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radar WitH randoM Variation oF probinG siGnal paraMeters 
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This paper utilizes game-theoretic principles in detecting of Gaussian signals against background of Gaussian 
noise. We propose the payoff function generalizing signal-to-noise ratio to casual signals. It is found that 
potential immunity of radar to electronic countermeasure strategies is only achievable through random 
variation in parameters of sounding signals.  Performance limits of radar depend on the product of probing 
signal bandwidth and its duration. The coherent integration time is to be 2-10 times less than full processing 
time of the received signal.
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1. introdUction

Statistical Hypothesis Testing theory provides a 
basis for procedures of synthesis of optimum detection 
algorithms [1,2], the theory gives a principal oppor-
tunity to work out optimum detection algorithms for 
any kind of jamming, irrespective of whether detailed 
statistical characteristics of signals and jamming are 
known, or whether under a priori uncertainty condi-
tions [3, 4].

 As current methods of algorithm synthesis use a 
model of signal environment allowing the only active 
party, that is a radar, the theory is not applicable to 
synthesis of detection algorithms, if electromagnetic 
countermeasures (ECM) are employed. When there 
are electromagnetic countermeasures then there are 
at least two active parties, a radar trying to improve 
signal detection and countermeasure systems trying 
to prevent a radar from operating as well as it might.

Although there isn’t an appropriate theoreti-
cal framework experts have proposed anti-jam tech-
niques. Note that these techniques don’t follow from 
solution of any classical synthesis problem. For exam-
ple, there are random changing in signal-carrier fre-
quency, changing of pulse recurrence interval, chang-
ing of signal waveform etc. Most every modern radars 
deploy random variation in parameters of sounding 
signals against active jamming.  Modern communi-
cation systems also use random variation in param-
eters of sounding signals (a.k.a. frequency hopping) 
to improve noise immunity. Although these anti-jam 
techniques have proved to be practical, developing of 
new methods of synthesis and guaranteed immunity 
resistance to jamming still attract great interest.

The theory of algorithms synthesis for detecting 
signals in electronic countermeasures based on the 
model of a game between a radar and jammer can 
help to meet these goals. [5,6,7,8,9,10].

2. GaMe-tHeoretic Model  
oF GaUssian siGnals detection

A game-theoretical model consists of two players 
at least, in our case these are a target and a radar, with 
the target always trying to prevent the radar from ful-
filling its task. Since there are two players and the tar-
get and the radar form an adversarial system, their in-
teraction is modelled as a two-person zero-sum game, 

a.k.a. antagonistic game. On the first stage needed to 
choose a function of advantage of game.

For example we have an interaction between a 
radar and a target, where the former tries to locate 
the target in any kind of bin. The radar operates with 
variation in parameters of sounding signals and algo-
rithm of processing of the received signals. The target, 
which carries jamming equipment, tries to generate 
jamming that could confuse the radar. Thus, this in-
teraction can be represented as a two-person zero-
sum game.

We assume that:
player 1 (radar) has a set of x possible actions to 

choose from (pure strategies);
player 2 (jammer) has a set of Y pure strategies to 

pick from;
stands for payoff function for player 1:

H X Y R: × → (This is criterion for detection effi-
ciency).

The payoff function is critical to choose. On the 
one hand the payoff function is one of the ECM-
resistance properties and on the other hand it is sup-
posed to allow the game to have the solution and non-
trivial results.

The quality of detection is normally expressed 
as the probability of detection for a given conditional 
probability of false alarm (Neumann-Pearson crite-
rion). Since Neumann-Pearson criterion is a special 
case of more general average risk criterion the game 
was formalized and solved, where average risk is the 
payoff function [1].

The solution of the game shows that the most 
unfavourable jammer is to come from the detectable 
signal [5]. Multivariate density of probability of the 
most unfavourable jammer is expressed as multivari-
ate density of probability of the detectable signal:
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denote convolution of k of probability density Ws ( )x
of the detectable signal; Wn( )x probability density 
function of noise.

Correlation function of this kind of jammer and 
correlation function of the suppressed signal agree 
within constant multiplier. When the jammer tries to 
mask Gaussian signal, the radar gets multi-compo-
nent Gaussian distribution.

Let us compare characteristics of a finite-state 
masking jammer and characteristics of Gaussian 
masking jammer with the equal power when Gaus-
sian signal is suppressed (Fig. 1). The diagram shoes 
that the lines of these two types of jammers are almost 
coincide. This lets us make a feasible conclusion that 
the most unfavourable jammers are to be found the 
range of Gaussian noise.

Fig. 1. The performance of detection

We assume that the radar system in operation can 
use signals of some set: S a a A1 1= ∈{ }s t( ; ) :  with that 
the received signals are random and can be presented 
as a model of a Gaussian process. Correlation function 
of the signal reflected from the target K t us ( , ; )a  de-
pends on parameters chosen by the radar. For exam-
ple, these parameters can be carrier frequency, code 
phase modulation or some other signal parameters. In 
this case the received signals belong to the set:

S a a a A= = ∈











∫s t K t t dt Es s

T

( ; ) : ( , ; ) ,
0

,           (2)

which we denote as the set of detectable signals 
Where: Es  denote average energy of the received 

signal in a time T; a stands for the n-dimensional 
vector of non-power controlled signal parameters; 
a stands for the set of possible values of signal pa-
rameters; s(t,a) stands for complex random Gaus-
sian  process with zero mean and correlation function 

Ks(t,u;a).
Assume that a choice of any of the signal param-

eters a ∈ a  in (2) and of algorithm for its processing is 
a strategy for the radar.

The strategy for the jammer is the ability to gen-
erate any Gaussian jammer with zero mean and finite 
mean energy En in a time T. Since Gaussian process 
is completely determined by its mean and the correla-
tion function, the strategy for the jammer is to choose 
any of the jammer correlation function from the set:
K t un( , )

K t u K t t dt En n n

T

( , ) : ( , ) ≤











∫
0

.

The jammer has pure strategy since if the jammer 
has mixed strategies (that is selection of the correla-
tion function K t un( , )  in relation to some probabil-
ity measure) this generalizes potential interference to 
multy-Gaussian interference.

In order to determine the payoff function it 
should be kept in mind that for every round of the 
game the goal is to locate Gaussian signal s t( ; )a  
(with parameter a ∈ a , which is known to the receiv-
ing end) against the background of Gaussian jammer 
with correlation function K t un( , )  and white Gaussian 

noise with spectral density N0/2. 
It is common knowledge that against background 

of white noise and Gaussian jammer with correlation 
function K t un( , )   optimum Gaussian detector with 
correlation function K t us ( , ; )a   calculates statistics for 

L( x) and compares it with threshold c [2]:
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Where: x(t) stands for realization of the detect-
able signal; αk  and φk t( )  denote eigenvalues and ei-
genfunctions of the integral equation:

K t u u du K t u u dus k k k

TT

( , ; ) ( ) ( , ) ( )a φ α φ= ∫∫ Σ
00

,       (4)

φk t( ) which incorporates the complex conjugate 
function φk t( ) . The eigenfunctions are normalized 
with the condition:

K t u u t dudtk k

TT

Σ( , ) ( ) ( )*φ φ =∫∫ 1
00

, 

where K t u K t u
N

t unΣ( , ) ( , ) ( )= + −0

2
δ .

 Keep in mind that the eigenvalues and eigen-
functions of the integral equation (4) are equal to the 
eigenvalues and eigenfunctions of the integral opera-
tor. K KΣ

−1
s . Where KΣ denotes the integral operator 

whose kernel is equal to the sum of correlation func-
tion of the signal K t un( , ) and the correlation function 

of the interference of white noise: 
N

t u0

2
δ( )− , K s  

denotes the integral operator whose kernel is equal to 
the correlation function of the signal K t us ( , ; )a ; KΣ

−1

stands for the operator which the converse of KΣ .
Account for x (t) stands for complex Gaussian 

process for both hypotheses we define the character-
istic function of L(x) with no signal (hypothesis H0) 
and having the signal (hypothesis H1) as:
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In relation to the expression (3) infinite number 
of channels is required for realization of optimal al-
gorithm. If the channels are restricted to some finite 
number then performance calculation for detection 
parameters is based on the characteristic functions 
with finite number of multipliers (5) and the probabil-
ity calculation of false and successful detection based 
on these formulas can make use of the technique pro-
posed here: [11].

As it follows from (5) detection characteristics 
are completely determined by distribution of the ei-

genvalues αk of the integral equation (4). See that 
αk  is signal-to-noise ratio at the output of the k-th 
processing channel (symbol ξk  in Fig. 2). 

Then we define αk
k
∑  as the total signal-to-noise 

ratio on all channels of processing. The higher this 
value is, the better is detection and vice versa.

This gives us the reason to propose the sum of 
eigenvalues of the operator as the payoff function 
K KΣ

−1
s (the trace of the operator), the payoff function 

generalizes signal-to-noise ratio to casual Gaussian 
signals and agrees with signal-to-noise ratio at the 
output of the linear part of the optimal detector when 
detecting quasideterministic signals.

Thus we assume the trace of the operator K KΣ
−1

s  
as the payoff function is given as:

 H a K K t u K u t dudtn s

TT

( , ) ( , ) ( , ; )= −∫∫ Σ
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a , (6)

where K t uΣ
−1( , )  stands for the kernel of the integral 

operator K In +( )−1
, I – for the unity operator. 

The electronic countermeasures system tries to 
reduce (6) by make a selection from the jammers with 
the correlation function. K t un( , )  By contrast, the ra-
dar tries to find probing-signals a ∈ a  which are able 
to increase (6). The processing algorithm (3) remains 
optimal in the process.

3. GaMe solUtion and consideration

In the general case game with the payoff function 
(6) hasn’t got a saddle point in pure strategies. We al-
ways have:

min max ( , ) max min ( , )
K a

n
a K

n
n n

H a K H a K>

Specifically, this means that if the parameters of 
the detectable signal are known to the jammer, then 
there exists the Gaussian jammer with the correlation 
function to make the smallest signal-to-noise ratio at 
the output of the linear part of the receiver. 

This game has a saddle point in mixed strategies.  
Under given conditions, only player 1 (radar) has the 
mixed strategy, and pure strategy is always the opti-
mal one for player 2 (jammer).

The payoff function in mixed strategies is given as: 

H K K t u K u t dudta n s

TT

( , ) ( , ) ( , )µ = −∫∫ Σ
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00

,

where: K t u K t u ds s
a

( , ) ( , ; ) ,= ∫ a a aµ µ  stands for prob-

ability measure defined on the set a. This is mixed 
strategy of the radar. The correlation function K t us ( , )  
we shall call the correlation function of the set of de-
tectable signals.

Subject to the limitation (2) the correlation func-
tion K t us ( , )  can be expanded to series of eigenfunc-
tions

K t u E t us s k k k
k

( , ) ( ) ( )*= ∑γ ψ ψ ,

where γk
k

=∑ 1 .

The minimum value H Ka n( , )µ  is achieved when 
the jammer’s correlation function can be expanded by 
the same system of eigenfunctions
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The eigenvalues γk  are in descending order of their 
values, m stands for the largest integer for which the 

inequality λm
0 0>  is true, viz γ γm k
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Fig. 2. Optimal detector diagram
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Account for (7) and (9) we shall get that the cor-
relation function of the jammer is given as the finite 
series:

K t u t un k k k
k
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and the price of the game is: 
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The expression for the correlation function of the 
worst-case jammer agrees with the similar expression 
which was proposed in [6], where the game-theoretic 
was used assuming that the signal is known. It implies 
that optimal strategy for the jammer doesn’t depend 
on the type of signals randomness, whether it is deter-
mined by radar, whether it is determined by the me-
dium or both. 

In many cases the signal is random due to multi-
plicative noise, and the correlation function is given 
as:

K t u E t u s t s us s( , ; ) ( , ) ( , ) ( , )*a a a= ρ ,

where ρ( , )t u  stands for the correlation function of the 
fluctuation of the complex envelope of the detectable 
signal, which is independent from a; s t( , )a  denotes 
the final complex function; s t*( , )a  denotes complex 
conjugate function s t( , )a .

It is found in [7] that if controlled parameters of 
the signal a ∈ a  are nonpower kind then selection of 
this parameter with equal probability is the optimal 
mixed strategy for the radar.

In this case the eigenvalues and the eigenfunc-
tions of the integral equation (4) are given as: 
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Where νk  and ψk t( ) denote the eigenvalues and 
the eigenfunctions of the correlation function of the 
fluctuations; ρ( , )t u , βk and f tk ( )  stand for the eigen-
values and the eigenfunctions of the correlation func-
tion. s t s u d

a

( , ) ( , )*a a aµ∫ . 

Arrange the outcomes of eigenvalues ν βi j    in 
decreasing order and give then numbers 1,2, .., k, in 
such a way, that ν βi jk k

 will be the k-th member of the 
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See that this is the weight of the optimal detector 
of deterministic signals s(t;a) with random variation 
of parameter a ∈ a  against background of worst-case 
Gaussian noise [8].

Hence the algorithm for the optimal detector 
of random Gaussian signals against background of 
worst-case Gaussian noise is as given: 

l x x t t h t dtk

k
k

T

k I

( ) ( ) ( ) ( ; )* *=
+

+∫∑
∈

α
α

ψ
1 0

2

a

+
+

>∫∑
∉

2

1 2
0

0 0

2
E N

E N
x t t s t dt cs k

s k
k

T

k I

ν
ν

ψ
/

/
( ) ( ) ( ; )* * a .   (11)

With a view to simplification of the algorithm 
the second item of the sum (11) can be omitted.  This 
is tantamount to eliminating of the lower line in the 
brace in the expression (10) The technique proposed 
in [9] allows developing corresponding performance 
characteristics. In case of long-term fluctuations 

when the eigenvalues of αk don’t agree the formulas 
for probabilities of false alarm and successful detec-
tion are as given:

Successful detection: 
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False alarm probability:
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Where c denotes the relative detection threshold

4. potential noise-iMMUnitY oF radar 
WitH a randoM Variation  

oF tHe probinG siGnals

We ask, not whether there is an optimal type of 
signal which provides the highest of radar noise-im-
munity?

To search for such signals, it is desirable not to 
limit their set parametric representation, and enter 
only significant limitations, implementation of which 
necessarily from physical considerations.

Such restrictions can be considered a frequency 
band in which the radar can operate, the time of co-
herent and incoherent accumulation.

Signals received by the radar are random  due to 
fluctuations the reflecting surface of the target.

These fluctuations are multiplicative noise:

Rodionov v.v. Radar with random variation of probing signal parameters
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s t t s ts( , ) ( ) ( , )a a= ξ ,

where ξ( )t  — Gaussian random process; s ts ( , )a  — 
probe signal; ξ( )t  varies slowly compared to s ts ( , )a .

We approximate the multiplicative interference 
by sequence pulse (Figure 3):
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Fig. 3

It is known that the signal can be represented as 
a series of orthogonal functions. These functions are 
eigenfunctions of the integral equation:
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and are called circular spheroidal. They have a greater 
concentration of the spectrum in the band ∆f .

As shown in [10] is enough to choose the length 
of the series n fT= [ ]∆  ([x] – integer part of x).

Thus, the set of probing signals of duration T and 
the width of the spectrum ∆f  is of the form of:
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Here aik  – the parameters selected on the side of 
the radar.

In [10]  is shown that, the parameters are selected 
independently for each piece of the signal in the time 
interval [ ,( ) ]iT i T0 01+ .

The parameters are selected inside track equally 

likely from ensemble: a : ai
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Parameter detection αk can be written as:
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Here Ps is the signal power, Pn is the jammer 
power, νk  – the eigenvalues of the correlation matrix 
of sequence ξi .

Detection characteristics depend only on the 
multiplicative noise and on the product width of the 
spectrum of signals on duration. The parameters of 

the partition into intervals of duration T0 only affect 
the precision of the multiplicative noise.

Equation (10) determines the optimal noise im-
munity of radar when using continuous signals. If you 
are using pulsed signals, parameter of the detect will 
take type:
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Here 
Tn

τ
 – pulse on-off time ratio. 

Thus, the potential noise immunity of a pulsed 
radar inversely proportional to the pulse on-off time 
ratio.

It is сonsider the case when the observation time 
can be divided into n non-overlapping intervals. In 
each interval can be a coherent accumulation, and 
fluctuations in the adjacent intervals between them-
selves independent. If the duration of coherent accu-
mulation is Tkog then n T Tkog= / .

In this case αk d d
n

= =2
0
2 1

.

Working feature of detection is easily determined 
in terms of the chi-square distribution with 2n degrees 

of freedom: F x N
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Here Pd – detection probability; PF – false alarm, 
F x n−1 2( ; )  – the inverse F x n( ; )2 .

The value of parameter detection d0
2 , required to 

provide a given probability of correct detection and 
false alarm can be obtained from the expression:

d
F P n

F P n
nF

d
0
2

1

1

1 2

1 2
1=

−
−

−










−

−

( ; )

( ; )
.

On Fig. 4 shows the parameter detection d0
2  on 

the ratio between the total accumulation time and 
time coherent integration n for the probability of false 
alarm PF = 10-8.

Fig. 4
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From the figures it is clear that for a fixed prob-
ability of false alarm, there is an optimal ratio between 
the total accumulation time and time coherent inte-
gration n, which requires minimum value detection 
d0

2  to provide the required detection probability. This 
optimum is the more pronounced the greater the re-
quired probability of correct detection.

On the other hand the optimum is not sharp and 
close to optimal values   are obtained in the range. 
2 10≤ ≤n .
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В статье рассмотрено обнаружение гауссовых сиг-
налов на фоне гауссова шума с использованием прин-
ципов теории игр. Предложена функция компенсации, 
обобщающая отношение сигнал-шум на случайные 
сигналы. Показано, что потенциальная устойчивость 
радара к стратегиям радиоэлектронного противодей-
ствия достижима только при случайном изменении 
параметров зондирующего сигнала. Потенциальные 
возможности радара определяются произведением по-
лосы частот и длительности зондирующего сигнала. 
Время когерентного накопления должно быть в 2–10 
раз меньше полного времени обработки принятого 
сигнала.

Ключевые слова: постановщик помех, радар, тео-
рия игр, сигнал.
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Радар з випадковою зміною параметрів зондуваль-

ного сигналу / В.В. Родіонов // Прикладна радіоелек-
троніка: наук.-техн. журнал. – 2013. – Том 12. – № 1. –  
С. 122-127.

У статті розглянуто виявлення гаусових сигналів 
на тлі гаусової перешкоди за використання принци-
пів теорії ігор. Запропоновано функцію компенсації, 
що узагальнює відношення сигнал-шум на випадкові 
сигнали. Показано, що потенційна опірність радару до 
стратегій радіоелектронної протидії досяжна тільки за 
випадкової зміни параметрів зондуючого сигналу. По-
тенційні можливості радара визначаються добутком 
смуги частот і тривалості зондуючого сигналу. Термін 
когерентного накопичення має бути в 2–10 разів мен-
ший від повного часу обробки прийнятого сигналу.

Ключові слова: постановник завад, радар, теорія 
ігор, сигнал.
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