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RADAR WITH RANDOM VARIATION OF PROBING SIGNAL PARAMETERS

V.V. RODIONOV

This paper utilizes game-theoretic principles in detecting of Gaussian signals against background of Gaussian
noise. We propose the payoff function generalizing signal-to-noise ratio to casual signals. It is found that
potential immunity of radar to electronic countermeasure strategies is only achievable through random
variation in parameters of sounding signals. Performance limits of radar depend on the product of probing
signal bandwidth and its duration. The coherent integration time is to be 2-10 times less than full processing

time of the received signal.
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1. INTRODUCTION

Statistical Hypothesis Testing theory provides a
basis for procedures of synthesis of optimum detection
algorithms [1,2], the theory gives a principal oppor-
tunity to work out optimum detection algorithms for
any kind of jamming, irrespective of whether detailed
statistical characteristics of signals and jamming are
known, or whether under a priori uncertainty condi-
tions [3, 4].

As current methods of algorithm synthesis use a
model of signal environment allowing the only active
party, that is a radar, the theory is not applicable to
synthesis of detection algorithms, if electromagnetic
countermeasures (ECM) are employed. When there
are electromagnetic countermeasures then there are
at least two active parties, a radar trying to improve
signal detection and countermeasure systems trying
to prevent a radar from operating as well as it might.

Although there isn’t an appropriate theoreti-
cal framework experts have proposed anti-jam tech-
niques. Note that these techniques don’t follow from
solution of any classical synthesis problem. For exam-
ple, there are random changing in signal-carrier fre-
quency, changing of pulse recurrence interval, chang-
ing of signal waveform etc. Most every modern radars
deploy random variation in parameters of sounding
signals against active jamming. Modern communi-
cation systems also use random variation in param-
eters of sounding signals (a.k.a. frequency hopping)
to improve noise immunity. Although these anti-jam
techniques have proved to be practical, developing of
new methods of synthesis and guaranteed immunity
resistance to jamming still attract great interest.

The theory of algorithms synthesis for detecting
signals in electronic countermeasures based on the
model of a game between a radar and jammer can
help to meet these goals. [5,6,7,8,9,10].

2. GAME-THEORETIC MODEL
OF GAUSSIAN SIGNALS DETECTION

A game-theoretical model consists of two players
at least, in our case these are a target and a radar, with
the target always trying to prevent the radar from ful-
filling its task. Since there are two players and the tar-
get and the radar form an adversarial system, their in-
teraction is modelled as a two-person zero-sum game,
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a.k.a. antagonistic game. On the first stage needed to
choose a function of advantage of game.

For example we have an interaction between a
radar and a target, where the former tries to locate
the target in any kind of bin. The radar operates with
variation in parameters of sounding signals and algo-
rithm of processing of the received signals. The target,
which carries jamming equipment, tries to generate
jamming that could confuse the radar. Thus, this in-
teraction can be represented as a two-person zero-
sum game.

We assume that:

player 1 (radar) has a set of X possible actions to
choose from (pure strategies);

player 2 (jammer) has a set of Y pure strategies to
pick from;

stands for payoff function for player 1:
H: XxY — R (This is criterion for detection effi-
ciency).

The payoff function is critical to choose. On the
one hand the payoff function is one of the ECM-
resistance properties and on the other hand it is sup-
posed to allow the game to have the solution and non-
trivial results.

The quality of detection is normally expressed
as the probability of detection for a given conditional
probability of false alarm (Neumann-Pearson crite-
rion). Since Neumann-Pearson criterion is a special
case of more general average risk criterion the game
was formalized and solved, where average risk is the
payoff function [1].

The solution of the game shows that the most
unfavourable jammer is to come from the detectable
signal [5]. Multivariate density of probability of the
most unfavourable jammer is expressed as multivari-
ate density of probability of the detectable signal:

W,(0=(1-2) S WO (x). (1)
k=0

Where A <1 reciprocal to comparison threshold
of likelihood ratio of Bayes optimal algorithm:

W, (x)@W,(x)®W,(x) >/ 1
W,(x)®W,(x)

<’
WO (x) = W, () O W, (x) @+ @ W, (x)
[
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denote convolution of k of probability density W, (x)
of the detectable signal; W, (x)probability density
function of noise.

Correlation function of this kind of jammer and
correlation function of the suppressed signal agree
within constant multiplier. When the jammer tries to
mask Gaussian signal, the radar gets multi-compo-
nent Gaussian distribution.

Let us compare characteristics of a finite-state
masking jammer and characteristics of Gaussian
masking jammer with the equal power when Gaus-
sian signal is suppressed (Fig. 1). The diagram shoes
that the lines of these two types of jammers are almost
coincide. This lets us make a feasible conclusion that
the most unfavourable jammers are to be found the
range of Gaussian noise.
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Fig. 1. The performance of detection

We assume that the radar system in operation can
use signals of some set: S, ={s,(f;a): ae A} with that
the received signals are random and can be presented
as a model of a Gaussian process. Correlation function
of the signal reflected from the target K (z,u;a) de-
pends on parameters chosen by the radar. For exam-
ple, these parameters can be carrier frequency, code
phase modulation or some other signal parameters. In
this case the received signals belong to the set:

T
S :{s(t;a) : j K (t,ta)dt=E,, a GA}, ()
0

which we denote as the set of detectable signals
Where: E, denote average energy of the received
signal in a time T; a stands for the n-dimensional
vector of non-power controlled signal parameters;
A stands for the set of possible values of signal pa-
rameters; s(t,a) stands for complex random Gaus-
sian process with zero mean and correlation function

Ks(t,usa).

Assume that a choice of any of the signal param-
eters a e A in (2) and of algorithm for its processing is
a strategy for the radar.

The strategy for the jammer is the ability to gen-
erate any Gaussian jammer with zero mean and finite
mean energy E, in a time T. Since Gaussian process
is completely determined by its mean and the correla-
tion function, the strategy for the jammer is to choose
any of the jammer correlation function from the set:
K, (t.u)
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{Kn(t,u): fKn(z,z)dst,,}.
0

The jammer has pure strategy since if the jammer
has mixed strategies (that is selection of the correla-
tion function K, (#,u) in relation to some probabil-
ity measure) this generalizes potential interference to
multy-Gaussian interference.

In order to determine the payoff function it
should be kept in mind that for every round of the
game the goal is to locate Gaussian signal s(z;a)
(with parameter a € A , which is known to the receiv-
ing end) against the background of Gaussian jammer
with correlation function K, (#,u) and white Gaussian

noise with spectral density Ng/2.

It is common knowledge that against background
of white noise and Gaussian jammer with correlation
function K, (#,u) optimum Gaussian detector with
correlation function K (#,u;a) calculates statistics for

L( x) and compares it with threshold ¢ [2]:

2
Lx)=Y >/ e, 3)
k

Where: x(t) stands for realization of the detect-
able signal; a, and ¢, (#) denote eigenvalues and ei-
genfunctions of the integral equation:

o

T *
[x(0)0y (1)t
0

k
I+ay

T T
[ K, (tu2)0 ()du = o [ Ky (1) (), (4)
0 0

¢, (f) which incorporates the complex conjugate
function ¢, (#). The eigenfunctions are normalized
with the condition:

TT
[ [ Ks ()b )y (dudi =1,
00

where K (f,u) = K, (t,u) + %B(I -u).

Keep in mind that the eigenvalues and eigen-
functions of the integral equation (4) are equal to the
eigenvalues and eigenfunctions of the integral opera-

tor. K;'K, . Where K denotes the integral operator
whose kernel is equal to the sum of correlation func-
tion of the signal K, (#,u) and the correlation function

of the interference of white noise: %S(t—u), K,

denotes the integral operator whose kernel is equal to
the correlation function of the signal K, (t,u;a) ; K3'
stands for the operator which the converse of K .

Account for x (t) stands for complex Gaussian
process for both hypotheses we define the character-
istic function of L(x) with no signal (hypothesis HO)
and having the signal (hypothesis H1) as:

-1
_ _ Oy
®(v/H0)—1:[(1 W1+ak] , .
o/ H)=T](1-wa,)"
k

(1 denotes imaginary unit)
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In relation to the expression (3) infinite number
of channels is required for realization of optimal al-
gorithm. If the channels are restricted to some finite
number then performance calculation for detection
parameters is based on the characteristic functions
with finite number of multipliers (5) and the probabil-
ity calculation of false and successful detection based
on these formulas can make use of the technique pro-
posed here: [11].

As it follows from (5) detection characteristics
are completely determined by distribution of the ei-

genvalues ok of the integral equation (4). See that
o, 1s signal-to-noise ratio at the output of the k-th
processing channel (symbol &, in Fig. 2).

Then we define ) a, asthe total signal-to-noise

k
ratio on all channels of processing. The higher this
value is, the better is detection and vice versa.
This gives us the reason to propose the sum of
eigenvalues of the operator as the payoff function

K;Ks (the trace of the operator), the payoff function

generalizes signal-to-noise ratio to casual Gaussian
signals and agrees with signal-to-noise ratio at the
output of the linear part of the optimal detector when
detecting quasideterministic signals.

Thus we assume the trace of the operator K;'K
as the payoff function is given as:

TT
H(a,K,)= j j K\ (t,u)K (u,t;a)dudt,  (6)
00

where K;'(t,u) stands for the kernel of the integral

operator (K, + l)_l , I — for the unity operator.

The electronic countermeasures system tries to
reduce (6) by make a selection from the jammers with
the correlation function. K, (¢,u) By contrast, the ra-
dar tries to find probing-signals a € A which are able
to increase (6). The processing algorithm (3) remains
optimal in the process.

3. GAME SOLUTION AND CONSIDERATION
In the general case game with the payoff function
(6) hasn’t got a saddle point in pure strategies. We al-
ways have:
n}(in max H (a,K,)>max n}in H(a,K,)

n

Specifically, this means that if the parameters of
the detectable signal are known to the jammer, then
there exists the Gaussian jammer with the correlation
function to make the smallest signal-to-noise ratio at
the output of the linear part of the receiver.

This game has a saddle point in mixed strategies.
Under given conditions, only player 1 (radar) has the
mixed strategy, and pure strategy is always the opti-
mal one for player 2 (jammer).

The payoff function in mixed strategies is given as:

TT
H(u,.K,)= j j K (t,u) K (u,t)dudt ,
00

where: K (t,u)=.fKS(t,u;a)dua, p, stands for prob-
A

ability measure defined on the set A. This is mixed
strategy of the radar. The correlation function K (#,u)
we shall call the correlation function of the set of de-
tectable signals.

Subject to the limitation (2) the correlation func-
tion K (#,u) can be expanded to series of eigenfunc-
tions

K (t,u)=E> v, (O, (u)
k

where >y, =1.
k

The minimum value H(n,, K,,) is achieved when
the jammer’s correlation function can be expanded by
the same system of eigenfunctions

Kn(t,u)zzkk\l/k(t)\ﬁ(u), ZKk <E,. (1)
where: k k
Yk
H(u, K)=EY — . ®)
;kk +N, /2

Minimizing (8)X, subject to the limitation

D> ki <E,, &, 20 we obtain

3
12
(E +m&jL—ﬂ,kﬁm
n 2 m 2

i )

i=1

0
}\.k:

0, k>m.

Theeigenvalues y, areindescendingorderoftheir
values, m stands for the largest integer for which the
. . . . n 2E
inequality Aj, >0 is true, viz v,,> > > v/ [N” + mj
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Fig. 2. Optimal detector diagram
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Account for (7) and (9) we shall get that the cor-
relation function of the jammer is given as the finite
series:

K2(tu)=3 20y () ()
k=1

and the price of the game is:

H(u).K)) = o No/z(zﬁj

The expression for the correlation function of the
worst-case jammer agrees with the similar expression
which was proposed in [6], where the game-theoretic
was used assuming that the signal is known. It implies
that optimal strategy for the jammer doesn’t depend
on the type of signals randomness, whether it is deter-
mined by radar, whether it is determined by the me-
dium or both.

In many cases the signal is random due to multi-
plicative noise, and the correlation function is given
as:

K (t,u;a) = Esp(t,u)s(t,a)s*(u,a) s

where p(z,u) stands for the correlation function of the
fluctuation of the complex envelope of the detectable
signal, which is independent from a; s(¢,a) denotes

the final complex function; s (z,a) denotes complex
conjugate function s(z,a) .

It is found in [7] that if controlled parameters of
the signala e A are nonpower kind then selection of
this parameter with equal probability is the optimal
mixed strategy for the radar.

In this case the eigenvalues and the eigenfunc-
tions of the integral equation (4) are given as:

Evprypy 2t = (1—26,} kel,
(10)

o = 2E jeJ 0 jeJ
2 kel.
N,

0

v @Ohta), kel,
0 (1) = {\uk(t)s(t;a), kel.

Where v, and y,(#) denote the eigenvalues and
the eigenfunctions of the correlation function of the
fluctuations; p(#,u) , B, and f,(¢) stand for the eigen-
values and the eigenfunctions of the correlation func-

tion. j s(t,a)s" (u,a)dp, .
A

Arrange the outcomes of eigenvalues v, in
decreasing order and give then numbers 1,2, .., &, in
such a way, that Vi, B i will be the k-th member of the
sequence.

Then

E, +m%
g- o I =iy b T =iy fasesdin ) »
ZVI/ZBI/2
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m stands for the largest integer for which the in-

equality
V722 < v1/2[31/2 2F, L m
im Jm ik jk N
k=i 0

is true: Function h(t;a) agrees with:

h(t;a)=s(t;a)— Z[ Nl/2 }s (a)f; ().
JjeJ QB

See that this is the weight of the optimal detector
of deterministic signals s(t;a) with random variation
of parametera e A against background of worst-case
Gaussian noise [8].

Hence the algorithm for the optimal detector
of random Gaussian signals against background of

worst-case (Gaussian noise is as given:
2

T
Lx)=3 > I X (DR (a)di| +
kel 0
2Ev, /N, |t 2
_ sk 70 * £,
+/§]1+2E5Vk/NO !X(t)Wk(t)S (ta)dt] >c. (11)

With a view to simplification of the algorithm
the second item of the sum (11) can be omitted. This
is tantamount to eliminating of the lower line in the
brace in the expression (10) The technique proposed
in [9] allows developing corresponding performance
characteristics. In case of long-term fluctuations

when the eigenvalues of ax don’t agree the formulas
for probabilities of false alarm and successful detec-
tion are as given:

Successful detection:

I-exp(—c/q;
Fo=1- Z}fu)
le 1_7]

j#lz:'[el( “i]

False alarm probability:

PF=H(1 Zexp(—c-(1+oc-)/ou)
iel 161(1+0L)H(1—7j)

Jj#ijel

Where ¢ denotes the relative detection threshold

4. POTENTIAL NOISE-IMMUNITY OF RADAR
WITH A RANDOM VARIATION
OF THE PROBING SIGNALS

We ask, not whether there is an optimal type of
signal which provides the highest of radar noise-im-
munity?

To search for such signals, it is desirable not to
limit their set parametric representation, and enter
only significant limitations, implementation of which
necessarily from physical considerations.

Such restrictions can be considered a frequency
band in which the radar can operate, the time of co-
herent and incoherent accumulation.

Signals received by the radar are random due to
fluctuations the reflecting surface of the target.

These fluctuations are multiplicative noise:
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s(r,a) =&(1)s,(t,a)
where &(f) — Gaussian random process; s,(f,a) —
probe signal; &() varies slowly compared to s (#,a) .
We approximate the multiplicative interference
by sequence pulse (Figure 3):

) | [ rel07)
&(t)—lZa,- (t-iTy) , (’)‘{o,ze[o,m‘
Then

S(taa):zé;isi(t_i]—z)!ai)'
tew

»

=1 4 |

Fig. 3

It is known that the signal can be represented as
a series of orthogonal functions. These functions are
eigenfunctions of the integral equation:

Ty .
[ SMCTVEZD) iy =16, (1), 1210,T; ]
0 2nAf(t-u)
and are called circular spheroidal. They have a greater
concentration of the spectrum in the band Af .

As shown in [10] is enough to choose the length
of the series n=[AfT] ([x] — integer part of x).

Thus, the set of probing signals of duration T and
the width of the spectrum Af is of the form of:

N-1n-1
S= {s(t,a) :s(t,a)= Z Zaik‘{’k(t—iTO)} .
i=0 k=0

Here a; — the parameters selected on the side of
the radar.

In [10] is shown that, the parameters are selected
independently for each piece of the signal in the time
interval [iT;,(i +1)T].

The parameters are selected inside track equally

NI
likely from ensemble: {a: > |a,|2 = 1} :
i=0

Parameter detection a, can be written as:

P
])n+AféVO

Here P; is the signal power, P, is the jammer
power, v, — the eigenvalues of the correlation matrix
of sequence ;.

Detection characteristics depend only on the
multiplicative noise and on the product width of the
spectrum of signals on duration. The parameters of

(10)
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the partition into intervals of duration TO only affect
the precision of the multiplicative noise.

Equation (10) determines the optimal noise im-
munity of radar when using continuous signals. If you
are using pulsed signals, parameter of the detect will
take type:

P

s *
ak—mAﬁnd.
n+ 2

T . .
Here —+ — pulse on-off time ratio.
T

Thus, the potential noise immunity of a pulsed
radar inversely proportional to the pulse on-off time
ratio.

It is consider the case when the observation time
can be divided into n non-overlapping intervals. In
each interval can be a coherent accumulation, and
fluctuations in the adjacent intervals between them-
selves independent. If the duration of coherent accu-
mulation is Tkogthen n=T/T,,, .

In this case o, =d? :afozl :
n

Working feature of detection is easily determined

in terms of the chi-square distribution with 2n degrees
X N-
1

of freedom: F(x;2N)=|———¢"/%dt:
(%:21) £2N(N—1)!
11 _p.
Py=1-F LPI;’Z”);Z,? ,
1+d

Here P;— detection probability; Pr— false alarm,
F7'(x;2n) — the inverse F(x;2n).

The value of parameter detection a’02 , required to
provide a given probability of correct detection and
false alarm can be obtained from the expression:

) F"(l—PF;2n)_1 )
(U -1

F—(1-Py;2n)

On Fig. 4 shows the parameter detection d? on
the ratio between the total accumulation time and

time coherent integration n for the probability of false
alarm Pr=10-8.

200 I
do? Py=10"
150 Pp=0.9 -
Pp=0.8
100 Pp=0.7

50
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From the figures it is clear that for a fixed prob-
ability of false alarm, there is an optimal ratio between
the total accumulation time and time coherent inte-
gration n, which requires minimum value detection

a'g to provide the required detection probability. This
optimum is the more pronounced the greater the re-
quired probability of correct detection.

On the other hand the optimum is not sharp and
close to optimal values are obtained in the range.
2<n<10.
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Panap co ciyyaiiHoii Bapuanmeii napaMeTpoB 30HIUPY-
omero curiana / B.B. Poguonos // IlpuknanHast paguo-
5JIEKTPOHUKA: Hay4.-TeXH. XypHai. — 2013. — Tom 12. —
NeI.—C. 122—-127.

B cTatbe paccMoTpeHO OOHAPYKEHUE TayCCOBBIX CUT-
HaJIOB Ha (hoHe rayccoBa IIymMa ¢ MCIOIb30BaHUEM MPUH-
UMoB Teopuu urp. [pennoxeHa GyHKIMSI KOMIIEHCALIUM,
0000111a10111as1 OTHOIIIEHWE CUTHAJ-IIYM Ha CiydyaiiHble
curHanbl. [TokazaHo, 4YTO MOTeHIMATbHAS YCTOMUYUBOCTD
pajapa K cTpaTerusiM pajuo3JeKTPOHHOTO MPOTUBOACH-
CTBHUSI JOCTMXKMMA TOJbKO MPU CIy4ailHOM HM3MEHEHUU
rapaMeTpoB 30HAUpYIoIIero curHaia. [MoTeHIMaTbHbIE
BO3MOKHOCTH pajiapa orpenessiioTcsl Mpou3BeIeHUeM 0~
JIOCHI YacTOT U JUIMTEJbHOCTH 30HIMPYIOLIETO CUTHAasa.
BpeMst KorepeHTHOro HaKOIUJICHUS TOJDKHO ObITh B 2—10
pa3 MeHbllle TOJHOIO BpeMeHU 0OpabOTKM IMPUHSITOTO
CUTHaJA.

Katouesble cn06a: MOCTAaHOBIIMK TIOMEX, paaap, TEO-
pUsl UTp, CUTHAJT.

Wn. 04. bubauorp.: 11 Ha3B.

VYIK 621.37

Panap 3 BUNaaKoBOIO 3MiHOI0 MapaMeTpiB 30HIYBaJIb-
Horo curHaiy / B.B. PomionoB // IlpukiagHa pamioenex-
TpOHiKa: HayK.-TexH. XXypHai. — 2013. — Tom 12. — Ne 1. —
C. 122-127.

VY cTaTTi pO3MISIHYTO BUSIBJICHHSI TayCOBUX CUTHAJIIB
Ha TJ1i TaycoBOi MEPelKOAN 3a BUKOPUCTAHHS MPUHIIM-
B Teopii irop. 3anporoHoBaHO (PYHKIIiI0 KOMIIEHCcALIii,
110 y3arajJbHIOE BiTHOIIEHHS CUTHAJ-IIYM Ha BUIAAKOBI
curHanu. [lokazaHo, 1110 MOTeHIIiliHA OMiPHICTb pagapy 10
cTparteriii pagioeJeKTPOHHOI MPOTUIil TOCSKHA TUIBKY 3a
BUIIAJIKOBOI 3MiHM MapaMeTpiB 30HIyI0Y0ro curuany. I1o-
TEeHILIiAHI MOXJIMBOCTI pagapa BH3HAYalOTbCS TOOYTKOM
CMYTH 4acTOT i TPUBAJIOCTI 30HIYI0YOro curHany. TepMiH
KOT€pEeHTHOTO HaKOIMUUYeHHs Mae 0yt B 2—10 pa3iB MeH-
LM Bil TOBHOTO Yacy 0OpOOKM MPUIHITOIO CUTHAITY.

Karouoei croea: MOCTAaHOBHUK 3aBaj, pagap, Teopis
irop, CUTHal.
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