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A COMPETITIVE DESCRIPTIVE REGULARIZATION MVDR BEAMFORMING
APPROACH FOR FEATURE ENHANCED ARRAY RADAR IMAGING

YURIY SHKVARKO, VICTOR ESPADAS, AND DAVID CASTRO

The paper develops a new robust adaptive beamforming (AB) inspired approach for high resolution array
radar imaging in harsh sensing environments. At the hardware codesign level, i.e., the array configuring
stage, we adopt the celebrated GeoSTAR sensor array geometry that provides a desirable low side lobes level
of the point spread function (PSF) attained employing the conventional matched spatial filtering (MSF)
technique for radar image formation. At the software codesign level, i.e., the algorithm design stage, we
suggest performing the unification of the recently developed descriptive experiment design regularization
(DEDR) framework with the sparsity preserving and convergence guaranteed regularizing projections onto
convex solution sets (POCS). The low resolution MSF image serves as an input (zerostep iteration) for the
feature enhancing DEDRPOCSAB processing. The latter is implemented in an effective implicit iterative
fashion avoiding cumbersome data covariance matrix inversions in contrast to all competing minimum vari-
ance distortionless response (MVDR) inspired robust ABbased radar imaging techniques. The effectiveness
of the proposed method in comparison with the most prominent competing techniques is corroborated via
extended simulations adapted for the harsh test sensing scenarios of multiple target imaging with mmband
array radar systems that employ different feasible sensor array configurations.
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INTRODUCTION

Beamforming is a pervading task in a variety of
array radar signal processing applications, (e.g., see
[1] — [11] and the references therein), in particular,
in feature enhanced array radar imaging (RI) that is
a matter of this study. Due to adaptive (i.e., structur-
ally constrained data dependent) adjustment of the
weight vectors in the processing array radar channels
the adaptive beamforming (AB) based RI techniques
can attain enhanced resolution performances and
much better interference rejection capability than
the data-independent beamformers that implement
the conventional so-called matched spatial filtering
(MSF) image formation method [2], [6]. However
the AB-based techniques are sensitive to harsh op-
erational scenario uncertainties attributed to random
signal perturbations in a turbulent propagation me-
dium, possible imperfect sensor array system calibra-
tion, signal fading, near-far waveform mismodeling,
local scattering, multiplicative noise, angular spread-
ing, as well as other distorting effects. In such harsh
practical scenarios, the performance degradation of
the traditional MVDR inspired AB-based techniques
become pronounced because most of these tech-
niques are based on the assumption of an accurate
knowledge of the array response of the desired signal
[6]. The problem has spurred development of various
robust AB versions, and many sophisticated robust
AB techniques are now available including the con-
sidered RI applications (e.g., see [2]—[4], [7]—[11]
and the references therein). The majority of those
employ the robust modifications of the celebrated
MVDR method [2], [9]—[11] that all require cumber-
some data covariance matrix inversions. Different ro-
bust AB versions adapted for harsh sensing scenarios
propose specific procedures based on the so-called
worst-case performance optimization [2], [6] that
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also employs cumbersome matrix inversions. Crucial
still unresolved problem relates to the development
of robust AB-based feature enhanced RI framework
and related techniques that avoid such cumbersome
data covariance matrix inversions proposing alterna-
tive approaches based on imaging inverse problem
phenomenology and employing multilevel image for-
mation concepts with iterative reconstructive radar
image processing.

In the previous paper of this series [1], we have
featured the descriptive experiment design regulari-
zation (DEDR)-based approach [8], [9] for robust
imaging of multiple target scenes via space-time
processing of multimode mm-band array radar data.
The multiple frequency-polarization signal process-
ing (SP) mode was employed to provide necessary
DEDR redundancy that was next exploited to en-
hance the spatial resolution performances in different
operational environments including harsh scenarios
with imperfect array calibration, partial sensor failure
and/or uncertain noise statistics. The addressed in [1]
framework can be referred to as a robust extension
of the Van-Cittert-Zernike approach [5], [11] based
on the matched spatial filter bank SP for such real-
istic operational scenarios. Hence, the MSF-based
low resolution array radar image formation employs
the robust regularized matched spatial filter bank SP
[1]. At the hardware (HW) co-design level (i.e., the
array configuring) we adopted the celebrated Geo-
synthesized thinned array radiometer (GeoSTAR)
sensor array geometry [5]. In [1], the HW co-design
problem of suppression of the sidelobes in the result-
ing MSF system output point spread function (PSF)
balanced over the minimization of the effective width
of its principal lobe was resolved by optimizing the ar-
ray configuration characteristics. As it was featured in
[1], the advantage of the GeoSTAR array geometry
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consists in providing a desirable PSF shape with a
sharp principal lobe and considerably lower side lobes
level than those attained with other feasible array
configurations [1], [2], [5]. Unfortunately, being ro-
bust against harsh scenario model uncertainties, such
DEDR-related MSF imaging technique provides im-
ages that do not manifest enhanced spatial resolution
performances because no structurally constrained
robust AB-based SP and image processing have been
employed.

In this paper we address a new robust AB-based
approach for high resolution array radar imaging in
harsh sensing scenarios. At the software (SW) co-de-
sign, i.e., the algorithm design level, the new robust
AB-based RI technique utilizes the idea of unification
of the recently developed robust DEDR framework
[9], [ 16] with the sparsity preserving and convergence
guaranteed regularizing projections onto convex so-
lution sets (POCS) [11]. As in the previous develop-
ments [1], at the HW co-design level we adopt the
celebrated GeoSTAR sensor array configuration [5].
The feature enhanced RI is next stated and treated
in the context of imaging inverse problems phenom-
enology [11], [16], [18]. In the addressed framework,
the MSF image serves as an input (zero-step iteration)
for the second level feature enhanced reconstructive
imaging via multilevel DEDR-POCS-AB-based pro-
cessing of the initial low resolution MSF image. The
reconstructive feature enhanced image processing is
implemented in an effective implicit iterative fashion
avoiding cumbersome data empirical covariance ma-
trix inversions in contrast to all considered competing
minimum variance distortionless response (MVDR)
based robust AB techniques, e.g., [2], [6], [13], [14].
The effectiveness of the proposed method in com-
parison with other most prominent competing RI
techniques [2], [6], [14] is corroborated via extended
simulations adapted for the test scenarios of multiple
target imaging with mm-band array radar systems that
employ different sensor array configurations [1]. The
results are indicative of the superior operational effi-
ciency of high resolution localization of the multiple
closely spaced targets with the GeoSTAR configured
array imaging radar that implements the proposed
multilevel DEDR-POCD-AB signal processing
method.

The rest of the paper is organized as follows. In
Sections I and II we recall the main HW-SW co-
design results of the DEDR-related MSF method
referring to the first paper of these series [1]. Section
I1I presents the imaging inverse problem formalism of
the feature enhanced RI problem at hand. In Section
IV we develop our new DEDR-POCS-restructured
MVDR approach that leads to the DEDR-POCS-AB
framework. The implicit iterative scheme for efficient
implementation of the overall DEDR-POCS-AB
technique for feature enhanced array radar imaging
that do not involve any matrix inversions is detailed
in Section V followed by the simulation results with
the relevant discussions in Section VI and concluding
remarks in Section VII.
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I. CONSIDERED RI SYSTEM
HW SPECIFICATIONS

The GeoSTAR imaging sensor system has
been originally addressed in [5] as a concept to pro-
vide high resolution imaging of distributed scenes
remotely sensed with passive microwave and mm
waveband radiometers. Nevertheless, the celebrated
GeoSTAR array configuration is also well adapted for
active RI systems as it was demonstrated in [15] and
also featured in details in the previous study [1]. The
particular mm-band imaging array radar system con-
sidered in that previous paper [1] is a multimode array
sensor system. Such system operates at two separate
yet concurrent frequencies of 24.5 GHz and 35 GHz
with dual polarization (V — vertical and H — horizon-
tal). At one instant, radio frequency (RF) pulses of a
specified very narrow (~10 ns) pulse width (PW) are
transmitted concurrently at 24.5 and 35 GHz in either
V polarization or H polarization. These pulses are
“calibrated” to maintain coherency so that their am-
plitudes and phases are constant for different pulses.
The transmitting antenna is switched between verti-
cal (V) and horizontal (H) polarizations, i.e., Vand H
transmitted pulses are delayed by a certain time. For
each frequency (24.5 GHz or 35 GHz), transmitted V
polarized and H polarized RF pulses are separated by
a half of the fixed pulse repetition time (PRT/2).

In [1], the antenna array is composed of 24 el-
ements as in [5], [15]. Each sensor element receives
signals at V and H polarizations. The received signals
are spread over time duration of N = R. PWs, where
R.is the number of range resolution cells used to pro-
cess the received signals for each transmitted pulse.
In every PRT corresponding to one frequency band
(24 GHz or 36 GHz), one time delay vector T4 and
4 measurement data vectors, {Uyy, Uyy, Upy, Ugy) are
provided for further processing. That is, for each po-
larization mode {VV, VH, HV, HH} there is no time
delay between receiving antenna elements since they
are spaced close to each other, so T4 has the same
value for all 24 array elements for each range gate.
Next, each data vector in the set {uyy ..., gy} contains
the relevant in phase (/) and quadrature (Q) compo-
nents that compose 24-element (m = 1,..., 24) data
vectors collected for 2R, measurement time instants.
The operation range of the system lies in the interval
from 1m to 50m, with a range resolution cell of 0.3m,
so at the SP level the observer controls R.= 165 over-
all processing range gates.

The crucial SP issue relates to the formation of
the empirical estimate Y,,= avier{u,‘ p( j)u:| p( J)} ofthe
sensor data true correlation matrix R, = <u, u; >
for each range gate r =1, ..., R.= 165 at each polari-
zation mode indexed now by p = VV, VH, HV, HH.
The independent realizations {u,| p( D; j=1...J}in
the averaging procedure for formation of Y, are to be
recorded over Jtransmitted pulses for each range gate
rat each polarization mode p. To guarantee the full-
rank sensor data covariance matrices {Y,,; r = 1,...,
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R, =165; p = 1,..., 4} the minimal number of inde-
pendent recordings J should be not less than the
number of sensors (M = 24), thus J > 24 independ-
ent realizations are to be recorded for each feasible
“range gate (r) — polarization mode (p)” combination
{rp}. In the opposite case (J < 24), the empirical data
covariance matrices are rank-deficient. This means
that for J < 24 at the corresponding {Ap} the robust
MSF-based beamforming inevitably faces the prob-
lem of huge artifacts on the low resolution noise cor-
rupted scene images [11], [18]. At the target detection
SP stage, such artifacts inevitably increase the false
alarm rate [2], [6], [11], [14]. That is why, in all SP
developments in [1] and in this study, the redundancy
guaranteed data collection mode J > 24 is considered.
To compare different HW designs, in [1] we
featured three feasible sensor array configurations.
Fig. 1(a) shows the conventional X-shaped equally
spaced 24 element antenna array layout for the in-
ter-element spacing dy = 1.8X,, where A, defines the
employed wavelength, in this case f, = 24 GHz. The
corresponding so-called uv spatial samples in the vis-
ibility domain are presented in Fig. 1(b). In Fig. 2(a),
a circular-shaped (O-shaped) antenna array layout
with the same parameters is depicted. The related uv
spatial visibility samples are shown in Fig. 2(b). The
GeoSTAR Y-shaped array layout is presented in Fig.
3(a) with the corresponding uv samples in Fig 3(b),
respectively. In all cases, # and v samples specify the
normalized (so-called visibility domain) coordinate
representation format, i.e., u = x/A,, and v=y/A,.

I1. MSF IMAGE FORMATION
TECHNIQUE

The DEDR-related (i.e., low artifacts) MSF-
based image formation algorithm featured in the pre-
vious study [1] comes directly from the Celebrated
Van-Cittert-Zernike theorem from radio astronomy
[5], [11] according to which, the noise-free data vis-
ibility function R(u,v) (constructed directly from the
noise free data true covariance function R(x,y) at each
range gate via its scaling to the visibility domain [11])
and the related spatial spectrum pattern (SSP) or the
angular brightness distribution 5(6,,0,) over the 2-D
angular observation space (0,,0,)e® are related
through the 2-D spatial inverse Fourier transform [1]

R(u,v) =3, {b(0,,0,)} =

=c[b(0,,0,)exp| +i2n(ud, +v0,) |d0,d6, M
(€]
where ¢ is the normalizing constant (not critical
for image formation and analysis) and the visibility
function arguments (u,v) represent the x-y
projections of the normalized sensor baseline vectors
(normalized to the wavelength A,) in the visibility
domain (u, v) € P/A, [1], [5]. Also, starting from (1)
and all over the remained paper text we omit the range
(r) — polarization (p) subscripts standing with R(u,v),
R(x,y) and the related matrix-form representations
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R, Y, because the developed further theory and
implementation techniques for spatial (over angular
variables (0, ,0,) € ® ) resolution enhanced imaging is
similar forall range gates, »=1, ..., R.and all employed
polarization modes, p={VV, VH, HV, HH}. Thus, in
the following developments of the conventional MSF
and spatially enhanced reconstructive array radar
imaging techniques, any particular feasible “range
gate (r) — polarization mode (p)” combination {rp}
can be assumed.

The robust MSF-based method for low resolu-
tion image formation featured in [1] implies, first,
formation of the observed noised visibility function

R(u,v) via scaling the estimated correlation matrix Y
to the visibility domain (over the range of normalized
visibility spacings (u,v)eP/),) followed, second, by
the 2-D Fourier transform that yields the MSF im-
age of the scene

E(ex’ey) = S1,4,11 {HA(u,v) R(u! V)} =

- 2
= I 400 R(u,v)exp[—iZn(uex+v6y)]dudv 2)

P/
at a particular feasible {p} combination [1]. Here,

3, denotes the 2-D Fourier transform operator
over (u,v) € P/\A, coordinates, and Il,,, defines
a projector that specifies the particular employed
sensor array configuration resulting in different
resolution performances attainable with the MSF-
based imaging technique (2). In the pursued in
[1] nonparametric RI problem treatment, the
spatial resolution quality is assessed by the shape
of the resulting MSF system PSF associated with
the image (2) of a single point-type target (TAG)
located at the origin of the scene coordinate system
at the corresponding range gate re R and relevant
polarization mode p. In particular, the desired system
PSF is associated with a shape that provides the
lowest possible side lobes (and grating lobes) level
balanced over the minimum achievable effective
width of the PSF’s main (principal) lobe [1], [2], [11],
[14]. The feasible array configurations featured in [1]
encompass the conventional X-shaped and O-shaped
arrays [15] and the GeoSTAR-configured Y-shaped
array [5]. Figures 1(c), 2(c) and 3(c) present the PSFs
provided by the MSF single TAG imaging procedure
(2) employing projectors Iy, , related to the cross-
shaped (X-shaped) [15], circular-shaped (O-shaped)
[15] and the GeoSTAR-configured Y-shaped sensor
array [1], [5] geometries, respectively. Note that the
spatial resolution performances attained with the 2-D
FFT MSF technique (2) are characterized by the
width of the PSF’s principal lobe and the maximum
level of its secondary lobes (including the suppressed
grating lobes). The corresponding PSFs computed
using the simulations SW developed in [1] are re-
ported in Figures 1(c)—3(c). Those corroborate that
the Y-shaped GeoSTAR configured array outper-
forms two other feasible conventional (X-shaped and
O-shaped) array configurations [1].
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Fig. 1. (a) Antenna array layout with sensors numbering for X-shaped configuration;
(b) corresponding uv samples for inter-element spacing dy = 1.81,; carrier frequency f, = 24GHz;
(c) relevant PSF for 24 element X-shaped configured imaging array
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Fig. 2. (a) Antenna array layout with sensors numbering for O-shaped configuration;
(b) corresponding uv samples for inter-element spacing dy = 1.81,; carrier frequency f, = 24GHz;
(c) relevant PSF for 24 element O-shaped configured imaging array
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Fig. 3. (a) Antenna array layout with sensors numbering for Y-shaped GeoSTAR configuration;
(b) corresponding uv samples for inter-element spacing dy = 1.81,; carrier frequency f, = 24GHz;
(c) relevant PSF for 24 element Y-shaped configured imaging array

I1I. ENHANCED RADAR IMAGING INVERSE
PROBLEM FORMALISM

Following [9], [18] consider the vector-form co-
herent equation of observation that relates the pixel-
framed random scene reflectivity v with the coherent
array output data signal

{u() = Sv(j) * n(); j=1,.... J}, (3)
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where n(j) represents the observation noise and
S=S+ Ag is the MxK (M < K for compressed sensing
scenarios) matrix-form approximation of the integral
perturbed signal formation operator (SFO), in which
the regular component S is specified by the employed
radar signal modulation mode specified in Sect.
II. Recall that starting from (1) we consider any
particular feasible “range gate (r) — polarization mode
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(p)” combination {p}, thus omit subscripts Ap. In (3),
v, n, u are Gaussian zero-mean vectors composed of

the random entries {v, }f_,, {n,}o , and {u,}, , re-
spectively [9]. These vectors are characterized by the
correlation matrices, R, = D(b) =diag(b) , the diago-
nal matrix with the vector-form SSP b at its principal
diagonal,R, = NI and R,=<SR,S*>+N,I, cor-
respondingly, where the averaging <-> is performed
over the randomness of perturbations A, of the regular
SFO Sin (3), superscript © stands for Hermitian con-
jugate, and N, is the white observation noise power.
Vector b represents a lexicographically ordered by
multi-index k = (k,,k,) vector-form approximation
of the SSP map B = {b(k,, k,)} over the K xK, pixel-
framed 2-D scene {k=1,..., K; k,= 1,..., K; k=1,
..., K= KK} at each feasible {rjp} combination [1].

The feature-enhanced RS imaging problem at
hand is to develop the framework (in this study, the
unified DEDR-POCS-AB referred to as the DEDR-
POCS-restructured MVDR method) and the related
technique(s) for high-resolution estimation (feature-
enhanced reconstruction) of the SSP

b=estyrprpocs.aptb{u()};j=1....0 } “4)

from the available recordings (3) of the complex
(coherent) array data {u(j)} degraded by the composite
noise (multiplicative A, and additive n) with the SFO
perturbation statistics < SR, S* > usually unknown to
the observer.

IV. DEDR RESTRUCTURED MVDR STRATEGY

The high-resolution adaptive estimation of the
SSP via the classical adaptive minimum variance dis-
tortionless response (MVDR) method [2], [6] em-
ploys the strategy

bk =——1k=1,.,K 5
syR, (b)s,

optimal (in the MVDR sense) for the theoretical
model-dependent (b-dependent) array covariance

matrix inverse R;'(b) where s; defines the so-called
kth steering vector composed of the corresponding kth
row (k= 1,..., K) of the adjoint regular SFO matrix S*
[9], [10]. In the real-world RS imaging scenarios, the
unknown exact model of the covariance matrix R (b)
is substituted by its sample maximum likelihood (ML)

estimate [6], [10], [11] Y=R, :(l/J)z;zlu(j)W(j)

(at each treated combination {r|p}) that yields the
conventional MVDR algorithm [2], [6]

bkz%;k=1,...,l( (6)
s;Y 's,
feasible for the full rank Y only. From simple algebra,
it is easy to corroborate that the theoretical model
based strategy (5) is algorithmically equivalent to
the solution (with respect to the SSP vector b) of the
nonlinear equation

{D(b)} 4y = {WDR, (D)W (b)} ;0 (7)
with the solution operator (SO)
W(b) :(D(b)S*S+NOI)’] D(b)S™. 8)

14

Substituting in (7) the theoretical covariance

matrix R, by its ML sample estimate Y=R, yields
the DEDR-restructured MVDR strategy

b —> solution to the Eq.—> {D(IA))}diag =

) . )
={W(b)YW" (b)},,
or in an equivalent form
b — solution tothe Eq. — {D(b)}yy,, =
(10)

={K(b)QK" (b)} e
with the solution independent sufficient statistics ma-
trix
Q=S'YS (11)
and the solution dependent matrix-form reconstruc-
tive operator

K =K(b) = (D(b)¥ + N,I)"' D(b). (12)

Here, we have incorporated the following nota-
tions: operator {-}4,, returns the vector of the prin-

cipal diagonal of the embraced matrix, and ¥ =S*S
represents the matrix-form point spread function
(PSF) of the low-resolution MSF imaging array radar
system [9], [18]. Note that matrix K does not involve

inversion of D(b), hence, the DEDR-restructured
MVDR strategy (10) results in the desired sparsity
preserving technique that admits zero entries in b and
is also feasible for rank deficient data covariance ma-
trices Y (for J < M).

The DEDR framework [8], [9] suggests the worst
case statistical performances optimization approach
to the problem (4) with the harsh sensing scenario
model uncertainties regarding the SFO perturbations
that yields the robust SO

W(b) =K(b)S* =(D(b)¥ + N, ) 'D(b)S*, (13)

in which Ny = N, +p is the observation noise power
N, augmented by factor B > 0 adjusted to the regular
SFO Loewner ordering factor and the statistical
uncertainty bound for the SFO perturbation (see
[9] for details). Hence, the robust modification of
the DEDR is constructed by replacing in (9), (10)
N, by the composite Ny =N, +f that results in the
diagonal loaded K in (13). In practical scenarios, the
loaded regularization factor Ny can be evaluated
empirically from the noise corrupted low-resolution
MSF image following one of the local statistics
techniques exemplified in [4], [10].

Solver (10) still contains solution dependent in-
versions necessary to compute the reconstructive op-
erator (12). Thus, to convert (10) into the solver that
avoids any matrix inversions, we substitute (10) by the
algorithmically equivalent strategy

b —> solution to—> {A(B)D(B)A(B)}diag =

={D(b)QD" (b)} e
Next, to modify (14) to the conventional matrix-
vector transform form, we make the use of the follow-
ing properties [9]

(14)
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Property 1.
{A(b)D(b)A(b)} 4 =T(b)b , (15)
T(b)=A(b) ©A*(b) (16)
where @ definesthe Schur-Hadamard (elementwise)

matrix product.
Property 2.

{D(b)QD" (b)}y,, =D*(b)sg, (17)
£ ={Qlgig (18)

Using these properties, solver (14) is transformed
into the following strategy

b — solutiontothe Eq. — T(b)b=D?*(b)g  (19)
that does notinvolve any matrix inversions, thus guar-
antees preservation of sparse structures in the desired
solution. The latter means that DEDR restructured
MVDR strategy (19) is feasible for imaging the scenes
composed from extended (spatially distributed) ob-
jects as well as scenes composed with some point-type
targets (TAGs), i.e., intrinsically sparse scenes, as
well as any composite scenes (e.g., point-type TAGs
placed over the distrusted extended objects).

The derived solver (19) is extremely nonlinear,
hence the desired solution (feature enhanced radar
image) can be found only via iterative numerical
computing. Now, we are ready to proceed with the
development of such a procedure that realizes the
DEDR restructured MVDR strategy (19).

V. DEDR-POCS-AB ITERATIVE
RITECHNIQUE

Consider, first, that the SSP estimation formal-
ized by (4) is performed in the positive convex cone
solution set By, in the vector space with metric
structure specified by some metric inducing opera-
tor M [7], [12], [18]. In the considered in this study
standard Euclidean ¢, structured metric, M =1,
i.e., the identity matrix. Other admissible sophisti-
cated metric structures in the solution space that may
incorporate image gradient maps and ¢, structured
(so-called total variation) metrics [ 18] are beyond the
scope of this paper.

To transform (19) into the iterative feature en-
hanced RI procedure that performs the desired SSP
reconstruction in the solution set B s, we incorporate
into (19) the composite cascade transform

H=P.,T. (20)

Recall that in this study we have adopted the con-
ventional Euclidean ¢, structured metric (M =1) in
the solution space.

The action of such ‘H is twofold. First, T
transforms (19) into the implicit iterative numeri-
cal scheme [17] defined by the canonical contractive
mapping equation

(1/ i) (bpii=byip) + T, (b) byiy =

SN (21)
=D (b[l])ga 1_091>"'

in which the relaxation parameter Tj;) must be prop-
erly adjusted at each iteration i = 1, ... to guarantee
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the overall convergence of (21). Instead of such cum-
bersome (not unique [17]) adjustments of t;; , we in-
corporate into the canonical scheme (21) the POCS
operator P__ that serves as a projector onto convex
positive solution set B, with standard Euclidean ¢,

structured metric (M =1). Such projector P, is eas-
ily constructed as a hard thresholding operator [11]
that at each iteration i = 1, ... clips off all entries of

bi;; lower than the user specified nonnegative sparsity
preserving tolerance threshold level =. Hence, P,
serves as a convergence guaranteed POCS operator
[11] that naturally discards tj; in (21), i.e., one can
simply adopt t;;= 1 [17]. With such cascade H the
(21) is transformed into the desired implicit iterative
feature enhanced DEDR-POCS-AB technique

l;[m] — b+ P, {Dz(i)[i] )8 — T(l;[i])l;[i] Vi=1,...,1.22)
The iterative process is initialized with the low-

resolution incoherent MSF image by =g formed
via (18) and is terminated at f,[ N for which the user
specified ¢, -norm convergence tolerance level e7; is
attained at some i = I.

Now, we are ready to outline the iterative
DEDR-POCS-AB technique for feature enhanced
RI with array radar sensor systems as follows.

Step 1 Specify the model of the imaging radar

(Specifications) system by computing its matrix form
PSF operator ¥ =S'S specified by
the sensor array geometry and em-
ployed modulation format defined by
the SFO matrix S. Specify the opera-
tional scenario parameters (the sig-
nal formation operator uncertainty
bound n, observation noise power
N,, and image prior gray level b)
that define the amount of the DEDR
regularization (Ns = N, + bym), or
evaluate factor Ny empirically from
the low resolution MSF image, e.g.,
applying any of the local statistics
methods exempliﬁgd in [4], [10].

Initialize the SSP bjo; as an output g
of the low resolution MSF tech-
nique, e.g., 2-D discrete-form FFT
(2), specified in the vector-form as
bjo; =g (18). Construct the diagonal
matrix-form stabilizer D?(byo;) and
the corresponding matrices A(bjo))
T(f)[ol) that specify the discrepancy
term in (22) at the zero step (i = 0)
iteration by =g .

Run the implicit contractive mapping
algorithm (22) repeatedly for itera-
tionsi=1, 2, ...

Proceed with iterating (22) until the
¢, norm of the difference between
two consecutive reconstructions be-
comes smaller than the user-specified
threshold (convergence tolerance

level £7;). In this study, we adopt
STL:O-OS-

Step 2
(Initialization)

Step 3
(Iterations)

Step 4
(Termination)
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VI. SIMULATIONS AND DISCUSSIONS

In this Section, we corroborate the effective-
ness of the proposed iterative DEDR-POCS-AB
technique (22) for feature enhanced RI with the
particular array radar HW sensor system model fea-
tured in our previous study [1]. Referring to that ac-
companied paper [1], we compared three competing
24-element array geometries with the corresponding
layouts featured in Figures 1, 2, and 3. The nominal
test scene relates to the range gate » = 30m and was
composed of 5 TAGs located at the x-y coordinates
(in meters): {0m-0m; 4.5m-6m; 9m-12m; 4.5m-6m;
-4.5m-12m}. The harsh sensing scenario with sig-
nal-to-noise ratio, SNR = 10 dB was treated in the
simulations reported in Figure 4. The original low

y-axis (m)
y-axis (m)

x-ax?s (m)

(a)

-50 0 50 -50
X-axis (m)

(d)

resolution MSF images (for three feasible treated ar-

ray configurations) b,,.-(6,,0,)=g(6,,0,) of the test
multiple target scene formed in the 60° cone field of
view (FOW) were computed using the 2-D Fourier
transform-based MSF procedure (2) implemented in
the 2-D discrete-form FFT. The corresponding MSF
outputs (2) configured in a lexographical order [11],
[18] b, = g (for three treated sensor array geom-
etries: X-, O-, and Y-shaped 24-clement arrays) were
used to initialize the feature enhanc}ng post-pro-
cessing (22) as its zero-step iteration by, =g=b - .
The Specifications and Initialization steps of (22) were
computed following the algorithmic outlines detailed
above in the previous Section. The corresponding
simulation protocols are presented in Figure 4.

50

E
@
x
(]
>
-50
0 50 -50 0 50
x-axis (m) X-axis (m)
(b) ()

0 50 -50 0 50
X-axis (m) x-axis (m)
(e) (®

y-axis (m)

0 -50 0 50
X-axis (m) Xx-axis (m) X-axis (m)
(2 (h) (1)

Fig. 4. Multiple target scene RI protocols: (a)-(c) scene image in the (» = 30m range gate) x-y plane formed with the O-,
X- and Y-configured imaging array radar systems, respectively, via implementing the conventional DEDR-related low

resolution (LR) MSF technique (2); (d)-(f) the same scene images formed with the high resolution (HR) robust version
[6] of the classical AB-based method (6); (g)-(i) images formed employing the new DEDR-POCS-AB technique (22)
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Fig. 5. Comparison of the DEDR-POCS-AB technique (22)
and the competing robust HR method [6] in the SINR metrics
for the 1 TAG (located in the origin of the scene coordinate
system) for SNR =0 dB

Average S!NR‘J {(dB)

P I
100 200 300 400 500 600 700
Number of snapshots (J)

Fig. 6. Comparison of the DEDR-POCS-AB technique (22)
and the competing robust HR method [6] in the SINR metrics
for the 1 TAG (located in the origin of the scene coordinate
system) for SNR = 10 dB
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In Figures 5 and 6, we report the signal-to-inter-
ference-to-noise ratio (SINR) metrics [6] computed
for the 1% (reference) TAG, in which case four other
TADs are treated as composite interference sources.
Figure 5 reports the low SNR = 0 dB scenario. Figure
6 reports the high SNR = 10 dB scenario. To be com-
parable with the most prominent competing high res-
olution (HR) robust MVDR inspired methods in the
literature [2], [6], the (22) was run for the worst-case
zero-level threshold (i.e., n = 0) in Py.

From the reported simulation protocols, the ad-
vantage of the most prominent competing MVDR in-
spired robust AB-based RI techniques (robust version
of (6) from [2], [6]) and (22) over the conventional
DEDR-related low resolution MSF radar imag-
ing procedure (2) is evident for all three tested array
sensor system configurations. In all cases, the best
resolution performances and SINRs were manifested
by the new proposed DEDR-POCS-AB technique
(22). Also, the computational burden of the DEDR-
POCS-AB algorithm (22) is usually lower than that of
the competing robust adaptive AB-based techniques
[2], [6], [18], [19]. We explain this due to avoiding
high dimensional (MxM > 24x24) data covariance
matrix inversions (needed to be computed in each of
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R, range gates at each feasible {Hp} combination) as
well as any other matrix inversions in (22). Typically,
matrix inversions consume two orders greater num-
ber of numerical operations than matrix multiplica-
tions (if no “fast” algorithms exist) [17]. In all tested
scenarios, the DEDR-POCS-AB algorithm (22)
demonstrated asymptotic convergence at ~10 itera-
tions only for the adopted convergence tolerance level
erp = 0.05. Hence, the computational complexity of
the developed iterative algorithm (22) is ~ one order
lower than of the regularized robust versions [2], [6],
[18] of (6) that involve cumbersome matrix inversions.
Moreover, the DEDR-POCS-AB technique (22) is
applicable even for the rank-deficient (J < M) scenar-
ios, in which the competing methods fail to operate.

VII. CONCLUSION

The radar imaging technique developed in this
paper can be interpreted as a novel approach to fea-
ture enhanced nonparametric array sensor imaging
and spatial spectral analysis with multi-level HW-SW
optimization-regularization. The HW co-design level
is aimed at the optimization of the array sensor ge-
ometry. Our study revealed that in all operational sce-
narios the drastically superior operational efficiency
was attained for the Y-shaped GeoSTAR configured
sensor array with the operational characteristics fea-
tured in the previous companion paper [1]. At the
SW co-design (the algorithm design) level, the novel
contribution consists in unification of the recently de-
veloped DEDR framework with the sparsity preserv-
ing and convergence guaranteed regularizing POCS
paradigm. Such unification admits the development
of the overall implicit iterative feature enhanced RI
procedure that avoids cumbersome matrix inversions
at all processing stages. The latter decreases the com-
putational cost and allows for effective complexity/
performance tradeoff. Moreover, the unified DEDR-
POCS-AB approach requires no new HW compo-
nents, does not need the observer’s supervision and is
particularly adapted for real-time array radar imaging
in harsh sensing environments.

The perspective developments of this study relate
to applications of the proposed framework and the
developed DEDR-POCS-AB-based signal and im-
age processing techniques to alternative application
areas such as multimode spatial analysis, intelligent
sensor array and data fusion, dynamic image dis-
crimination for resource management, remote sens-
ing image perception, classification and understand-
ing, etc. This will push forward our capabilities in the
multilevel HW-SW co-design-based optimization of
the remote sensing RI systems paving a way towards
adaptive superresolution sensing performed simulta-
neously in multiple aggregated wavebands at multiple
polarization modalities.
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VIK 621.396

AJbTePHATHBHBINA MOAX0A K (hOPMHPOBAHUIO BBHICOKO-
KaYeCTBEHHbIX PaJuOU300paKeHHil HA 0CHOBE JeCKPUIITHB-
HOIi peryJisipu3aiuu npoueayp amarpamooopasosanusi B PJIC
¢ aJIanTUBHbIMH aHTeHHbIMH pemeTkamu / 10. B. IlIkBapko,
B. B. Ocnanac, . E. Kactpo // I[IpukinagHast paauosJiek-
TPOHUKA: HAyYH-TeXH. XypHaia. — 2014. — Tom 13. —
Nel.— C.10-19.

Pa3BuT anbTepHATUBHBINA IMOAXOH K PEIIEHUIO 00-
paTHBIX 3amady (opMHUPOBAHMSI BBICOKOPA3pEIIAIOIINX
paguoniokalMoHHbIX n3obpaxenuii (PW) B PJIC ¢ apamn-
TUBHBIMU aHTEHHBIMU pellIeTKAMU Ha OCHOBE KOHIICTIIIUI
MHOTOYPOBHEBOI'O NECKPUNTUBHOIO IJIAHUPOBAHUS IKC-
nepumeHTa (AI19). Ha nepBom ypoBHe [I1D kocBeHHO
peanusyeT alarnTHBHOE poOACTHOE AMarpaMoodpa3oBaHue
(10) B PJIC ¢ aganTUBHOI aHTEHHOM PELIETKOI CO cre-
HuaiabHoi npemioxeHHoit «'eoCTAP» koHpurypainueit,
4TO MO3BOJISIET ONTUMAJILHO COAIaHCUPOBATD MOBBIIIEHUE
paspenieHus ¢ puiabTpauueit momex. [lpu aTom 06padoT-
Ka peaqu3yeTcsl B UTepaTUBHOM amanTUBHOU (opMme, Hc-
KJTIovYaloleil Bce Mpoleaypbl MHBEPTUPOBAHUSI MATPUIL
Ha Bcex aTanax J1O u ¢hopMUpoBaHUS Pe3yIbTUPYIOIINX
BbICOKOpa3pelatonux PY. BxonHbIMU TaHHBIMM CITY>KUT
Huskopaszpemawuiee PU, chopmupoBaHHoe cTraHmAapT-
HBIM METOJIOM COIJIAaCOBaHHOM MPOCTPAHCTBEHHOM (hUJIb-
Tpaiuu. s rapaHTUPOBAHUSI CXOAMMOCTH UTEepallMOH-
HBIX cXeM BoccTaHoBieHus PY B ucxonnblii Mmeton AI1D
BBOJUTCS TOTIOJIHUTEbHBIN PETysipu3allMOHbI YPOBEHD
— MPOEKIMU Ha BBIMTYKJI0€ MHOXeCTBO perieHuit ([TBMP)
VIOBJIETBOPSIIOIIECE HAKIAAbIBAEMbIM CIIEIIMATbHBIM OTpa-
HUYEHUSIM Ha TOJOXUTEJIbHOCTb, MPOCTPAHCTBEHHYIO
pacnpeaeaeHHOCTh JIMO0 HAao0OpPOT COCPeaOTOYEHHOCTD
00BEKTOB, COCTABJISIIONIMX CLIEHBI pe3yabTupytommux PU.
YucieHHOEe MOAETUPOBAHUE U COTOCTaBICHUE C KOHKY-
pUpyIOIIMMU MeTonaMu (hOPMHUPOBAHUST BbICOKOpA3pe-
maromux PY Ha ocHOBe poOacTHLIX IMpolieayp aganTUuB-
Horo /1O B PJIC c aHTeHHBIMU pellIeTKaMU MOATBEPXKIAIOT
3(GEKTUBHOCTD MPEUIOKEHHOTO KOoMIUieKcHoro JIITD-
TIBMP metona.

Karouesvie crosa: anTeHHasi pelieTka, JeCKPUITUB-
Hoe rulaHupoBaHue 3kcnepumenTa, PJIC (hopMupoBaHust
panrou3odpakeHuit, uTepaTuBHas 00padoTKa, peryasipu-
3a1us.

Puc.: 6. BuGnuorp.: 19 Ha3s.
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AnbTepHATUBHUI minxin 10 ¢opMyBaHHS BHCOKOSKIC-
HHUX pPagio300paxKeHb HA OCHOBi JECKPUNTHBHOI peryjspu-
3anii mpouenyp aiarpamoctsopennsi B PJIC 3 aganTuBHuME
anrennumu pemitkamu / FO. B. IlIkBapko, B. E. Ecnanac,
M. E. Kactpo // IlpuknagHa pamioeJeKTpOHiKa: Hayk.-
TexH. xypHai. — 2014. — Tom 13. — Ne 1. — C. 10—19.

Po3BuHeHMt adbTepHATUBHMIA MiAXid 10 BUPILLIEHHS
3BOPOTHUX 3aBIaHb (DOPMYBaHHSI BMCOKOPO3MOALIbHUX
pamionokauiitnux 3060paxensb (P3) B PJIC 3 aganTtuBHM-
MU aHTEeHHMMM pelliTKaMK{ Ha OCHOBI KOHIIETILIil 6araTo-
PIBHEBOTO JNECKPUNTMBHOIO IJIaHYBaHHS €KCIepuMeH-
1y (IAIIE). Ha mepmomy piBHi JIIIE moGiuHo peanizye
aganTuBHe pobacte miarpamo-ctBopeHHs1 (JC) B PJIC
3 aIalTUBHOIO aHTEHHOIO PEIiTKOIO 3i CHeliaJbHOI 3a-
npornoHoBaHowo «['eoCTAP» KoHirypalii€ro, 1110 103BO-
JIsIE ONTUMAaJIbHO 30ajlaHCyBaTU MiABUIIEHHS PO3MOMLILY
3 (inbTpauieto 3aBan. [Ipu oMy 00podKa peanizyeTbes
B iTepaTUBHill aganTUBHON DopMi, sIKa BUKIIIOYAE BCi IPO-
LIelypy iHBEepTyBaHHs MaTpullb Ha Bcix eranax JC i ¢pop-
MYBaHHSI Pe3yJbTYIOUMX BHUCOKOpo3mnoaiibHux P3. Bxin-
HUMU JaHUMU € HU3bKOpo3MoaiabHe P3, 1110 chopmoBaHe
CTaHAAPTHUM METOIOM Y3TOIXKEeHOI IPOCTOPOBOI (DiJib-
Tpauii. JIs1 rapaHTyBaHHSI 30DKHOCTI iTepalliiiHuX cxeM
BinHoBiieHHS P3 y mouatkoBuii meron AIIE BBomuThCS
JIOJATKOBUI peTyJsIpu3alliiHuil piBeHb — MPOEKIIil Ha
BUIyKi1y 6e3niu pimens (IIBBP), 1m0 3amoBosbHSE crie-
LiaJIbHUM OOMEXEHHSIM, 110 HAKJIaAaloThCd HAa TTO3UTUB-
HiCTb, TIPOCTOPOBY PO3MOIiIEHICTh 800 HaBIAKM 30Cepe/i-
XKEHIiCTb 00’€KTIB, IO CTAHOBJSITH CLIEHU Pe3yJbTYIOUUX
P3. YucenbHe MOEIIOBAaHHS Ta 3iCTAaBJICHHSI 3 KOHKYPY-
IOUMMU MeToAaMu (POpMYBaHHS BUCOKOPO3MOAiIbHIX P3
Ha OCHOBI pobacHux mpouenyp agantupHoro JC B PJIC
3 aHTEeHHUMM pelliTKaMM MiATBEPIXYIOTh €(PEKTUBHICTh
3anponoHoBaHoro KomiuiekcHoro JIITE-TTBBP metony.

Karouosi cnosa: aHTeHHA pellliTKa, JECKPUIITUBHE
IaHyBaHHs ekcriepumeHty, PJIC ¢dopmyBaHHS pamio-
300paXkeHb, iTepaTuBHA 00pOOKa, perysspusalis.

Li.: 6. Bioumiorp.: 19 Haiim.
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