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Time and range estimations based on ultra-wideband (UWB) measurements need to be carefully considered 
with respect to their accuracy, since range, propagation delay and time position can often not be uniquely 
defined. The paper illustrates these issues and shows some common approaches for UWB range and time 
position estimation. Ranging errors provoked from the sensor device are introduced and the performance of 
pseudo-noise radar concepts is shown. They provide excellent time axis accuracy due to a stable clock reference 
and cause random timing errors in the fs-range which is a consequence of a robust synchronization concept 
and jitter suppression by correlation. The impact of frequency aliasing onto time position measurements is 
considered as well.

Keywords: PN-sequence, jitter, time position, range accuracy, correlation, aliasing.

1. Introduction

The target range or time of flight are the most im-
portant parameters gained from a radar measurement. 
The goal of this paper is to discuss the achievable pre-
cision and some error sources of such measurements 
using ultra-wideband (UWB) radar devices. Specifi-
cally, we will focus on UWB pseudo noise (PN) radar 
for short range applications.

Precise and stable time or range measurements 
are important for applications involving super-res-
olution techniques [1], micro motion detection [2], 
target localization [3], system calibration [4, 5], hid-
den target detection [6] and others. The attached ref-
erences refer to corresponding examples.

In what follows, we start with an introduction of 
range measurements and the general challenges one 
is faced in case of UWB sounding. Furthermore, we 
consider some methods and errors of pulse position 
estimation. In our discussion, we mainly refer to a 
PN-radar principle and investigate its robustness 
against deterministic and random errors.

2. Statement of the problem

2.1. Experimental setup
Here we are mainly interested in two points. 

Firstly, it refers to the question how precise we can 
determine the range of a target. 

This point is identical with the question how pre-
cise we can measure a time delay ∆τ  (propagation 
speed of the sounding waves is supposed to be exactly 
known). We will focus our consideration to a single 
target scenario, i.e. the issues of range resolution and 
the separation of two closely located targets will be 
not within the scope of the paper. The second point 
relates to the detection of weak targets closely located 
behind a penetrable but strongly reflecting interface. 
We refer to the issues related to range measurements 
by the term scenario A and for hidden target detection 
we take scenario B.

Range estimation based on radar sensing is il-
lustrated in Fig. 1. A sounding wave is emitted by an 

antenna, reflected by the target and collected by the 
same (compare Fig. 1a) or a second antenna. The 
roundtrip time is determined from the mutual delay 
∆τ  between received and transmitted signals. The re-
lation 
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( c0  – speed of light; τ0  – antenna internal propaga-
tion delay) is then usually taken as an estimation for 

the target’s distance R0 , i.e. one assumes R R0 
^

. 

Fig. 1. Principle of range estimation based  
on radar measurements for scenario A:  

(a) measurement setup; (b) simplified UWB signals

Hidden target detection (scenario B) is symbol-
ized in Fig. 2. If the target is located close to a bound-
ary, the surface reflex (also denoted as surface clutter) 
will overwhelm the target return and the question is, 
to what extend we can remove the strong reflex from 
the captured signal and detect the target. In two cases 
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this would be at least theoretically perfectly possible – 
namely if we can take a reference measurement from 
the interface without target or if the target shows some 
temporal variations (movement, shape variation, per-
mittivity) while the interface stays time invariant. 

Fig. 2. Hidden target detection in scenario B:  
(a) measurement setup; (b) returned UWB signals

By considering these scenarios more profoundly 
under the aspect of ultra-wideband sensing, we will 
become aware of some shortcomings and insufficien-
cies which are discussed below.

2.2. Range definition 
In case of scenario A, it already starts with the 

definition of the target range. Mathematically correct, 
the range assigns the distance between two points, i.e. 
two infinitesimal small “objects”. By introducing a 
side condition as “shortest range”, we can still define 
uniquely the distance between a point and a straight 
line (e.g. a thin wire or a “knife” edge) or a point and a 
flat plane. Hence, the prerequisite for a unique range 
measurement is only given if the involved objects (i.e. 
antenna and target) are at least in one dimension in-
finitesimal small. But practically, this will be com-
monly not the case. 

Since the achievable range resolution of UWB 
sensors is often better than the geometric size of the 
involved objects, these issues have to be appropriately 
respected. In case of the antenna, this can be done by 
introducing a centre of radiation (refer to point Q  
in Fig. 1) by prior calibration [7, 8]. It “merges” the 
properties of a real object with finite dimensions in a 
virtual point. The determination of a more or less ob-
jective “scattering centre” for the target (exemplified 
by point P  in Fig. 1) is barely possible since the scat-
tering object is usually not known a-priori.

2.3. Definition of Roundtrip time
The determination of the roundtrip or delay time 

∆τ  is linked to a similar problem. ∆τ  is a time interval 
which is defined by the elapsed time between two time 
points. Thus, we need again “points”, but what we 

have are signals of finite duration (or finite coherence 
time) due to limited bandwidth. Hence, we either 
have to define the time positions τ τx y,  of two pulses 
(transmitted and received one) or we have to estimate 
the time position of the cross-correlation maximum 
from x t( )  and y t( ) . 

Both approaches face the same problem since 
an exact time delay may only be defined between two 
signals of identical shape (i.e. the fidelity [8, 9] of both 
signals must be one). While x t( )  may be obtained 
from a calibration or reference measurement, y t( )  
usually remains unpredictable due to the unknown 
scatterer (except when the scatterer approximates a 
small point, an infinite line, or infinite plane where 
exact mathematical models are known). Hence, we 
have to anticipate increasing systematic errors if the 
fidelity departs from one. 

Further challenges arise if the return signal of the 
target is affected by noise, multipath signals, or other 
clutter. The interested reader can find some discus-
sions on these topics in [10, 11]. Since our main aim 
is to investigate the role of the measurement device 
in range measurements, we will not go deeper into is-
sues from above since they are mainly motivated by 
the conditions of the test scenario. That is, we assume 
in our following consideration that we have meas-
urement conditions which allow defining uniquely 
the radar rage. An example scenario could e.g. be the 
scattering from an infinite metal sheet.

2.4. Pulse Position
Independently on how delay time measurements 

are performed or on how strong they are affected by 
different signals and perturbations, they are always 
connected with the determination of at least one pulse 
position.

There are multifold options to define the pulse 
position. The most popular strategies are

1)	 to use the intersection of the rising or falling 
pulse edge with an absolute or normalized threshold 
(e.g. normalized to the pulse peak)

2)	 to take the maximum position of the pulse. 
This approach is a special case of 1) since the maxi-
mum position is achieved if the first derivative of 
the pulse form crosses the zero line. Note that this 
method may be extended to complex valued impulse 
waveforms as they appear after IQ-down-conversion 
of band-pass signals (complex envelope). 

3)	 to take the zero crossing of the strongest half-
cycle in the case of a band-pass pulse. The selection of 
the correct half-cycle may be based on the maximum 
position of the pulse envelope.

4)	 to determine one of the centers of gravity:

	 τp
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It follows from eq. (2) that τ1  relates to the gravi-
ty centre of the pulse area, τ2  represents the energetic 
centre of the pulse, and τ∞  offers a second possibility 
to define the maximum position. 
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The pros and cons of the different definitions of 
pulse position are compared in [8]. In summary of the 
discussion there, we can state that threshold crossing 
of either the first derivative (i.e. maximum position) 
or of the original pulses or cross-correlation function 
provides the best performance in case of baseband 
signals (pulse or pseudo noise). The integral values of 
pulse position corresponding to point 4 are prone to 
biased estimations if the signal is affected by noise.

Using the “maximum approach” (point 2), we 
find for the variance ϕ0

2  of time delay estimation [8]:
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Bn  — noise bandwidth of the receiver (double sid-
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Ψ yy f( )  — power spec-

trum of receiving signal (double sided).
For optimum noise suppression, the receiver 

bandwidth should be matched to the bandwidth of 
the input signal. If this is of constant power spectral 
density within the spectral band ±


B 2  which equals 

the receiver noise bandwidth, eq. (3) modifies to:
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In what follows, we will investigate the role of the 
sensing device for the correct determination of the 
pulse position corresponding to scenario A as well as 
the conditions allowing precise suppression of the in-
terface reflex from scenario B. 

3. Precise and stable device  
timing

It is obvious from the discussions of section 2.4, 
that imperfections of the device internal time repre-
sentation as well as additive random noise will be the 
major sources of time position errors. Since nowadays 
the captured signals are usually digitized, we have to 
anticipate following timing errors:

•	 an erroneous value of the sampling interval 
(e.g. caused from an unreliable clock generator)

•	 systematic deviations from an equidistant 
sampling interval. Such deviations may have a global 
tendency leading to a non-linear time axis of the de-
vice or they are arbitrary so that they generate a kind 
of “systematic” jitter. The first effect may be observed 
in e.g. sequential sampling oscilloscopes which use a 
dual ramp approach for sampling control. The second 
effect appears if the dual ramp approach is replaced 
by digitally controlled stepped delay lines whose delay 
steps are not ideally identical [8].

•	 random deviations of the sampling points 
(sampling jitter)

•	 random fluctuations of stimulus launch (trig-
ger jitter).

Fig. 3 (a) represents a sensor concept which de-
feats these timing errors. It is based on the generation 
of UWB PN-signals to stimulate the device under test 
(DUT) and a sub-sampling receiver [12]. 

The timing of the whole device is controlled by a 
single tone RF-clock operating commonly in the 2-20 
GHz range. Such a generator can be built for very 
precise frequency values and low phase noise. This 
provides one of the prerequisites for absolute timing 
accuracy and low random timing errors.

Fig. 3. Block schematic (a) of a PN-sequence  
ultra-wideband sensor and its simplified  

system model (b)

A major issue is to trigger the signal generator 
(i.e. the shift register) and the Track and hold circuit 
(T&H) as reliable as possible. We will discuss this point 
with help of Fig. 3 (b). For the sake of shortness, we 
only refer to a single jitter source, namely the aperture 

jitter of the strobe signal s t( ) . We model it by the grey 

box of Fig. 3 (b). Two noise voltages 


∼n t N1 1
20( ) ( ),σ  

and 


∼n t N2 2
20( ) ( ),σ  are transformed into jitter by 

the comparator. The binary divider is then assumed 

to be jitter free.

The noise signals 

n t1 ( )  and 


n t2 ( )  provoke a ran-

dom temporal fluctuation ∆

τ j  of comparator switch-

ing which we regard as a zero mean random process 
having the probability density function (PDF) p t∆ ( )τ .  
The period should be placed into the previous line. 
Hence, we have for the expected value:
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The variance of the fluctuations follows from 
simple considerations to be:
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whereat t0  represents the nominal trigger point at 
which the unperturbed trigger signal z t( )  crosses the 
threshold vTH .

In our case, we have a sine wave generator as 
trigger source and the threshold level is zero vTH = 0 . 
Hence we get from (6):
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Now, we can model the captured signal as a ran-
dom process (for the sake of convenience, we will stay 
at time continuous signals and consider the DUT as a 
simple delay, i.e. g t t( ) = − ∆( )δ τ ):
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The order of Taylor series expansion in eq. (8) 
can be drastically reduced if jitter and noise do not 
dominate the deterministic part of the signal. 

We will use this relation, to estimate the jitter ϕT
2  

of an M-sequence device [13]. For that purpose, we 
need to know the signal derivative at any time point. 
Since M-sequence devices are Nyquist sampled, the 
equivalent sampling rate has to be increased in or-
der to permit reliable derivation. Therefore, we in-
troduced a mechanical precision delay line at points 

,  (see Fig. 3 (b)) or as a DUT. The delay steps are 
0.2 ps allowing an equivalent sampling rate of 5 THz. 
Thus, the realizations of 


y tm ( )  can be considered as 

quasi continuous in time. Furthermore, the random 
perturbations have to be suppressed before the deriva-
tion can be determined. This was done by synchronous 
averaging of about N =100  realizations of 


y tm ( ) : 
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Its expected value leads to the relation:
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such that y tm ( )  can be considered as a reasonable 
source to calculate the signal derivative in particular 
if the convolution may be omitted. This is allowed if 

the temporal width ϕT  of p t∆ ( )τ  is short compared to 

any variations in x t( ) which we have expressed by the 

side condition ϕT B

1 .

Using eq. (8), the variance of the captured signal 
can be written as:
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If we plot for all samples of the signal the stand-
ard deviation σy t0( )  versus the slope of the signal   
d dy t tm t t

( )
= 0

 (t0∈ [0,T ); T — signal period), we can 
expect behaviour as depicted in Fig. 4. 

Fig. 4. Illustration of signal variance as function  
of signal slope under the presence of jitter

The real behavior of the data is shown in Fig. 5. 
Since the M-sequence has many locations with iden-
tical slopes and we only respect a finite number of ex-
periments in our calculation, we get a cloud of data 
samples. By fitting (11) to this cloud, we finally arrive 
at the wanted rms jitter value ϕT  of the device. Fig. 
5 (a) relates to an example where the additive noise 
dominates while Fig. 5 (b) also shows some jitter in-
duced effects.

The two examples show that the timing concept 
according to Fig. 3 provides very low jitter values 
owed to the high-speed/steep edge binary divider and 
the large clock rates fc. 

Moreover, the binary divider also provides per-
fectly equidistant strobe pulses of s t( )  (random jitter 
not respected) since it is running through all its states 
before it releases a new sampling event. Hence, any 
asymmetry of the internal flip-flops impacts all sam-
pling pulses in the same fashion. Thus, a precise device 
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internal time axis is guaranteed also for a very long sig-
nal if the clock-generator is sufficiently time stable.

Fig. 5. Variance of measured data samples as a function  
of signal slope for two different RF-clock generators:  
(a) – High-quality RF-laboratory generator SMP04 

(R&S); (b) – free running DRO

4. Suppression of noise and jitter

Since the involved UWB signals are expanded in 
time (Fig. 3 (a)), the estimation of the delay time ∆τ  
of a DUT requires the determination of the peak po-
sition of the correlation function between input- and 
output signal. In the best case, the statistical confi-
dence in this peak position may be estimated from 
eq. (4). This still requires the evaluation of the SNR-
value of the correlation function Cy xm , τ( )  which we 
consider as a random process while the stimulus sig-
nal x t( )  is supposed to be perfectly known:
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The SNR-value of the correlation function can 
be defined by the relation between its peak value and 
its variance according to:
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whereat 
p

 means the Lp-norm.

Inserting eq. (8) into eq. (12), we get for the ex-
pected value of the correlation function:
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and its maximum value equals the power of the sound-
ing signal:
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In Lp-norm notation, the variance of the corre-
lation function may be expressed as follows (see [8] 
for details):
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
Bn  is the double sided noise bandwidth of the re-

ceiver and T  is the time over which the integration 
is performed. Insertion of eqs. (15) and (16) into eq. 
(13) results in:
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After some manipulations, we can rewrite eq. 
(17) in the form:

	 sNR
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This equation is valid for compact as well as time 
extended UWB-signals. The involved parameters 
describe characteristic properties of the test signal as 
well as of the measurement procedure. The crest or 
peak factor is defined as:

CF
x t

x t
=

( )
( )

∞

2

                               (19)

It may tend towards 1 for time extended signals. 
An ideal M-sequence has CF =1 . An fc 2  band lim-
ited M-sequence has CF ≈ 2 3...  depending on the fil-
ter. For short pulse signals it tends to large values (the 
same is true for Gaussian noise). The slope amplitude 
factor saF τ( )  describes the coincidences of strong 
signal variations at large magnitude. It is defined as:

	 saF t
x t x t

x t
rτ

τ
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+( ) ( )
( )


2

2

2
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Usually it depends on the time lag τ . In the case 
of short pulse signals, it takes high values where signal 
edges appear and it becomes zero at the pulse base [8, 
14]. In contrast, it is nearly constant at saF ≈ 3  for 
a band limited M-sequence. The SNR-value of the 
captured signal with additive noise, we write as:

Sachs J., Herrmann R., and Kmec M. Time and range accuracy of short-range ultra-wideband pseudo-noise radar, NRT-2012
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Note that we take the peak power of the signal 
but not the average power for this definition. And fi-
nally, we still have the rise-time jitter ratio ( tr  – rise 
time), which reads as:

RjR
tr

T

=
2

2ϕ
                             (22)

It represents a kind of “signal to noise ratio” of 
the time axis.

We can observe from eq. (18) that for short, pulse 
like sounding signals the correlation gain TBn

 will be 
compensated by large CF - and saF -values. The 
correlation will not bring any profit for noise and jit-
ter suppression. In the case of PN-sequences, CF and 
saF take small and constant values. That means, the 
correlation performs a suppression of additive noise 
and jitter as well. The jitter energy is equally distrib-
uted over the whole correlation function such that its 
steep edges are not more severely affected by random 
perturbations than flat regions. In consequence, we 
get a strong reduction of positions errors according to 
eqs. (3) or (4). The examples listed in sections 5 and 
6 of this paper indicate values of 3…5 fs time position 
variation, i.e. a 1…1.6 µm range uncertainty in air.

This temporal stability of the measurements is the 
prerequisite to subtract in a stable and precise way the 
surface reflex according to Fig. 2 in order to make vis-
ible the weak hidden scatterer. Supposing the surface 
reflex must be reduced by the factor N  when sub-
tracting a reference signal, the temporal uncertainty 
ϕT  of time position has to meet the condition:

   
ϕ

ϕT

r
Tt

B
N

≈ ≤
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1
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Herein, 

B  is the two sided bandwidth of the sur-

face reflex and tr  is its rise time.

5. Suppression of Drift

Time drift is a long-term fluctuation which is not 
respected by the consideration in sections 3 and 4. It 
may be provoked by biased threshold voltages or trig-
ger signals whereat the bias typically depends on tem-
perature, aging, etc. In order to suppress drift effects, 
it is recommended to perform relative measurements 
between two receivers of identical construction and 
identical temperature level. These conditions are best 
met by integrated circuits.

Further, we should also take the temperature 
sensitivity of feeding cables into account. If we simply 
consider the coefficient of thermal expansion of cop-
per ( α ≈ ⋅ − −16 10 6 1K ) as an equivalent for the cable 
expansion and omit the temperature dependency of 
the dielectric insulator etc., we already get a time drift 
of ∆ ≈t 100 fs m K  for a cable of 1 m length and 1 
Kelvin temperature variation. We can learn from this 
estimation that simply the geometric dimension of a 
measurement device or arrangement may limit the 
achievable measurement precision.

Fig. 6 shows a practical example. During the 
warming up phase of a device the length of its cable 
was measured whereat only the temporal fluctuations 
of the input and output signal was registered. If we 
only refer to the pulse position captured by the two 
measurement channels, we can observe a variation of 
about 2 ps during the observation time. This corre-
sponds to a range uncertainty of several hundred µm 
in air. As expected, the variations in both channels are 
nearly coherent. Hence, if we account only for their 
differences, we get a considerable improvement of 
the delay time measurement to about 5 fs rms value of 
short time variations.

Fig. 6. Pulse position drift of an M-sequence device  
(9th order M-sequence, clock rate 9 GHz)  

during warming up observed over about 10 min.  
(a) – overview (b) zoom

6. Density of data sampling

There is often the argument to sample the data 
very densely in order to get high range precision. This 
statement is not valid if it is expressed in that generic 
way. As we have seen in eqs. (3) and (4), bandwidth 
and noise are the key issues. Basically, Nyquist sam-
pling is sufficient to reach full precision since inter-
polation to an arbitrary fine degree can be done in 
the numerical domain. However, this supposes that 
aliasing components must be fully suppressed. If one 
cannot sufficiently suppress aliasing components, the 
sampling rate has to be increased at least to such a 
degree where the aliasing components fall below the 
noise level. Fig. 7 demonstrates how aliasing affects 
the delay time measurement. For demonstration, a 
mechanical delay line increases the propagation path 
length in 2 mm steps. The measurement device was 
based on a 9th order M-sequence and 18 GHz clock 
rate using insufficient suppression of aliasing frequen-
cies. The standard deviation of the individual distance 
measurements was about 1.0 … 1.2 µm, i.e. it is more 
than two orders better than the systematic deviations 
caused by aliasing as shown in Fig. 7. The annex gives 
a simplified consideration about the creation of time 
position errors due to aliasing.
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Fig. 7. Effect of aliasing onto systematic range deviations 
and onto the maximum value of the correlation function  

in dependence from the propagation path length

7. Summary

Time and range accuracy should be considered 
with some care under UWB conditions since geomet-
ric dimensions of the object and temporal duration 
of signals make unique definitions of points and dis-
tances difficult. This may cause systematic deviations 
exceeding even the range resolution predicted by the 
classical formula δR c B= 2


.

The short time instabilities of an M-sequence de-
vice allow to resolve motions of a single target down 
to 1 µm being about 10.000 times better than the 
range resolution δR . In order to exploit this sensitiv-
ity in practical applications, the issues of mechani-
cal precision and stability of sensor elements as well 
as questions of thermal expansion will become more 
and more important for sensor design. Aliasing effects 
should be properly suppressed in order to reduce sys-
tematic deviations of the device down to the level of 
random errors. The quality of the RF-clock generator 
decides about the precision of the device internal time 
axis with respect to absolute and random deviations. 
Its phase noise becomes as more influence as longer 
the DUT delay is.
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Annex:  Position error caused from 
Aliasing components

We assume the test signal 

x t B t0 0( ) = ( )sinc


,                           (24)

having a rectangular spectrum of width 

B0 . Our meas-

urement system is designed for this bandwidth, i.e. 
the sampling rate is selected to f Bs =

0
. Sub-sampling 

is omitted here for the sake of brevity. 
In order to emulate aliasing, we insert a second 

signal exceeding the given band limitation:

x t tB tB( ) = −( ) ( ) + ( )1 20 0η ηsinc sinc
 

          (25)

Its spectrum is depicted in Fig. 8. Part A represents 
the wanted signal and the parts B refer to the aliasing 
components after the signals is sampled with frequency 
fs . The orginal spectrum of x(t) spectrum is:

X f
B

f
B

f
B

( ) = −( ) 







 +




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














1
1

2 20 0 0  

η
η

rect rect .   (26)
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Fig. 8. Spectrum of the idealized signal

The maximum of x(t) is x t( ) =
∞

1  and it is lo-

cated at t = 0 . Further this signal is subjected to a time 
delay τ , so that its maximum is now placed at time 
position t = τ . Time signal and spectrum are:

y t x t

t B B t

y f X f

( ) = −( )
= −( ) −( )( ) + −( )( )

( ) = (

τ

η τ η τ1 20 0sinc sinc
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    (27)

The sampled signal is then written as:

z t y n t

z f f y f mf

s
n

s s
m

( ) = ∆( )

( ) = −( )

∑

∑
                    (28)

Hence, we get for our simple example:
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  (29)

If the sampling rate is f Bs =
0

, the spectral com-
ponents beyond f B≥


2  (parts B) will overlap with 

the central part (part A) of the spectrum. The spec-
trum of the sampled signal is illustrated for m = −1 0 1, ,  
in Fig. 9 for the case f Bs =

0
:

Fig. 9. Amplitude spectrum of the sampled  
signal fragmented in its individual part

Note, that in case of a discrete Fourier transform, 
only the spectral components covered by area ±


B0 2  

around f = 0  are involved. Here, the parts B(+) and 
B(-) (gray) (compare Fig. 8) of the spectrum represent 
aliasing components caused from the spectral power 
exceeding the band limits ± fs 2 . They are convolved 
into the main spectral part. The overall spectrum 
within this area may be written as:


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   (30)

In time domain, eq. (30) gives after inverse Fou-
rier transform:
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       (31)

The maximum position of this signal is deter-
mined from the zero-crossing of its derivative:

d

d


z t

t
t

( )
=

=τ

0                                 (32)

In order to simplify the calculation, we develop 

z t( ) into a Taylor series around the expected maxi-
mum t ≈ τ :
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whereat ∆t  represents the difference to τ . This gives 
for the maximum location:
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∆tmax  represents the measurement error of roundtrip 
time provoked by the aliasing effects. As we can ob-
serve, the aliasing effect will cause a systematic error 
which oscillates around the actual value in depend-
ence of the propagation time τ . The magnitude of the 
oscillation depends on the bandwidth and the sup-
pression of the aliasing components.
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The amplitude of the maximum is also affected 
by an oscillation of the same kind. Usually, the condi-
tion η1 is met, so that we can write:




z t B∆( ) ≈ + ( ) −( )max cos1
2

2 10
η

π τ            (35)
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УДК 621.37
Точность по времени и дальности сверхширокопо-

лосного псевдошумового радара для малых дальностей / 
Ю. Сакс, Р. Херманн, М. Кмец // Прикладная радио
электроника: науч.-техн. журнал. – 2013. – Том 12. – 
№ 1. – С. 105–113.

Оценка времени и дальности, основанная на из-
мерениях с использованием сверхширокополосных 
(СШП) сигналов, должна быть внимательно рассмо-
трена с учетом точности, поскольку дальность, время 
распространения и позиция во времени часто не могут 
быть однозначно оценены. Данная работа иллюстри-
рует эти особенности и показывает некоторые общие 
подходы к оценке времени и дальности в СШП изме-
рениях. Представлены ошибки измерения дальности, 
вызываемые сенсором, и показаны возможности, пре-
доставляемые концепцией псевдо-шумового радара. 
Они обеспечивают отличную точность по оси времени 
благодаря использованию стабильного генератора так-
товой частоты. Случайные ошибки оценки времени 
составляют величины порядка фемтосекунд благодаря 

использованию принципа устойчивой синхрониза-
ции и уменьшению дрожания с помощью корреляции. 
Кроме того, рассмотрено влияние дискретности спек-
тра на точность измерения времени.

Ключевые слова: псевдослучайный сигнал, джит-
тер, временная позиция, точность по дальности, кор-
реляция, влияние дискретности.
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УДК 621.37
Точність за часом та дальністю надширокосмуго-

вого псевдошумового радару для малих дальностей /  
Ю. Сакс, Р. Херманн, М. Кмец // Прикладна радіоелек-
троніка: наук.-техн. журнал. – 2013. – Том 12. № 1. –  
С. 105–113. 

Оцінка часу і дальності, заснована на вимірах з 
використанням надширокосмугових (НШС) сигналів, 
повинна бути уважно розглянута з урахуванням точ-
ності, оскільки дальність, час поширення та позиція 
в часі часто не можуть бути однозначно оцінені. Дана 
робота ілюструє ці особливості і показує деякі загаль-
ні підходи до оцінки часу і дальності в НШС вимірах. 
Представлено помилки виміру дальності, що виклика-
ються сенсором, і показано можливості, що надаються 
концепцією псевдошумового радара. Вони забезпечу-
ють відмінну точність по осі часу завдяки використан-
ню стабільного генератора тактової частоти. Випадко-
ві помилки оцінки часу складають величини порядку 
фемтосекунд завдяки принципу стійкої синхронізації 
та зменшення тремтіння за допомогою кореляції. Крім 
того, розглянуто вплив дискретності спектра на точ-
ність вимірювання часу.

Ключові слова: псевдовипадковий сигнал, джіт-
тер, часова позиція, точність за дальністю, кореляція, 
вплив дискретності.
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