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EXTENDED CRITERION FOR ABSENCE OF FIXED POINTS

O. Kazymyrov

One of the criteria for selecting substitutions used in block ciphers is the absence of fixed points. This paper 
shows that this criterion must be extended taking into consideration mixing key function. It is shown that 
modulo addition has more advantages than XOR operation. It is shown in practice that encryption procedure 
of AES has a natural isomorphic form when fixed points are reached.
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1. INTRODUCTION

Substitution boxes (S-boxes) map an nth bit length 
input message to an mth bit length output message. 
They provide confusion in symmetric algorithms. For 
different tasks S-boxes are used in various forms. In 
stream ciphers a substitution is represented usually as 
a vectorial Boolean function [1]. Permutations con-
stitute a subclass of substitutions and are commonly 
used in block ciphers as a lookup table. Regardless of 
ciphers an S-box can be converted from one form to 
another one.

Substitutions must satisfy various criteria for 
providing high level of security against different types 
of attacks [2]. A substitution satisfying all criteria is 
perfect. However, such substitutions don’t exist up to 
date. Therefore, in practice, substitutions satisfying 
several important criteria are used. They are called 
optimal S-boxes. Optimality criteria vary from cipher 
to cipher. Generating permutations with optimal cri-
teria is a quite difficult task, especially for a large n an 
m. The problem is particularly solved by using EA- or 
CCZ-equivalence [3, 4].

One of the criteria is absence of fixed points. It is 
used in many ciphers for increasing resistance against 
statistical attacks [5]. Designers of modern ciphers try 
to get rid of the fixed points. This is achieved by us-
ing affine equivalence, which is a particular case of 
EA-equivalence. The S-box of advanced encryption 
standard (AES) was constructed using this technique 
[5, 6]. But the application of this method does not 
totally prevent the appearance of fixed points. In this 
paper we show an isomorphic form of AES when fixed 
points are reached.

Two ciphers Ei  and E j  are isomorphic to 
each other if there exist invertible maps ϕ : x xi j

 ,
ψ : y yi j

  and χ : k ki j
  such that y E x ki

i
i i= ( , )  

and y E x kj
j

j j= ( , )  are equal for all xi , ki , x j  and 
k j  [7, 8]. Obviously, the cipher could have a lot of 
isomorphic basic transformations as well as full en-
cryption procedures. The cipher BES is a well-known 
example of isomorphic AES [9]. In [10] an example of 
isomorphic AES in which the differential probability 
is higher than in the original cipher was shown. We 

show another example, which is a special case of iso-
morphic AES. The new cipher includes a substitution 
with a fixed point while almost all transformations are 
unmodified.

2. PRELIMINARIES

Arbitrary substitution can be represented at 
least in three different forms: algebraic normal form 
(ANF), over field F

2
2n GF n= ( )  and lookup table. 

Most of substitutions used in block ciphers have a 
table representation because of simplicity of descrip-
tion and understanding. Meanwhile arbitrary S-box 
S can be always associated with a vectorial Boolean 
function F in F

2n x[ ] . If a substitution is a permutation 
then F is defined uniquely.

The natural way of representing F as a function 
from F2

n  to F2
m  is by its algebraic normal form:

a x aI i
i II n

I
m

∈⊆
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







 ∈

{ , , }

, ,
1

2


F

(the sum is being calculated in F2
m ) [1]. The algebraic 

degree of F is the degree of its ANF. F is called affine if 
it has algebraic degree at most 1 and it is called linear 
if it is affine and F ( )0 0= . A vectorial Boolean func-
tion in table representation can be easily transformed 
to AFN form and vice versa.

Two functions F G n m, :F F2 2  are called ex-
tended affine equivalent (EA-equivalent) if there exist 
an affine permutation a1  of F2

m , an affine permuta-
tion a2  of F2

n  and a linear function L3  from F2
n  to 

F2
m  such that

F x A G A x L x( ) ( ) ( )= +1 2 3  .                 (1)

Clearly, a1  and a2  can be presented as 
A x L x c1 1 1( ) ( )= +  and A x L x c2 2 2( ) ( )= +  for some 
linear permutations L1  and L2  and some c m

1 2∈F , 
c n

2 2∈F . Two functions F and G are linear equivalent 
if equation (1) is correct when L3 0= , c1 0= , c2 0= . 
If the equation (1) is preserved only for L3 0= , then 
functions F and G are called affine equivalent [11].

In matrix form EA-equivalence is represented as 
follows
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F x M G M x V M x V( ) .= ⋅ ⋅ ⊕( )⊕ ⋅ ⊕1 2 2 3 1

where elements of M M M V V1 2 3 1 2, , , ,{ }  have dimen-
sions m m n n m n m n× × ×{ }, , , ,  [3].

An element a n∈F2  is a fixed point of F n m:F F2 2  
if F a a( ) = . The absence of fixed points criterion is 
defined as follows.

Definition 1. A substitution must not have fixed 
point, i.e.

F a a a n( ) ,≠ ∀ ∈F2 .

For any positive integers n and m, a function F 
from F2

n  to F2
m  is called differentially δ -uniform if 

for every a n∈F2 0\ { }  and every b m∈F2 , the equation 
F x F x a b( ) ( )+ + =  admits at most δ  solutions [1]. 
Vectorial Boolean functions used as S-boxes in block 
ciphers must have low differential uniformity to allow 
high resistance to differential cryptanalysis [12].

The nonlinearity criterion is closely connected 
to the notion of Walsh transform, which can be de-
scribed as a function

λ( , )
( )

u v
v F x u x

x n

= −( ) ⋅ + ⋅

∈
∑ 1

2F

,

where “ ⋅ ” denotes inner products in F2
n  and F2

m  re-
spectively [1]. A substitution has an optimum resist-
ance to linear cryptanalysis if the maximum absolute 
value of Walsh coefficients is small [13]. Substitutions 
with the limit values of λ( , )u v  exist for odd n only.

These two criteria are major while selecting sub-
stitutions for new ciphers. However, there are many 
others criteria like propagation criterion, absolute 
indicator, correlation immunity, strict avalanche cri-
terion, etc [1, 2, 14]. It has been still not proven the 
importance of the criteria. For example, the substi-
tution used in AES doesn’t satisfy most of them. No 
practical attacks were proposed on block cipher based 
on the most of these criteria.

Let E
l k l

: , , ,0 1 0 1 0 1{ } ×{ } { }  be a function taking 
a key K of length k bits and input message (plaintext) 
M of length l bits to return output message (cipher-
text) E M K( , ) . For each key K let EK

l l
: , ,0 1 0 1{ } ×{ }  

be the function defined by E M E M KK ( ) ( , )= . Than 
E is a block cipher if EK  and EK

−1  are efficiently com-
putable, and EK  is a permutation for every K.

Most of the modern block ciphers are based on 
an iterative procedure. In Figure 1 the iterative func-
tion is depicted as the round function.

A general iterative cipher can be mathematically 
presented as follows

E M PW R IW MK k
i

r

k kr i
( ) ( ),= ( )+

=
1

2
1

 



where R is a round procedure, IW is a prewhitening 
procedure and PW is a postwhitening procedure. In 
Figure 1 a key schedule is an algorithm that takes the 
master key (K) as input and produces the subkeys 
( k k kr1 2 1, , , + ) for all stages of encryption algorithm.

A mixing key procedure of a block cipher is an al-
gorithm, which injects a round key into an encryption 

procedure. For the majority of the modern block ci-
phers, the mixing key function is implemented as ex-
clusive or (XOR) operation because of implementa-
tion simplicity.

Fig. 1. General structure of an iterative 
block cipher

3. A BRIEF DESCRIPTION OF AES

AES is a substitution permutation network (SPN) 
block cipher that supports a fixed block size of 128 bits 
and a key size of 128, 192 or 256 bits [6]. The number 
of rounds depends on the key size and is equal to 10, 
12 or 14 respectively. The round function consists of 
four functions: AddRoundKey (σk ), SubBytes ( γ ), 
ShiftRows ( π ) and MixColumns ( θ ).

The whole encryption algorithm is described as 
follows (Figure 2)

E M MK k
i

r

k kr i
( ) ( )= ( )+

=

σ π γ σ θ π γ σ1
2

1
      



.

Fig. 2. Encryption algorithm of AES
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The SubBytes transformation processes the 
state of the cipher using a nonlinear byte substitu-
tion table that operates on each of the state bytes in-
dependently [6]. The S-box of AES was generated by 
finding the inverse element in the field F

28  followed 
by applying affine polynomial. In terms of equation 
(1) the transformation has a form

F x A x L x c( ) ( ) ( )= = +− −
1

1
1

1
1 .

The substitution table generated by vectorial 
Boolean function F :F F

2 28 8  satisfies the following 
criteria:

–	 the maximum value of non-trivial XOR dif-
ference transformation probability is 2 6− ;

–	 the maximum absolute value of linear ap-
proximation probability bias is 2 4− ;

–	 the minimum degree of the component func-
tions is 7 [5, 15].

It should be noticed that the chosen polynomial 
x−1  allows to describe the S-box and the whole cipher 
by overdefined system of equations with degree 2 [16]. 
But in the same time it is resistant to differential, lin-
ear and other statistical methods of cryptanalysis. Ad-
ditional to general properties the constant of the AES 
S-box has been chosen in such way that it has no fixed 
points. 

The MixColumns transformation takes all of the 
columns of the state and mixes their data (independ-
ently of one another) to produce new columns [6]. 
This transformation could be represented in different 
ways. One of them is the matrix multiplication. For 
4 4×  matrix m and input state x the output state y of 
the transformation is described as

y M x= ⋅ .

The matrix M with maximum distance separable 
(MDS) property is used in AES. The MDS property 
associates with a branch number (β )

β = + ⋅≠min ( ( ) ( )),x W x W M x0

where W z( )  is the Hamming weight of a byte vector 
z .

From the definition of MDS matrix, it is known 
that the maximum differential branch number of m by 
m MDS matrix is m +1  [17]. Hence, MDS matrices 
have the perfect diffusion property for byte-oriented 
ciphers.

Multiplication in a filed F
2n  is a linear transfor-

mation with respect to XOR, so MixColumns trans-
formation preserves the linear property [9]

θ θ θ( ) ( ) ( )x y x y+ = + .

The ShiftRows transformation processes the 
state by cyclically shifting the last three rows of the 
state by different offsets [6]. More precisely, row i 
is moved to the left by i byte positions for 0 3≤ ≤i . 
The ShiftRows is also a linear function that preserves 
π π π( ) ( ) ( )x y x y+ = +  property.

Both MixColumns and ShiftRows transforma-
tions help to ensure that the number of active S-boxes 
is large even after few rounds [5]. These functions are 

the basis of the security offered by the AES against 
differential and linear cryptanalysis.

AddRoundKey transformation is the mixing key 
function in which a round key is added to the state 
using XOR operation. The length of a round key 
equals the size of the state. XOR operation of two n-
bit length vectors a and b can be performed bit by bit 
n times. Therefore, AddRoundKey operation of AES 
can be done independently of each byte.

4. A NEW CIPHER ISOMORPHIC TO AES

There exist several examples of ciphers isomor-
phic to AES. For example, the big encryption system 
(BES) describes AES over F

28  [9]. The cipher AES 
can be also represented as the system of multivariate 
equations of the 2nd degree over F2  [16]. These two 
examples are based on the algebraic features of the 
substitution. But there is another approach based on 
linear properties of the basic functions (i.e. MixCol-
umns and ShiftRows).

The cipher AES is based on Rijndael that was 
proposed by Daemen and Rijmen to AES process 
[18]. Authors have used design simplicity principle, 
which led to performance improvement and code 
compactness properties of the cipher on a wide range 
of platforms. For increasing decryption performance 
of software implementation they use precomputed 
lookup tables and the linear properties of basic func-
tions.

The original decryption algorithm for arbitrary 
ciphertext C mathematically can be represented as 
follows (Figure 3) [6]

D CK k
i

r

kr i
( ) = ( )− −

=

− − −
− +

σ γ π θ σ γ π
1 2

1 1

2

1 1 1
      



σkr
C

+1
( ) .

Fig. 3. Decryption algorithm of AES
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For using the precomputed tables it is neces-
sary to transform the decryption round function to 
the similar one of encryption algorithm. Since the 
functions γ−1  and π−1  are computed independently 
they have a commutative property γ π π γ− − − −=1 1 1 1

   
[5, 9]. In Section 3 it was stated that the functions θ−1  
and σ  are linear hence

θ σ σ θ
θ

− −
− + −

− +
=1 1

2 1
2

 k kr i r i( )

Thus, the whole decryption algorithm has the 
form (Figure 4)

D CK k
i

r

kr i
( )

( )
= (− −

=

− −
−

− +
σ π γ σ θ π

θ1 1
2

1 1

2

1 1
     



 γ σ− ) +

1
1kr

C( ) .

The usage of such elementary transformations 
helps to achieve a significant acceleration of the de-
cryption procedure due to the isomorphic properties 
of the basic functions [5].

Obviously, the same technique can be applied to 
the encryption algorithm. However, our task is to find 
a representation of the cipher in which properties of a 
new substitution will differ from the original one.

Fig. 4. Algorithm for fast software 
implementation

For simplicity of description, let us assume that 
the round keys are independent of each other. Then 
the encryption procedure takes a form (Figure 5)

E MK k
i

r

kr i
( )

( ) ( )
= (− − −+

=

π σ γ θ π σ
π π θ

     

 

1 1 11
2

 γ σ) k M
1
( )

The equation shows that the last ShiftRows op-
eration is redundant in terms of resistance to attacks. 
As it was stated above the availability of this function 

is necessary for fast implementation of the decryption 
procedure.

Fig. 5. Modified encryption algorithm

Fig. 6. Isomorphic encryption algorithm  
with a fixed point

Since arbitrary permutation S can be represented 
as vectorial Boolean function F n n:F F

2 2
  then it 

can take the form [3]

F x F x F( ) '( ) ( )= + 0 .

The substitution of AES has more simple form 
than F x L x c( ) ( )= +−1 , where c F= ( )0 . Since the 
characteristic of the field is 2, the constant can be 
moved to the round keys. Let ξ  be a function in which 
the constant c is XORed with all bytes of a state. If 
the round keys π θ ξ− −1 1

  ( )ki  are denoted by ki
'  than 

encryption procedure takes the form (Figure 6)

СИНТЕЗ И АНАЛИЗ СИМЕТРИЧНЫХ ПРЕОБРАЗОВАНИЙ
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E MK k
i

r

kr i
( )

( )
' '

'= ( )− +
=

π σ γ θ π σ γ
π ξ

      

 

1 1
2

σk M
1
( ) ,

where γ '  is the SubBytes function consists of substitu-
tions of the form F x L x( ) ( )= −1 .

Figure 6 shows that the structure of the cipher 
remains unchanged. Clearly, if adversary finds a 
round key for modified cipher she also automatically 
obtains corresponding round key of the original ci-
pher because of the linear correspondence between 
the keys ki  and ki

' . However, the new substitution 
F x L x( ) ( )= −1  has the fixed point in x = 0 . Conse-
quently, the substitution of AES doesn’t satisfy the 
absence of fixed points criterion.

Described feature of the cipher appears from the 
fact that the operation XOR is linear with respect to 
MixColumns and ShiftRows. If we replace the mix-
ing key function with some nonlinear function (i.e. 
addition modulo 232), then it would be impossible to 
find an isomorphic cipher of such form. Therefore, a 
mixed key function based on modulo addition is cryp-
tographically stronger than a function based on XOR 
operation.

Furthermore, fixed points are directly connect-
ed with cyclic properties of substitutions. Inserting 
an invertible linear function ( τ ) into the encryption 
procedure gives a new isomorphic cipher (Figure 7). 
Herewith, the linearized polynomial can be added to 
the round key and the inverse function can be part of 
the new substitution (Figure 8). The cyclic properties 
of the new substitution will depend on the selected 
function τ .

Fig. 7. Modified AES with an invertible linear function 

Fig. 8. Isomorphic cipher of modified AES  
with an invertible linear function

Thereby, adversary in the case of a linear mixing 
key function can control the cyclic and the absence of 
fixed points properties of a substitution. Thus, a new 
criterion for substitutions follows from the descrip-
tion above.

Definition 2. Substitutions S S Sn1 2, , ,  used in 
diffusion layer must belong to different classes of equiva-
lence.

Clearly, if substitutions are in the same class (i.e. 
EA-equivalent) then adversary can find an isomor-
phic cipher, which consists of one substitution and 
modified linear layer. So there will be no advantages 
to use multiple substitutions. The criterion have to 
be considered both in the design of new ciphers and 
in the analysis of existing ones [19, 20]. Since CCZ-
equivalence is the most general case of known equiva-
lence, it makes sense to check whether substitutions 
belong to different CCZ-equivalence classes.

5. CONCLUSIONS

It was shown that the absence of fixed points cri-
terion works only in the case if S-box is considered as 
a separate function. There are isomorphic representa-
tions of ciphers in which this criterion is not met. This 
may lead to a weakening of the cipher strength. The 
method of AES description gives a tool for attacking 
the cipher, which has been practically secure more 
than decade.

Since the adversary can add arbitrary invertible 
linear function to encryption procedure, the cyclic 
properties also are not important for substitutions. It 
was shown that mixing key function based on modulo 
addition is more resistant with respect to the absence 
of fixed points criterion than function based on XOR 
operation.

Isomorphism of ciphers adds further restric-
tions on using multiple substitutions. The proposed 

Kazymyrov O. Extended criterion for absence of fixed points
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criterion can be used to reduce the number of isomor-
phic ciphers, thereby reducing the probability of find-
ing the weakest algorithm.
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УДК 621.3.06
Расширенный критерий для отсутствия фиксиро-

ванных точек / О.В. Казимиров // Прикладная радио
электроника: науч.-техн. журнал. – 2013. – Том 12. –  
№ 2. – С. 209–214.

Одним из критериев для выбора подстановок, ис-
пользуемых в блочных шифрах+, является отсутствие 
неподвижных точек. В статье показано, что этот кри-
терий необходимо расширить, принимая во внимание 
функцию смешивания ключа. Показано, что исполь-
зование модульного сложения более предпочтитель-
но, чем XOR. На практике продемонстрировано, что 
шифрующее преобразование АЕS имеет изоморфную 
форму, в которой присутствуют неподвижные точки.

Ключевые слова: фиксированные точки, AES, 
критерий, s-бокс. 
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УДК 621.3.06
Розширений критерій для відсутності фіксованих 

точок / О. Казиміров // Прикладна радіоелектроніка: 
наук.-техн. журнал. – 2013. – Том 12. – № 2. – С. 209–214.

Одним із критеріїв для вибору підстановок, що 
використовуються у блокових шифрах, є відсутність 
нерухомих точок. У статті показано, що цей критерій 
треба розширити, приймаючи до уваги схему розгор-
тання ключа. Показано, що використання модульно-
го додавання краще, ніж XOR. На практиці продемон-
стровано, що шифруюче перетворення АЕS має ізо-
морфну форму, в якій присутні нерухомі точки.

Ключові слова: фіксовані точки, AES, критерій, 
s-бокс. 
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