permutations, it is enough to consider 

n
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 are partial likelihood ratios.

Using the statistics λ x( ) , we will suggest the 
rank test, which is based on permutations of the par-
tial likelihood ratios λ λi ix= ( ) . We will use the vector 
statistic 

λλ = … …{ }λ λ λ λ1 2, , , , ,m n .

Variables λi are independent and have the same 
distribution if the hypothesis H 0  is true. We can con-
struct a permutation test using permutations of the 
variables λi  but not xi . 

Ranking the variables λi  we obtain the vector of 
ranks of variables λi

r = { }r r r rm n1 2, , , , ,… …

On the basis of statistic r many different rank hy-
pothesis tests and corresponding to them signal de-
tection algorithms can be constructed. For example, 
a rank test which is similar to the Vilkokson criteria

Q ri
i m

n

1
1

=
= +
∑ .

This statistic is not optimal, but has sufficient ef-
ficiency, and an algorithm, based on this statistic is 
attractively simple.

Rank tests are using the empirical distribution 
function as a functional transform. We suggest us-
ing smoothed estimates of this function, among them 
kernel estimates. 

The kernel estimate of a cumulative distribution 
function is constructed by using of the partial likeli-
hood ratios λ λi ix= ( ) . The following functions will 
be used as the kernels 

K
n

Wi iλ λ λ( ) = −( )1
,                       (8)

where W λ( )  is some cumulative distribution func-
tion, λi  is a value of the partial likelihood ratio.

The estimate of a cumulative distribution func-
tion for noise area is determined by the expression
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After the functional transform we obtain the vec-
tor of transformed partial likelihood ratios 

l = { }l l l lm n1 2, , , , ,… … ,

where l Fi i= ( )


λ . Density function of transformed 
statistics for hypotheses H 0  and H1 can be calculat-
ed, using following approach.

The density function of the vector of the initial 
samples can be represented as
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The density function of the vector l  coordinates 
li is described by the integral
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This vector can be used as a statistic for designing 
an ordinary Neyman-Pearson test and a signal detec-
tion algorithm.  

For hypothesis H 0  the distribution f ll i( )  asymp-
totically tends to the uniform distribution. In the case 
of the alternate hypothesis H1  validity the statistics 
distribution f ll i( )  of the signal aria elements differs 
from the distribution of the elements of the noise area. 
It is determined by the presence of the desired signal. 

The decision statistics is defined by the likeli-
hood ratio, which is in this case equal to the likeli-
hood function (Fig. 1.)

 ( ) ( )l f ll i
i n

n

=
= +
∏

1

.                          (11)

If the density function of reflections from the 
guessed target coincides with the density function of 
the interference, the density function of references l  
is asymptotically uniform. Thus, in the case of validity 
of the hypothesis H 0 , i.e. in the no-signal condition 
the density function is equal to 1. In the case when 
the hypothesis H1  is valid (when the desired signal is 
available) the density function of converted references 
l  also lies in the interval [0,1], but it is not uniform. 

The solution about a desired signal is made by 
comparing ( )l  with the solution threshold (Fig. 2). 
This threshold has a constant value and depends only 
from the false alarm probability for all signal and in-
terference probability densities.

Fig. 1.   Dependence of the decision function  
for the algorithm, based on the kernel estimate  
from distance. Number of samples  is 111891

Fig. 2.   Dependence of the detection probability on SNR 
for the algorithm, based on permutations of partial likeli-
hood ratios (the dashed curve) and the optimal algorithm 

(the solid curve). Number of samples is 16. Size of the 
noise area is 128. False alarm probability is 0.01

4. copUla detection alGoritHM

4.1. copula transform
We can transform the vector ( , )x y to a new a 

random variable ( , )x yT T , using two marginal cumu-
lative distribution functions x F xT x= ( ) , y F yT y= ( )  
as functional transforms. It is easy to prove that vector 
( , )x yT T  has uniform distribution if random variables 
x  and y  are independent. The bivariate cumulative 
distribution function of the transformed variables 
( , )x yT T  is called a copula of these variables [2] and 
according to the Sklar’s theorem

F x y C F x F yx y( , ) ( ( ), ( ))= ,

where F x y( , )  is a bivariate cumulative distribution 
function of ( , )x y .

The density function, corresponding to the cop-
ula C x yT T( , )  is 

c x y
C x y

x xT T
T T

T T

( , )
( , )

=
∂

∂ ∂
.

If a useful signal is absent the copula density func-
tion has a uniform distribution on [0, 1]2.

If a useful signal is present a copula density func-
tion has some other distribution on [0, 1]2.

A copula density function can be estimated using 
kernel estimates.

Let us replace the cumulative distribution func-
tions F xx ( )  and F yy ( )  by their estimates F xx

^
( )  and 

F yy
^

( ) . It is assumed, that if the size of a sample is 
increased, the estimate converges to a cumulative dis-
tribution function. Transformations of the sounding 
and reflected signals 

x F xTi x i=
^

( ) , y F yTi y i=
^

( )

will be  used later.
4.2. copula estimates
The kernel estimates of the cumulative distribu-

tion functions will be used as this transform [3], [4].
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Thus the estimate of a bivariate copula density 
function c x yT T( , )  will look like the total of the ker-
nels K x yi T T( , )  

 c x y K x yT T i T T
i

n
^( , ) ( , )=

=
∑

1

,                (12)

where n  is the sample size, which is the basis for find-
ing an estimate.

Let’s assume, that the kernels look as follows 

 K x y
n

x x y yi T T T Ti T Ti( , ) ( , )= − −
1

ω ,        (13)

where ω( , )x yT T  is some probability density, for ex-
ample, normal, ( , )x yTi Ti  is the sample unit i , which 
is the basis for an estimate.

For the estimate F xx
^

( )  of one-dimensional cu-
mulative distribution function the kernels look as fol-
lows

 P x
n

u x v y dudvi i i

x

( ) ( , )= − −
−∞

∞

−∞
∫∫

1
ω .         (14)

4.3. decision rule 
To synthesise the decision rule on the basis of x 

and y  statistics it is necessary to obtain the density 
function of these statistics under competing hypoth-
eses H 0  and H1 . The detection procedure is based on 
testing the hypotheses about the density function of 
transformed signals on the basis of Neyman – Pear-
son criterion. In this case, the distribution of a trans-
formed statistics tends to be uniform if we increase a 
sample size. Thus the distribution of the converted 
statistics ( , )x yt t  under the hypothesis H 0 (no tar-
get) is asymptotically uniform. Thus testing the hy-
pothesis about the presence of the target is reduced to 
testing the hypothesis about uniformity of distribution 
of the transformed statistics and likelihood ratio - to 
the likelihood function of the statistics ( , )x yt t . The 
likelihood function is substituted by its estimate (12) 
obtained with the help of the kernels, such as (13) and 
(14)

 λT T T Ti Ti
i

n

c x y( ) ( , )^x y, =
=

∏
1

,              (15)

where 

c x y K x yTi Ti j Ti Ti
j

m
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=
∑

1

where m  is a sample size of the test statistics obtained 
on the basis of reflections from the target. After taking 
the logarithm of expression (15) we obtain the final 
formula of decision rule enabling us to detect the tar-
get 

 λT T T Ti Ti
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=
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This result can be simply extended to MIMO [8] 
variant
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For making a decision λT T T( )x y,  is compared 
with the invariable threshold C . The invariability of 
the threshold for decision making providing stable er-
ror probability of first kind, is ensured by the uniform 

distribution of statistics under the hypothesis H 0 . In 
particular, to simplify the practical realization of the 
method the kernels are decomposed into a trigono-
metric series, and the algorithm of fast Fourier trans-
form is used. 

The relationship between the detection probabil-
ity and signal to noise ratio expressed in power units 
is represented in Fig. 3. These characteristics are ob-
tained as a result of Monte-Carlo simulation, α  is the 
false alarm probability, the sample size is 100. 

Fig. 3. Performance of detection as a dependence from 
signal-to-noise ratio . Signal and noise with Gaussian 

distribution. Solid curve – parametric algorithm, dashed 
curve – nonparametric algorithm ( . , )α = =0 01 100N

In Fig. 3 parametric and nonparametric algo-
rithms are presented. As we can see the results for 
parametric signal processing algorithm are slightly 
better. But we must understand that simulation was 
made in the case of the prior certainty of the signal 
and noise probability densities. In the real situation 
for unknown signals and noises the nonparametric al-
gorithm must be better.

5. copUla aMbiGUitY FUnction 

5.1. ambiguity Function
The cross-ambiguity function [1] for two random 

processes X t( )  and y t( ) can be defined as an average

χ τ α α α τ( , ) | | ( ( )) )( ( ( )) )*= − − −{ }E X t m y t mx y ,

where α =
−
+

c v
c v

 is a scale coefficient, c  is the velocity 

of the wave, v  is the target velocity, y t*( )  is a com-
plex conjugate of the random process y t( ) , mx  and 
my are mathematical expectations of X t( )  and y t( ) .  

This variant of the ambiguity function can be simply 
recalculated in the range/velocity coordinates. For 
the ergodic process we can consider, that the cross-
ambiguity function is (17). This expression looks like 
an ordinary wideband ambiguity function definition 
for deterministic signals

χ τ α
α

α τ( , ) lim
| |

( ( ) )( ( ( )) )*= − − −
→∞ ∫T

x y

T

T
x t m y t m dt

0

. (17)

The example of the calculation of the cross-am-
biguity function estimate for the noise acoustic radar 
is presented in Fig. 4. 
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Fig. 4. Estimate of the cross-ambiguity function  
for the acoustic radar. Range in distance samples and 
velocity in ADC digits. One digit for velocity is 1 m/s, 

number 11 corresponds to zero velocity, one digit  
for distance is equal to 0.0038820862 m

The sounding signal in this radar is a discrete 
white noise with a normal distribution. The ambiguity 
function is calculated in range/velocity coordinates. 
The sampling frequency is 48 kHz.

5.2. estimates
The kernel estimates of the cumulative dis-

tribution functions will be used as this transform. 
Thus the estimate of a bivariate copula density func-
tion c x yT T( , )  will look like the total of the kernels 
K x yi T T( , )   

c x y K x yT T i T T
i

n
^( , ) ( , )=

=
∑

1

,

where n  is the sample size, which is the basis for find-
ing an estimate [3]. 

The copula kernel estimate, calculated for the 
signal of the acoustic noise radar(which samples 
which are shown in Fig. 5), is presented in Fig. 6.

Let’s assume, that the kernels look as follows 

K x y
n

w x x y yi T T T Ti T Ti( , ) ( , )= − −
1

,

where w x yT T( , )  is some probability density, for ex-
ample, normal, ( , )x yTi Ti  is the sample unit i , which 
is the basis for an estimate.

Fig. 5. Sounding and reflected signal samples

Fig. 6. The kernel estimate of a bivariate copula density  
for the acoustic radar signal

For the estimate F xx
^

( )  of one-dimensional cu-
mulative distribution function the kernels look as fol-
lows

P x
n

w u x v y dudvi i i

x

( ) ( , )= − −
−∞

∞

−∞
∫∫

1
.

The kernel estimate for the copula itself is pre-
sented in Fig. 7.

Fig. 7. The kernel estimate of a bivariate copula  
for acoustic radar signal

5.3. copula ambiguity Function
Using the copula density function we can define 

its copula ambiguity function [9] as a second mixed 
central moment of the copula density 

χ τ α α α τ( , ) | | ( ( ( )) )( ( ( ( ))) )*= − − −{ }E F X t m F y t mx x y y

or for the ergodic process

χ τ α
α

α τ( , ) lim
| |

( ( ( )) )( ( ( ( ))) ) .*= − − −
→∞ ∫T

x u y v

T

T
F x t m F y t m dt

0
Using the kernel estimates of the cumulative density 
function we can obtain the copula ambiguity function 
kernel estimate in some finite time interval  

χ τ α α α τ( , ) | | ( ( ( )) )( ( ( ( ))) )
^ ^

*

= − − −∫ F x t m F y t m dtx u y v
t

t

1

2

.(18)

The authors also are suggesting in heuristic vari-
ant of the function (19). In this formula we are using 
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an estimate of the moment of the second order for 
the uniform distribution. For obtaining the statistics, 
which depends from two parameters, we will use an 
additional functional transform, transforming the 
copula statistic to a normal distribution

χ τ α α α τ( , ) | | ( ( ( ))) ( ( ( ( ))))
^ ^

*

= −− −∫F F x t F F y t dtN x N y

t

t
1 1

1

2

,(19)

where FN
−1  is an inverse cumulative function of a nor-

mal distribution.
With the help of the noise acoustic radar, de-

signed and constructed by authors [4, 5, 6, 7], the 
copula ambiguity function was measured for real sig-
nals. The acoustic radar sounding signal is a wideband 
random signal with a normal distribution. The signal 
reflected from the solid object at the distance equal 
to 70 m from the radar. For this signals the copula 
ambiguity functions were calculated. The results are 
presented in Fig. 8 and in Fig. 9.

Fig. 8. Estimate of the copula cross-ambiguity function 
for the acoustic radar. Range in distance samples and ve-

locity in ADC digits. One digit for velocity is 1 m/s,  
11 corresponds to zero velocity, one digit for distance  

is equal to 0.0038820862 m

Fig. 9. Estimate of the copula cross-ambiguity 
 function (with an aditional functional transform)  

for the acoustic radar

The cross section of the ambiguity function in 
time area (or in distance area) for zero velocity of the 
target propagation is the correlation function. The re-
sult of the calculations is presented in Fig. 10. The same 

calculations were done for the cross section of the copu-
la ambiguity function. The result is presented in Fig.11.

Fig. 10. Estimate of the cross-ambiguity function cross 
section (cross-correlation function) for the acoustic radar 

The shape of the suggested variant of the ambigu-
ity function does not depend on the probability density 
functions of the sounding and reflected signals. That 
is why signal detection algorithms, which are based on 
this notion are distribution free and have a constant 
level of the false alarm probability. The detection can 
be done with the help of the simple threshholding of 
the copula ambiguity function.

Fig. 11. Estimate of the copula cross-ambiguity 
 function cross section (cross-correlation function)  

for the acoustic radar 

conclUsion

In this paper different aspects of the signal process-
ing algorithms for random signal radars were discussed. 

We believe that the random signal radar is one of 
the most interesting types of radar. It combines prop-
erties of UWB radar with some additional features, 
based on random nature of the sounding waveform. 
This new properties allows us to simplify signal detec-
tion algorithms and measure a distance, an azimuth 
and a target velocity simultaneously with high reso-
lution and accuracy because of the noise sounding 
waveform. Nonparametric algorithms have wonder-
ful properties of invariance to the group of the noise 
and signal transforms and stable level of the false 
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alarm probability. It is important to remember that all 
these good properties exist only in the case when we 
have independent samples. The noise signal forms the 
independent samples because of its nature. 

The generalization of the radar ambiguity function 
has been suggested. In contrast to classically defined 
ambiguity function, new one does not dependent on 
the signal PDF. It can be used as a pure measure of the 
relation between sounding and reflected signals as well 
as for the analysis of potential properties of waveforms. 
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Рассмотрены различные алгоритмы обработки 
сигнала шумового радиолокатора. Разработана теория 
и алгоритмы непараметрической обработки сигналов, 
которые с некоторой потерей эффективности дают воз-
можность обеспечить синтез процедур, обладающих 
свойством инвариантности по отношению к измене-
ниям формы сигнала и помеховой обстановки. Синте-
зированные непараметрические алгоритмы обеспечи-
вают также стабильный уровень вероятности ложной 
тревоги. Указанные свойства существуют только в 
случае независимых выборок, что в шумовом локаторе 
обеспечивается естественным образом в силу характе-
ра генерируемого шумового сигнала. В работе также 
предложено обобщение функции неопределенности, 
которая, в отличие от классической, не зависит от плот-
ности вероятности сигнала и может быть использована 
как чистая мера связи между зондирующим колебани-
ем и отраженным сигналом. Она также обеспечивает 
анализ потенциальных свойств зондирующего сигнала. 
Предложенные статистические методы обработки шу-
мового сигнала в сочетании с новейшими достижения-
ми цифровой обработки обеспечивают упрощение тех-
нической реализации шумовой радиолокации.

Ключевые слова: шумовой радиолокатор, стати-
стики перестановок, копула, ранжирование, функция 
неопределенности.
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Розглянуто різні алгоритми обробки сигналу шу-
мового радіолокатора. Розроблено теорію і алгоритми 
непараметричної обробки сигналів, які з деякою втра-
тою ефективності дають можливість забезпечити син-
тез процедур, що мають властивість інваріантності по 
відношенню до змін форми сигналу і завадової обста-
новки. Синтезовані непараметричні алгоритми забез-
печують також стабільний рівень ймовірності хибної 
тривоги. Зазначені властивості існують лише в разі не-
залежних вибірок, що в шумовому локаторі забезпечу-
ється природним чином в силу характеру генеровано-
го шумового сигналу. В роботі також запропоновано 
узагальнення функції невизначеності, яка, на відміну 
від класичної, не залежить від щільності ймовірності 
сигналу і може бути використана як чиста міра зв’язку 
між зондувальним коливанням і відбитим сигналом. 
Вона також забезпечує аналіз потенційних властивос-
тей зондувального сигналу. Запропоновані статистичні 
методи обробки шумового сигналу в поєднанні з новіт-
німи досягненнями цифрової обробки забезпечують 
спрощення технічної реалізації шумової радіолокації.

Ключові слова: шумовий радіолокатор, статистики 
перестановок, копула, ранжування, функція невизна-
ченості.
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