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NEW METHOD FOR GENERATION OF QUASI-ORTHOGONAL CHAOTIC

SEQUENCES

KA. LUKIN, V.Ye. SHCHERBAKOV AND D.V. SHCHERBAKOV

A new method for generation of quasi-orthogonal chaotic sequences for applications both in radars and com-
munication systems has been suggested. The method is based upon a discrete chaotic map with two time
delay parameters. The phase space structure of the suggested algorithm has been analyzed using computer
simulation. The period spectrum of cyclic trajectories in the phase space for different values of the time
delay parameters has been founded. The statistical and correlation characteristics of binary pseudorandom
sequences, generated with the help of the suggested method have been studied in detail. It has been shown
that for the properly chosen time delay parameters the suggested discrete chaotic algorithm generates binary
pseudorandom sequences with a nearly uniform probability distribution. It has been shown that the correla-
tion characteristics of binary pseudorandom sequences generated are rather similar to those of random proc-

ess with a uniform probability distribution.
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INTRODUCTION

One of the problems extant in design of radar
and communication systems [1-5] lays in complex-
ity of truly random sequences generation. The most
appropriate generators of random sequences from the
viewpoint of their quality are the generators, based
on physical sources. However, they have number of
drawbacks, such as: implementation difficulties of
such generators in the required frequency band; com-
plexity of their integration with other systems and sub-
systems, and also no possibility of random sequences
reproducing using the same source.

That is why nowadays, pseudorandom sequences
are widely used in various radars, communication
and data transmission systems. A lot of algorithms for
pseudorandom sequences (PR-sequences) generation
are known to the date. Usually, recurrent algorithms
are used for the PR-sequences generation. Binary PR-
sequences on the basis of recurrent algorithms may be
readily realized as a computer code or, otherwise, as
a fast enough binary shift register. For example, so-
called M-sequences generator may be implemented
in this way. However, the main disadvantage of this
approach consists in the absence of mathematical
tool enabling derivation of algebraic polynomials for
the arbitrary large power, generating the sequences of
maximal period. In addition, their statistical proper-
ties, as a rule, are rather far from statistical properties
of truly random signals.

The choice of proper binary PR-sequences is a
very important stage of design and practical realiza-
tion of both radars and communication systems. The
chosen PR-sequence has to meet the requirements
for both good auto (cross)-correlation properties and
providing a large set for values of their lengths and,
in particular, large number of sequences ensembles
[2, 3, 5].

The known classes of both linear (M-sequences,
Hadamard-sequences, Gold-sequences, Kasami-
sequences and other) and nonlinear (Legendre-se-
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quences, bent-sequences and other) PR-sequences
do not meet some of the above requirements [5, 7].

Basic requirements to binary pseudorandom se-
quences (BPR-sequences), which can be used both in
radar and communication systems are as follows [5, 7
and 10]:

1) binary sequence must be balanced, i.e. a
number of «+1» differs from a number «-1» by no
more than one unit;

2) occurrence probability of block from « iden-
tical symbols must be close to p(k)=1/2F;

3) ensemble volume of binary sequences must
be maximally large;

4) autocorrelation function of binary sequence
must have one narrow peak and low side-lobes level,

5) it must be ensured a low level of cross-corre-
lation between different binary sequences;

6) binary sequences must be reproduced on the
receiving end of communication systems, i.e. it must
be ensured a possibility for exact reiteration of the gen-
erated binary sequence for the same initial conditions;

7) it must be ensured an acceptable complexity
of algorithm formula for its practical realization.

Nowadays, PR-sequences generated with a
computer code are in a wide use both in radars and
communication systems caused by resent advancing
in digital electronics. In turn, development of com-
putational mathematics methods resulted in elabora-
tion of the special generation algorithms for so-called
pseudorandom number sequences, in development
of which a special role plays the methods for chaotic
integer sequences generation in the limited interval of
integers.

Basic requirements to chaotic integer sequences
(Cl-sequences) are as follows [6, 8]:

1) high quality: statistical properties of Cl-se-
quence must be close to those of truly random process
and it might have as long pleriod as possible;

2) efficiency: algorithm for generation of CI-
sequence must be quiet fast and occupy the minimal
area in a computer memory;
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3) reproducibility: the algorithm might generate
exactly the same Cl-sequence of any length for a cho-
sen initial conditions, for arbitrary number of trials
and minor changes in initial procedure must result in
a generation of very different CI-sequences, still hav-
ing a high-quality statistical properties;

4) simplicity — the algorithm formula must be as
simple as possible in its realization and application.

In our opinion, random sequences generators
based upon multidimensional chaotic systems may
combine advantages of conventional random num-
bers generators used in computers and physical sourc-
es of noise signals.

In the paper we consider a new method for gen-
eration of quasi-orthogonal chaotic sequences, ap-
plicable in both radar and communication systems.
Besides we investigate the period spectrum of binary
pseudorandom sequences, generated according to the
method suggested, and also study their statistical and
correlation characteristics.

1. THE METHOD FOR GENERATION
OF BINARY PSEUDORANDOM
SEQUENCES BASED ON DISCRETE
CHAOTIC ALGORITHM

On the basis of mathematical model of self-os-
cillatory modes in one-dimensional electromagnetic
resonator with a nonlinear reflecting surface, the field
dynamics in which obeys the system of functional-
difference equations with rwo delays [9], the discrete
chaotic algorithm for generating binary pseudoran-
dom sequences has been developed and studied. This
algorithm can be attributed to the class of recurrent
parametric algorithms with two time delay param-
eters. The algorithms for PR-sequences generation
using nonlinear difference equation with one delay
have been derived in [11] from the model of nonlinear
ring self-oscillatory system with filtration and delayed
feedback.

The discrete chaotic algorithm suggested in our
paper is based on the discrete nonlinear functional
equation with two delay parameters, which in general
case may be written as follows:

Xn:F(Xn—qaxn—Q7q>Q’M)a (1)
where X, , X, , and X, , are calculated and given

terms of the generated chaotic integer sequence; 7,
q, O, M are integer natural numbers; M =2,3.4...;
0=234..;n=20+1;1<¢g<Q; q and Q are the first
and the second delay parameters, respectively.

F(X) is the function describing nonlinear trans-
formation (chaotic in general case) of initial values
of the electromagnetic field either in the problem of
self-oscillations in resonator with a nonlinear reflec-
tion [9] or in the time delay amplifying system [11],
but with two delayed feedback channels.

For g <Q the value of the delay parameter Q de-
termines the number of terms in the integer sequence
X, 1,X, 5. X, o. Using these values a new value

n-1>“n-2"*

of variables X, is iteratively calculated according to
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Eq.(1). That is why they might be used as initial con-
ditions for the iterative process of the PR-sequence
generation.

The authors has considered here the most simple
nonlinearity in the discrete chaotic algorithm Eq.(1),
namely linear dependence of the result on the linear
combination of two variables with two different de-
lays, but limited by modulus M:

v | Kat Ko T Xagt X g =M

- 2
"NXpeg + Xpg - M @)

otherwise

The theory of functional difference equations
implies the Eq.(2) with two delays is equivalently to
the system of Q equations with a single delay. Thus
a discrete algorithm (2) is defined on the bounded set
M of integer natural numbers, which belong to the
closed numerical interval [1, M]. For g<Q the phase
space of the dynamical system (2) has a dimension Q.
A number of system states in the phase space of the
system (2) that is defined on the bounded discrete set,
is finite and equals M©.

From Eq. (2) one can see that the return opera-
tion X, — X, — M isapplied to the values X, exceed-
ing M when generating chaotic integer sequence
{X,} , realizing thereby a nonlinear transformation of
the variable X, similar to the known algorithm of 1D
Bernoulli shift. Therefore the map (2) can be classi-
fied as multidimensional (M D) Bernoulli shift, oper-
ating in multidimensional phase space.

It is clear that in our case the algorithm for gen-
eration of chaotic integer sequences is the more rich
and more efficient in generation of many varieties of
quasi-orthogonal sequences suitable for applications
in both radar and communication systems.

Generation of binary pseudorandom sequence
has been implemented via clipping procedure of the
multilevel chaotic integer sequence with respect to
some threshold equals to M/2 according to the fol-
lowing rule:

i x, <M
Y, = Mz (3)
L X, >

Since every state for the self-oscillatory system is
defined on the finite and limited set of integers, the
system sooner or later returns back to its primary state
and process will be repeated. It means that a binary
sequence {Y,} formed by the system has a limited
length, representing a segment for pseudorandom
sequence of the above length. This implies that a
value M9 determines a maximal theoretical cycle,
but therefore a maximum possible duration of non-

periodic realization L =M, formed by the algo-
rithm of the given dimension. Appearance of a period
in the sequence {Y,} has been fixed when iteration
started with the exact values of initial conditions
X X X

n-1>*n-2+“*n-Q *
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2. RESULTS OF ALGORITHM STUDY

Phase space of the discrete dynamical system (2),
consists of a set of isolated points with co-ordinates
falling into the interval of integers [1,M ]| and deter-
mine unambiguously the system state. Dynamics of
the discrete dynamical system (2) may be described
with the help of its representative point in the plane
formed by the delayed coordinates which is, actual-
ly, an across-section of the phase space for the given
parameters of the map (2). If to connect these points
with solid lines we may get qualitative information on
the Cl-sequence length and chaotization rate of the
system motion for each given set of the system param-
eters.

Two examples are shown in fig. 1 and 2 for differ-
ent parameter sets of the map (2) .
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Fig. 1. Cross-section of the map (2) phase space in the
delayed coordinates for the following parameter set of the
map (2): M =125, Q =3, q = 1; and Cl-sequence period

=775; representative points of the discrete dynamical

system (2) are connected with solid lines at the neighboring
instances of time
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Fig. 2. Cross-section of the map (2) phase space in the
delayed coordinates for the following parameter set
ofthe map (2): M=125, Q=3,q=1, M=257, Q=23,
g = 1; and Cl-sequence period = 66307; representative
points of the discrete dynamical system (2) are connected
with solid lines at the neighboring instances of time
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One can see from these figures that the system
path corresponds to the finite motion in the limited
domain of the phase space. It is also seen, that the
chaotization rate of any integer sequence strongly de-
pends on the parameters M , O, ¢. As a rule, with
the increase of the parameters M and Q both the
chaotiztion rate of the integer sequence and its period
are increased.

Achievable values of the period of the binary
pseudorandom sequences generated with the discrete
chaotic algorithm (2) have been studied as functions
of both the parameters ¢, O, M and initial condi-
tions.

Examples of the estimated period spectrum of bi-
nary pseudorandom sequences generated for various
set of the parameters are represented in the Table 1.

The analysis of the above results has shown that
there are some general laws in the periods estimations
for the certain values of the M parameter. The most
interesting cases take place for M parameter defined
according to the following formulas:

a) M=2% where k=1,23...,
b) M =3% where k=12,3...,
c) M=5% where k=1,273....
Rather simple analytical expressions for calcula-

tion of all periods of binary pseudorandom sequences
have been obtained for the above cases, respectively:

a) Periodqﬁgzk = k-l Perioa’q"i;2 , 4)
b) Period s> =31 Period 5, (5)
c) Period;:[stk =5k Period;:[st. (6)

Generalizing these formulas we may derive the
analytical expression for calculation of large enough

periods of binary pseudorandom sequences generated

by discrete chaotic map (2) depending on the ¢, Q,
and M parameters:

Period;,lQ:mk =m*! Period;”IQ:m , (7)

where m is an integer natural number; m=2,3.4....

The period spectrums of binary pseudorandom
sequences generated with algorithm (2) for the given

values of the parameters ¢, Q, and M , and found-
ed from the condition of exact reconstruction of the
given initial conditions are presented in the Tables 2,
3 and 4.The periods obtained via simulation and cal-
culated with formulas (4 - 6) have an absolutely exact
coincidence. Increasing the values of the M , O, and
g parameters we may generate the binary pseudoran-
dom sequences of the long enough length according
to the Eq. (7).

In particular, certain laws have been found for
the special case when M parameter equals to an even
number and only parameters Q and ¢ are varied. The
related results of the period spectrums estimation for
binary pseudorandom sequences for the above case
are represented in the Table 5. Analyzing the Table 5
we may derive the followings laws:
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1) The period spectrum of binary pseudor- Let denote as v the number of sequences with
anflom sequences, f_ormed by the algorithm (2), is  an identical period: Period(v)g{ ;- Then, for exam-
strictly tsymn.letrlc with respect to the mean value of ple, the writing Perio d(z)f;:m ~1920 means that for
paraieter 4 M =256 and Q=4 there are two sequences with the

2) There are several different sequences with the
same period in the phase space of the map (2). period equal 1920. It follows from this consideration

48 | 528 | 12166 | 1518 | 139920 | 6436342 *
24 56 240 | 1092 6552 92456 396396 5840 1457960 | 13404552 | 4270560

50 | 155 780 120 7810 97655 5580 1953100 | 4882810 | 2436720 | 33908420
84 | 168 | 10980 | 2562 | 7797132 * * * * * *

Table 1
The period spectrum of binary pseudorandom sequences for the parameters set:
g=1,0=23...12 and M =2,3...32
Period
M/Q| 2 3 4 5 6 7 8 9 10 11 12
2 3 7 15 21 63 127 63 73 889 1533 3255
3 4 8 40 26 364 728 3146 80 1640 8744 6560
4 6 14 30 42 126 254 126 146 1778 3066 6510
5 10 31 156 24 1562 19531 1116 390620 976562 487344 | 6781684
6 24 56 240 546 6552 92456 198198 5840 1457960 | 13404552 | 4270560
7 16 57 342 336 2400 48 1921600 | 2241867 | 1680600 | 4483734 117648
8 12 28 60 84 252 508 252 292 3556 6132 13020
9 12 24 120 78 1092 2184 9438 240 4920 26232 19680
10 60 217 1560 168 196812 | 2480437 15624 * * * *
11 10 60 1330 120 118104 885775 * 590520 * 120 *
12 24 56 240 546 6552 92456 198198 5840 1457960 | 13404552 | 4270560
13 28 168 | 2196 | 366 371292 | 5198088 * * * 2613240 *
14 48 399 1710 | 336 50400 5096 * * * * *
15 40 248 | 3120 | 312 568568 | 14218568 | 3510936 | 1562480 * * *
16 24 56 120 168 504 1016 504 584 7112 12264 26040
17 36 288 96 288 88416 * 83520 * * * *
18 24 168 240 546 6552 277368 198198 17520 4373880 | 13404552 | 4270560
19 18 381 | 14480 | 180 | 2476098 * * * * * *
20 60 434 1560 168 196812 | 4960874 15624 * * * *
21 16 456 | 13680 | 4368 | 218400 4368 * * * * *
22 30 420 | 3990 | 840 354312 * * * * 61320 *
23 * % %k k
24
25
26
27
28
29
30
31
32

36 72 360 234 3276 6552 28314 720 14760 78696 59040
48 798 1710 | 336 50400 6096 * * * * *
14 840 | 12194 | 5226 | 707280 731640 * * * * *
120 | 1736 | 3120 | 2184 | 5117112 * * * * * *
30 920 | 61568 | 1986 | 476640 923520 * * * * *
48 112 240 336 1008 2032 1008 1168 14224 24528 52080
Note: * — more 16000000
Table 2

The period spectrum of binary pseudorandom sequences for the parameters set:

g=1,0=23...15 and M =2%, where k=1,2,3...11

Period
2 4 8 16 32 64 128 256 512 1024 2048
3 6 12 24 48 96 192 384 768 1536 3072
7 14 28 56 112 224 448 896 1792 3584 7168
15 30 60 120 240 480 960 1920 3840 7680 15360
21 42 84 168 336 672 1344 2688 5376 10752 21504

63 126 252 504 1008 2016 4032 8064 16128 32256 64512
127 254 508 1016 2032 4064 8128 16256 32512 65024 130048
63 126 252 504 1008 2016 4032 8064 16128 32256 64512
73 146 292 584 1168 2336 4672 9344 18688 37376 74752
889 1778 3556 7112 14224 | 28448 56896 113792 | 227584 | 455168 | 910336
1533 | 3066 | 6132 12264 | 24528 | 49056 98112 196224 | 392448 | 784896 | 1569792
3255 | 6510 | 13020 | 26040 | 52080 | 104160 | 208320 | 416640 | 833280 | 1666560 | 3333120
7905 | 15810 | 31620 | 63240 | 126480 | 252960 | 505920 | 1011840 | 2023680 | 4047360 | 8094720
11811 | 23622 | 47244 | 94488 | 188976 | 377952 | 755904 | 1511808 | 3023616 | 6047232 | 12094464
32767 | 65534 | 131068 | 262136 | 524272 | 1048544 | 2097088 | 4194176 | 8388352 | 16776704 | 33553408

&
—_ == ===
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Table 3
The period spectrum of binary pseudorandom sequences for the parameters set:
g=1,0=23...12 and M =3k, where k=1,2,3...10
Period
Q/M| 3 9 27 81 243 729 2187 6561 19683 59049
2 4 12 36 108 324 972 2916 8748 26244 78732
3 8 24 72 216 648 1944 5832 17496 52488 157464
4 40 120 360 1080 3240 9720 29160 87480 262440 787320
5 26 78 234 702 2106 6318 18954 56862 170586 511758
6 364 | 1092 3276 9828 29484 88452 265356 796068 2388204 7164612
7 728 | 2184 6552 19656 58968 176904 530712 1592136 4776408 14329224
8 3146 | 9438 | 28314 84942 254826 764478 | 2293434 | 6880302 20640906 | 61922718
9 80 240 720 2160 6480 19440 58320 174960 524880 1574640
10 | 1640 | 4920 | 14760 44280 132840 398520 1195560 3586680 10760040 | 32280120
11 | 8744 ] 26232 | 78696 | 236088 708264 | 2124792 | 6374376 | 19123128 | 57369384 | 172108152
12 {6560 | 19680 | 59040 177120 531360 1594080 | 4782240 | 14346720 | 43040160 | 129120480
Table 4
The period spectrum of binary pseudorandom sequences for the parameters set:
g=1,0=2,3..12 and M =5*, where k=1,2..5
Period
o/M 5 25 125 625 3125

2 10 50 250 1250 6250

3 31 155 775 3875 19375

4 156 780 3900 19500 97500

5 24 120 600 3000 15000

6 1562 7810 39050 195250 976250

7 19531 97655 488275 1441375 12206875

8 1116 5580 27900 139500 697500

9 390620 1953100 9765500 48827500 244137500

10 976562 4882810 24414050 122070250 610351250

11 487344 2436720 12183600 60918000 304590000

12 6781684 33908420 169542100 847710500 4238552500

3. STATISTICAL AND CORRELATION
CHARACTERISTICS OF BINARY

that the Results of the Table 5 may be presented as

follows:

Period(1)

Period(2)3) 1, =
Period(1);s_, =

One can see that with growth of the parameter Q
the number of different sequences with an identical

256 _
2,q=1 —

768, Period(2)7., 5 =

period is growing as well.

384, Period(4){7° 4710 =

896, Period(4)$,sq6=1,3,4,6 =

1920.

196224,

16256,

PSEUDORANDOM SEQUENCES
Probability distribution uniformity (or equiprob-

ability) of integers overa given interval [ 1, M |isa very

important issue in the problem of the generation of

chaotic integer sequences. From this point of view the

suggested discrete chaotic algorithm (2) is not perfect.
Nevertheless computer simulation carried out have
shown, that for the properly chosen values of the M ,

0, g parameters the algorithm (2) generates prac-
tically uncorrelated chaotic integer sequences with

nearly uniform probability distribution: p(x)=1/M ,
provided the following condition is met:

Table 5
The period spectrum of binary pseudorandom sequences for the parameters set:
M =256, 0=23...11 ug=1,23...10
Period
Q/q 1 2 3 4 5 6 7 8 9 10

2 384
3 896 896
4 1920 768 1920
5 2688 3968 3968 2688
6 8064 1792 1152 1792 8064
7 16256 11904 16256 16256 11904 16256
8 8064 3840 27776 1536 27776 3840 8064
9 9344 59520 2688 65408 65408 2688 59520 9344
10 113792 5376 130944 7936 1920 7936 130944 5376 113792
11 196224 262016 249984 | 196224 76160 76160 196224 | 249984 | 262016 | 196224
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Periodé‘{q (modM)=0. 8)

Among the chaotic integer sequences generated
by discrete chaotic algorithm (2) there are sequences
for which condition (8) is met exactly, as in the below
example:

Periody, =390620/5=78124..

At the same time, there are many sequences for
which condition (8) cannot be met exactly. Never-
theless, there are many sequences for which Eq. (8)
is met approximately, and such sequences are also of
a great practical interest. For example, chaotic inte-
ger sequences, generated with the suggested discrete
algorithm (2), may be related to the sequences of that
type:

Period}ﬁ5 =488275/125=3906,2;

Periods)’ =66307 /257 =258,004 .

The histograms of appearance frequency for
generated integers in some chaotic integer sequences
(CI-sequences) above mentioned are presented in fig.
3and 4.

1
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Fig. 3. Histogram of appearance frequency for different
integers in CI-sequence for the following parameters:
M=5,0=9,qg=1; Period =390620
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Fig. 4. Histogram of appearance frequency for different
integers in Cl-sequence for the following parameters:
M=125,0=7,q=1; Period =488275
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We also analyzed the appearance frequency of
the blocks of k identical characters in different re-
alizations of binary pseudorandom (BPR) sequences
generated via algorithm (2) and further application of
the clipping operation (3). It is known that for ideal
random process the appearance probability of blocks
compound of k identical characters of binary process
obeys the following probability distribution function

p(k)=1/2% [10]. Appearance frequencies of blocks
of k identical characters in BPR-sequence obtained
with the help of computer simulation using the algo-
rithm (2) are presented in fig. 5 and 6.

Besides, estimations of correlation character-
istics of BPR-sequences have been done for bulk
enough BPR-sequences (a few hundred), generated
via the algorithm (2) without any preferences in their
balance characteristic.

log block)

{3)

Fig. 5. Appearance frequency of blocks of k£ identical
characters in BPR-sequence as function of parameter k;
M=5,0=9,qg=1; Period =390620. Dashed line

corresponds to the probability distribution p(k)=1/2*

log blagy ) .

-3

Fig. 6. Appearance frequency of blocks of k identical
characters in BPR-sequence as function of parameter k;
M=125, Q=7, q=1; Period =488275. Dashed line

corresponds to the probability distribution p(k)=1/ 2k
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Both autocorrelation and cross-correlation func-
tions for the generated BPR-sequences of the length
N equal to the period ( Period ) of the generated se-
quences according to the Tables 1...5, have been stud-
ied aswell. Autocorrelation functions for two different
realizations of BPR-sequences, generated via discrete
chaotic algorithm (2) are presented in fig. 7 and 8.

The maximal levels of the autocorrelation function
side-lobes lay within the following range

R =(2,4..4,6)/IN , )

where N isthe length of the BPR-sequence.

The results obtained have shown that autocorrela-
tion and cross-correlation functions of BPR-sequenc-
es generated via Eq.(2) are rather close to those of an
ideal random process with the uniform distribution.
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Fig. 7. Autocorrelation function of BPR-sequences
for the following parameters:
M=125, Q=3, g=1; Period =775

03

06

| &

04

02

et btttk
4.1 610" g.10°

T

Fig. 8. Autocorrelation function of BPR-sequences
for the following parameters:
M=257, Q=3, g=1; Period =66307

The maximal outlier characteristics of the cor-
relations are practically the same in all investigated

Applied Radio Electronics, 2013, Vol. 12, No. 1

auto- and cross-correlation functions and they are
rather close to similar characteristics of the auto- and
cross-correlations of random sequences with uniform
probability distributions [7, 8 and 10].

CONCLUSIONS

1. A new method for generation of quasi-or-
thogonal chaotic sequences has been suggested for
applications both in radars and communication sys-
tems. The method is based upon a discrete chaotic al-
gorithm of a recurrent parametric type with two delay
parameters. This algorithm allows generating a rather
wide family of binary pseudorandom sequences.

2. Phase space structure of the suggested algo-
rithm has been investigated and analyzed via com-
puter simulation technique. The period spectrum of
cyclic trajectories in phase space for different values
of time delay parameters has been found. The analyti-
cal expression for calculation of rather long periods
of BPR-sequences generated via discrete chaotic map
with to delay parameters.

3. Statistical and correlation characteristics of
BPR-sequences, generated according to the method
suggested have been studied in detail. The computer
simulation has shown that for the properly chosen
values of the delay parameters the suggested discrete
chaotic algorithm generates binary pseudorandom se-
quences with close to uniform probability distribution
p(x)=1/ M. The correlation characteristics of BPR-
sequences generated correspond to the correlation
characteristics of the random process with uniform
probability distribution.

4. It is shown that quasi-orthogonal binary se-
quences, generated according to the method suggest-
ed fulfill all the requirements to the signals used both
in radars and communication systems.
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IIpemioxeH HOBbI MeTon (OPMUPOBAHUST KBa3u-
OPTOTOHAJIBHBIX XaOTUYECKUX TOCIIEI0BATEIbHOCTEN IS
MPUMEHEHUS KaK B pajapax, TaK U B CBSI3HBIX CUCTEMaX.
Merton pa3paboTaH Ha 0a3ze JDMCKPETHOTO XaOTUYECKO-
ro oTOoOpaXeHus C ABYMSl TapaMeTpaMy 3aras/iblBaHus.
KoMnbloTeEpHBIM ~ MOJEIMPOBAHUEM MPOAHATU3UPOBA-
Ha CTpykTypa (a30BOr0 MPOCTPAHCTBA MPEIJIOXKEHHO-
ro ajgroputMma. HaiiieH crnekTp mepuogoB IMKIMYECKUX
TpaekTopuilt B (Da30BOM IPOCTPAHCTBE, Pa3IUYaIOIINXCsI
rnapameTpamu 3anasasiBaHusi. [IpoBeneHo ucciegoBaHue
CTaTUCTUYECKUX U KOPPEISIIIMOHHBIX XapaKTePUCTUK Ou-
HapHbBIX IICEeBAOCIyYaliHBIX ITOCIeI0BaTeIbHOCTE!, chop-
MMPOBAHHBIX COIJIACHO MeToay. MojenupoBaHue I10-
Kas3ajo, 4To MPU COOTBETCTBYIOIIEM BBIOOPE MapaMeTPOB
3aMa3ablBAHUN TIPEIJIOKEHHBIA JTUCKPETHBIA XaoTh4de-
CKuUit anroput™ hopMUpyeT OMHAPHbBIE TICEBAOCTyYaiiHbIE
MOCE0BATEeIbHOCTU C pacIipe/ie/leHUEM BEPOSITHOCTEN,
0IM3KHUM K paBHOMepHOMY. IlokazaHo, UTO KOppesiu-
OHHBbIE XAPAaKTEPUCTUKU OWHAPHBIX TICEBAOCITYYaiHbIX
rocJieIoBaTeJIbHOCTE, C(HOPMUPOBAHHBIX JIUCKPETHBIM
XaOTUYECKUM QITOPUTMOM, COOTBETCTBYIOT KOPPEJSIIN-
OHHBIM XapaKTepPUCTUKaAM CJIy4aliHOTO IMpoliecca C paBHO-
MEPHBIM pacrpe/ieieHueM BepOSITHOCTE!.

Knrouesvie cnosa: KBa3UOPTOTOHAIbHAS XaoTHYE-
CKasg MOCJIeN0BATEIbHOCTb, AUCKPETHBIA XaOTUYECKUIA
JITOPUTM, XaOTUYECKAas LIeJIOYUCTIEHHAsI ITOCJIe10BATENb-
HOCTh, XaOTMYECKOe OToOpaxeHue, (ha3oBoe MPOCTpaH-
CTBO, OMHAapHas MceBaoCIyYaiiHas Mocjieq0BaTeIbHOCTbD,
aBTOKOPPEJISILIMOHHA W B3aMMHOKOPpPEJSILMOHHAs
GyHKIMS.

Tabs. 5. Puc. 8. bubauorp.: 11 HauM..
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Hoguii meTon ¢opMyBaHHsI KBa3iOPTOrOHAILHUX Xa0-
TauHux nocainosHocteit / K.O. Jlykin, B.€. Illepbakos,
[.B. lep6akos // [IpukiagHa pagioeleKTpOHIKa: HayK.-
TexH. kypHal. — 2013. — Tom 12. — Ne 1. — C. 17-24.

3anpornoHoBaHUl HOBUI MeToi (hOpMyBaHHSI KBa-
3i0pTOrOHAJIBHUX XaOTUYHUX TIOCiIOBHOCTE I 3a-
CTOCYBaHHS $IK B pajgapax, TaK i B CUCTeMax 3B’s3KY.
Meton po3pobiieHuii Ha 0a3i AUCKPETHOIO XaOTUYHOTO
BimoOpaxkeHHs1 3 JBOMa IlapaMeTpaMu 3alli3HIOBaHHSI.
Komm’ioTepHUM MoJeIIoBaHHSIM MpoaHali3oBaHa CTPYK-
Typa ($a30BOro MPOCTOPY 3arpONOHOBAHOTO aJITOPUTMY.
3HalAeHUI CMEeKTp MepiofiB LMKIIYHUX TPAEKTOPIi Y
¢da3oBOMy MPOCTOPi, IO PO3PI3HSIIOTHCS IapaMeTpaMu
3ami3HioBaHHs. [IpoBeneHO MOCTIIXKEHHsI CTaTUCTUYHUX
1 KOpessIiiHMX XapaKTepUCTUK OiHAapHUX TICEBIOBUIIAI-
KOBHUX MMOCJIiIOBHOCTEM, C(hOPMOBAHUX 3TiIHO 3 METOJIOM.
MogpenoBaHHs MoKa3ajo, 1110 MPU BiNOBiTHOMY BUOODI
IapaMeTpiB 3alli3HIOBaHb 3alPOTIOHOBAHUM TUCKPETHUI
XaOTUYHUIU alropuT™M (GopMye OiHApHI IICeBIOBUMNAIKOBI
MOCIiIOBHOCTI 3 PO3MOIIIOM HMOBIpHOCTEM, OJIM3bKUM
o piBHOMipHoro. [Toka3aHo, 1110 KOpessiiiiHi xapakTe-
PUCTHUKM OiHAPHUX TICEBAOBMUITAJKOBUX MOCIiIOBHOCTEMH,
chopMOBaHUX AUCKPETHUM XaOTUYHUM aJITOPUTMOM, BiJl-
MTOBIAAIOTh KOPEJSIIIHHIUM XapaKTepUCTUKAaM BUTIaIKOBO-
'O MPOILIECY 3 PIBHOMIPHUM PO3IOIIIOM MOBIpHOCTEI.

Karouoesi cnosa: KBa3iopToroHajbHa XaoOTUYHA MOCJIi-
JIOBHiCTb, NTUCKPETHUI XaOTUYHUI aJITOPUTM, XaOTHUYHA
LiJIounceNIbHA TTOCITiIOBHICTh, XaOTUYHE BimoOpaKeHHS,
¢a30BUii mpocCTip, OiHAapHA MCEeBIOBUITAJKOBA ITOCIIT0B-
HICTh, aBTOKOpEJISIIIifHA Ta B3a€EMOKOpeEILiiiHa (yHK-
1Iis1.
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