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VIRTUAL BEAMFORMING-BASED REGULARIZATION APPROACH

FOR ENHANCED RADAR/SAR IMAGING

YURIY SHKVARKO, JOEL AMAO, AND ISRAEL YANEZ

To perform intelligent analysis of the radar remote sensing imagery acquired with conventional real aper-
ture radar (RAR) or fractional synthetic aperture radar (F-SAR) sensor systems, the original low resolution
speckle corrupted images must undergo feature enhancing processing. In this paper, such a processing task is
treated as an uncertain nonlinear inverse problem of reconstruction of the scene power reflectivity map from
a low resolution image formed employing conventional matched spatial filtering (MSF) of the trajectory
data signals. The minimum variance distortionless response (MVDR) virtual adaptive beamforming meth-
od is first adapted to coherent RAR/F-SAR imaging modalities and is next restructured into the iterative
reconstructive imaging technique that employs the descriptive experiment design regularization (DEDR)
framework unified with the variational analysis inspired convergence guaranteed and sparsity promoting
composite projectors onto the convex solution sets (POCS). The overall multilevel POCS regularized DE-
DR-restructured MVDR technique (addressed as the DEDR-MVDR method) performs feature enhanced
reconstructive imaging via spatially selective despeckling balanced over the POCS regularized DEDR-op-
timal resolution enhancement with sparsity preservation. The DEDR-MVDR method implemented in an
implicit iterative form does not involve cumbersome matrix inversions at all processing stages. The reported
simulations corroborate the efficiency of the developed DEDR-MVDR technique especially in decreasing of
the computational complexity without sacrificing the potentially attainable spatial resolution.

Keywords: beamforming, descriptive experiment design regularization, synthetic aperture radar, radar imag-

ing, resolution.

INTRODUCTION

Modern imaging radar and synthetic aperture radar
(SAR) systems can provide microwave images of terres-
trial surfaces in different wavebands independent of
weather conditions and sunlight illumination. The major-
ity of conventional airborne monitoring or navigation
missions use low cost real aperture radar (RAR) or frac-
tional SAR (F-SAR) sensing systems. However, the frac-
tional synthesis mode inevitably sacrifices spatial resolu-
tion and usually suffers from operational scenario uncer-
tainties attributed to random signal perturbations in a
turbulent atmosphere, imperfect system calibration,
multiplicative speckle noise, and possible uncontrolled
carrier trajectory deviations [1-4]. All low cost airborne
RAR/F-SAR systems employ the so-called matched spa-
tial filtering (MSF) based processing of the trajectory
data signals in both the slant range and cross range (azi-
muth) directions performed over the “fast” and “slow”
trajectory time scales, correspondingly, for image forma-
tion. The MSF method is sometimes referred to as a
quick-look or compressed sensing mode [1, 7, 9], but
despite its wide application it is able to produce only low
resolution (i.e., blurred) imagery corrupted by both addi-
tive noise and multiplicative speckle. The mapping capa-
bilities of such RAR/F-SAR sensors are insufficient to
reach the goals of multi-purpose analysis of the provided
imagery, which make the interpretation of the remotely
sensed data very difficult and in some operational scenar-
ios even impossible [3—7]. If the on-board coherent full
aperture synthesis mode with further adaptive platform
motion and atmospheric errors corrections are unavail-
able (as it is a case in all low cost remote sensing (RS)
and autonomous navigation missions with RAR/F-SAR
sensors), the challenging problem consists in an attempt
to perform feature enhanced recovery of the low resolu-
tion (LR) radar imagery via it computational processing
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[3, 9-15]. The crucial problem relates to performing
some space-time adaptive processing (STAP) of such
degraded radar/F-SAR images to make them suitable for
further intelligent data analysis and interpretation in par-
ticular RS applications. In the signal processing settings,
such STAP tasks are traditionally addressed as feature
enhanced radar image recovery that is basically aimed at
considerable image resolution enhancement balanced
over noise and speckle suppression. These tasks can be
formalized in a framework of nonparametric inverse
problems of reconstruction of the scattered field spatial
spectrum pattern (SSP) i.e., estimation of the average
scene power reflectivity referred to as a scene image [6,
11-17]. Representing a spatial map of the RS scene
power reflectivity (i.e., the second-order statistics of the
random backscattered field), the SSP may possess a local
spatial sparsity property peculiar for some piecewise
smooth scenes [7, 9, 12, 13]. The deficiency in the spatial
resolution and presence of noise and speckle make the
SSP recovery problem ill-posed [7, 11, 12, 13, 18, 19].
Modern approaches for solving such a class of uncertain
nonlinear inverse problems are based on a combination
(fusion) of some regularized image restoration/recovery
techniques with adaptive de-speckling methods (e.g., see
[5, 7, 11, 17-20] and the references therein). In harsh
sensing environments, solution of the SSP recovery in-
verse problem is complicated due to the random perturba-
tions in the signal formation operator (SFO) that cause
multiplicative degradations (speckle) with the statistics
(in general, non-Gaussian) usually unknown to the ob-
server [5, 6, 11-14]. The restoration or recovery tasks are
aimed at spatial resolution enhancement that needs per-
forming of some approximated adaptive SFO inversion;
the latter should also be balanced over suppression of the
image-dependent speckle noise. The conventional multi-
look de-speckling approach [2—7] does not satisfy these
requirements because it considerably sacrifices the spatial
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resolution. There is a vast amount of literature on ap-
proaches that provide superior performances over the
MSF method for SSP estimation when certain assump-
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The most crucial restriction, however, relates to the
featured above inverse problem nonlinearity and model
uncertainty. Moreover, non-Gaussian statistics of speckle
and SFO perturbations (usually unknown to the observer)
make infeasible application of the Bayesian inference
strategies [11-17] for SSP recovery. Some competing
developments [7, 11, 14, 18, 20] argue to employ ad-
vanced digital beamforming techniques to improve the
recovered image performances. However, the still unre-
solved problem relates to adaptation of the beamforming-
based techniques to solving the inverse problems of fea-
ture-enhanced recovery of the scene SSP maps already
provided with the LR RAR/F-SAR sensors.

In this study, we consider the nonlinear inverse prob-
lem of feature-enhanced SSP reconstruction from a co-
herent (complex) LR RAR/F-SAR images formed em-
ploying the conventional MSF processing method [2, 4,
8, 12]. The recovery problem is stated and treated in the
descriptive experiment design regularization (DEDR)
framework [12, 13] unified with the robust minimum
variance distortionless response (MVDR) virtual beam-
forming approach [1, 18]. The new challenging proposi-
tions are threefold: (i) to solve the nonlinear inverse prob-
lem at hand with considerable resolution enhancement
over noise suppression gains; (ii) to construct the solution
in a form of an MVDR inspired virtual beamforming-
based procedure that does not involve cumbersome data
matrix inversions at all processing levels, and at the same
time guarantees preservation of a sparsity of the recov-
ered scene SSP (if exists); and (iii) to build an efficient
iterative scheme for speeded-up implementation of the
MVDR-based sparsity promoting SSP recovery proce-
dure. To achieve these goals, we incorporate into the
DEDR strategy for SSP reconstruction the additional
convergence guaranteed composite projectors onto the
convex solution sets (POCS) [11-13]. Next, we put the
DEDR-POCS solution into the modified MVDR virtual
beamforming framework that excludes matrix inversions
at all processing levels. Last, we construct the implicit
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tions are met (e.g., see [3, 10-20] and the references
therein).
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Fig. 1: (a) Essential elements of a typical remote sensing imaging radar; (b) Geometry
of a RAR/F-SAR imaging scenario with carrier trajectory deviations.

contractive mapping iterative scheme for efficient com-
putational implementation of the developed POCS-
regularized DEDR-restructured robust MVDR-based
method for SSP recovery. In the reported simulations, we
corroborate the effectiveness of our new DEDR-MVDR
method in the resolution enhancement over noise sup-
pression gains as well as in the convergence rates via its
comparison with the competing feature-enhanced radar
imaging techniques in the literature [1-7, 11-15].

The rest of the paper is organized as follows. The
problem model that we treat in this paper is structurally
similar to the previous studies [1, 9, 12, 13], thus the sys-
tem-level and general phenomenological background and
some numerical model details are repeated for conven-
ience to the reader in Section I. In Section II, we develop
our new DEDR-restructured virtual MVDR beamform-
ing based technique (that we address here as the unified
DEDR-MVDR method). Here, we also provide modifica-
tions of the DEDR-MVDR-based solution procedure to
avoid cumbersome matrix inversions at all processing
levels. Two processing schemes for computational im-
plementation of the developed image recovery method
are built in Section III. The algorithmic developments are
followed by the effectiveness corroborative numerical
simulations featured in Section IV. Concluding remarks
in Section V summarize the addressed study.

I. PROBLEM PHENOMENOLOGY

A. Basics of a Radar Imaging System

Conventional low resolution real aperture radar
(RAR) microwave imaging radar systems operate via
forming fan shaped antenna beams, with wide radi-
ated/received patterns in elevation, to illuminate a re-
spectable swath width in range, and narrow azimuth an-
tenna patterns, to accumulate the image line by line [1-5,
8, 11].
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Fig. 2 (a) Full-focused synthetic aperture radar geometry; (b) Problem geometry for an unfocused and fractionally focused
synthetic antenna modalities; R, represents the range from an elementary scattered target to the center of the synthesized array.

This is illustrated in Figure 1 (a). Imaging radars are
differentiated between each other on how they achieve
resolution in the range and azimuth directions. Resolution
is a measure of image sharpness; the minimum distance
two objects (elementary scatterers) have to have in order
that their echoes are separable. In the real-world airborne
RS scenarios, the carrier flight trajectory is not always
nominal; there can be uncontrolled (modeled as unknown
deterministic or random) deviations from the nominal
flight trajectory (the carrier deviations) during the flight
time, changes in the flight altitude, imperfect radar cali-
brations, etc. Figure 1(b) illustrates these effects peculiar
for a RAR/F-SAR system. Here, the radar system is
aboard a platform moving at a speed V/, in a non-nominal

trajectory, y defines the angle between the radar beam

and the normal line to the earth surface in a particular
point of interest, T, defines the duration of the radar im-

pulse width, @ is the width of the vertical radar beam,
6, indicates the antenna beam footprint, J¥, represents

the effective antenna height, D is the effective antenna
length, and W, represents the swath width.

In the systems that employ simple pulse modulated
signals, the slant range resolution is determined by the
pulse duration [2-4, 8]. The technical way to increase
range resolution capability is to employ chirp modulated
pulses that admit efficient pulse compression via per-
forming MSF of the trajectory signals in the range direc-
tion [2, 4, 8]. Such sensing modality provides sufficiently
high range resolution capabilities evaluated for the chirp
modulated pulse signals as 8;unee = (1.4¢)/(2nB) [8] where
¢ represents the speed of propagation of electromagnetic
waves and B is the chirp signal bandwidth. Thus, the
range resolution problem is technically resolved employ-
ing chirp pulse compression techniques, e.g., [2—4, 8].
The crucial problem, on the other hand, relates to the low
azimuth (cross range) resolution attainable with conven-
tional RAR sensors [1-5, 8, 11]. The technical way to
increase the azimuth resolution is to synthesize the an-
tenna aperture, well known as SAR sensing, e.g., [2-4, 7,
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8], etc. Thus, the azimuth resolution depends on the par-
ticular mode of the trajectory data signals recording em-
ployed in a particular sensing scenario. Here beneath, to
complete the background, we feature three general radar
sensing modalities that affect the overall azimuth resolu-
tion capabilities.

B.  System-Level Limitations on Azimuth Resolution

Three typical trajectory data acquisition modes affect
the resulting azimuth resolution capability [2, 3, 8].

1)  The conventional RAR modality with MSF tra-
jectory signal processing provides azimuth resolution
strictly dependent upon the width of the radiated beam [2,
3, 8].

2)  The so-called unfocused synthetic antenna mo-
dality (unfocused SAR) is able to perform some aperture
synthesis, in which the synthetic antenna length is made
as long as the unfocused technique permits [4, 8].

3) In the focused synthetic antenna mode, the syn-
thesized array length can be made equal to the back pro-
jected linear width of the radiated beam at each range
gate (potential, so-called full-focused modality) or its
fraction (fractionally-focused modality).

The linear azimuth resolution for the conventional
RAR case is given by [2, 8]

s _ AR (1)

a(RAR) D

For the unfocused F-SAR modality, the linear azi-
muth resolution is defined as [8]

1
5a(unfSAR) = E VAR » @)
whereas for the full-focused SAR, the resolution is in-

creased to its potentially attainable value [2]

D
§a(foc SAR) Britman R = E : 3)

Here A represents the wavelength of the radar signal
transmitted, D is the horizontal aperture length of a
physical antenna, R is the range to the scattering element
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on the scene (related to a particular considered range
gate), fer = A/2L represents the effective half-power
beamwidth of the synthetic aperture, and L. is the length
of the synthetic aperture. For the full focused mode, L.
equals to the back projected antenna footprint width, i.e.,
Legr = Lermax = RMD that results in the potentially attain-
able azimuth resolution (3).

Clear that in the conventional RAR modality, for
achieving moderate azimuth resolution a very narrow
beam should be radiated. The half-power beamwidth
Lesirary = /D produces the linear azimuth resolution (1),
i.e., the product of beamwidth /D with the range R. In
the unfocused SAR modality, the conventional data proc-
essing technique performs MSF of the trajectory signal
acquired within the unfocused synthetic aperture [2-5, 8].
In this case, the coherent signals received at the synthetic
array points are integrated, with no attempt made to shift
the phases of the signals before integration [8]. This lack
of phase adjustment imposes a limitation on the maxi-
mum open/unfocused synthetic antenna length that can be
generated. This maximum unfocused synthetic antenna
length occurs at a given range when the round-trip dis-
tance from a radar target to the center of the synthetic
array differs no greater than by 1/4 from the round-trip
distance between the radar target and the extremities of
the unfocused synthetic aperture array that result in the
linear azimuth resolution given by (2) [8] as examplified
in Fig. 2.

Last, in the fractional focused SAR (F-SAR) modality
(see Fig. 2(b)), only a fraction (say, a < 1) of the poten-
tial full-focused aperture Ly = lefinax = ARA/D is em-
ployed to coherently register the trajectory signals for
further MSF processing, hence the linear azimuth resolu-
tion attainable employing the conventional MSF process-
ing is a 1/« coarser than the potential value (3), i.e.,

o D; a<l. “4)

(F-SAR) by

Next step is to cast and treat the problem of feature
enhanced radar imaging via processing of the trajectory
data signal coherently registered with a RAR, F-SAR, or
unfocused SAR sensors (the latter can also be viewed as
a particular F-SAR modality) in the framework of image
recovery inverse problems.

C. General Radar Imaging Problem Formalism

Referring to the previous related studies [1, 9, 12, 13]
consider a coherent remote sensing (RS) experiment with
a narrowband RAR/F-SAR imaging system that enables
us to model the extended scene backscattered field by
imposing its time invariant complex scattering function
v(r) in the scene domain (scattering surface) Ror. The
measurement data wavefield u(p)=s(p)+n(p) consists of
the echo signals s and additive noise » and is assumed to
be available for observations and recordings within the
prescribed time-space observation domain P>p, where
p = (¢, p)" defines the time-space points in the trajectory
observation domain P=7xP. The model of the RAR/F-
SAR trajectory data signal u is defined by specifying the
linear stochastic equation of observation (EO) of an op-

erator form [12], u = S+ nveV; u neU:;
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S:V - U, in the Hilbert spaces V and U with the L,
metrics structures induced by the scalar products [11]

[, ), = [, (Pt (p)dp; peP and
P

v, = [ (0w (0)dr; reR, (5)

R

respectively. In the conventional integral-form representa-
tion format, the observation trajectory signal u(p) is ex-
pressed as

u(p) = [ S(p,)(r)dr +n(p);
v(r) € V(R); u(p),n(p) € U(P) , (©)

where S(p,r) represents the functional kernel of the per-

turbed SFO &: VU . Its S=<8> ;

S:V — U, is completely specified by the regular kernel
component given by the averaging

S(p,r)=<S(p.r)>
&8:V — U) that is defined by the employed signal wave-

field formation model [4, 11, 12]. Such regular SFO ker-
nel S(p,r) is fully determined by the time-space modu-

mean,

(over the randomness of

lation of signals employed in a particular radar system [5,
11, 12]. The variation about the mean, Ag =5-8,
models perturbations of the wavefield at different propa-
gation paths. In different problem model treatments, such
SFO perturbation component, Ag, can be considered as
unknown deterministic or random. In the stochastic
model treatment, Ag is characterized by the general Ry-
tov’s statistical model [5].

Following the above operator observation model for-
malism, we next assume an incoherent nature of the ex-
tended object/scene scattered wavefield v(r)e V(R) .
This is naturally inherent to all real-world radar RS sce-

narios [2, 5, 11, 12] and leads to the d-form of the scat-
tered wavefield correlation function

R(r1,1y) =< v(r)V'(r,)> = b(r)Ar - 1,);
b(r)= <|v(r)[>; r,r,r,eR (7)

where v(r) and b(r) = </ v(r)[*> are referred to as the

scene random complex reflectivity and its average power
reflectivity/scattering function or spatial spectrum pattern
(SSP), respectively. In the standard settings, v(r) is mod-
eled as a zero mean random Gaussian field [2, 5], while
the statistics of u(p) depend on the employed statistical
models of additive noise n(p) and the SFO perturbations.
The considered here RS imaging problem is formally

stated as follows: to derive an estimate I;(r) of the scene

SSP b(r) (referred to as the desired RS power image) by
processing the available finite dimensional RAR/F-SAR
measurements of the trajectory data signal u(p). It is clear
that any feasible estimator of l;(r) must involve a solu-

tion of the operator equation of observation (6) opti-
mal/suboptimal in the sense of some posed criterion. Such
a solution assumes inversion (or some approximated in-
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version/pseudo-inversion) of the SFO, with the desired
SSP estimate related to the complex scattering function
via the second order statistical model (7). Thus, such a
problem falls into a class of stochastic nonlinear inverse
problems. Moreover, due to the SFO perturbations (mod-
eled as unknown deterministic or stochastic with statistics
usually unknown to the observer), the problem at hand
should be treated as an uncertain stochastic nonlinear in-
verse problem. Note that random SFO model makes the
statistics of the observation signal u(p) non-Gaussian (and
unknown to the observer). This makes unfeasible applica-
tion of the Bayesian inference strategies. Hence some
non-Bayesian regularization-based problem solvers
should be developed and applied.

D. Problem Model

Following standard trajectory signal discretization
schemes [3, 4, 12] consider the vector-form approxima-
tion

u=Sv+n=Sv+A,v+n, (8)

of the integral equation of observation (6). Here, vector
v represents the lexicographically ordered pixel-format
representation of the random scene reflectivity function
v(r) observed through the MxK perturbed matrix-form

SFO S =S+A, and contaminated by additive Gaussian

noise vector n. The discrete-form SFO, §:S+AS, is

the MxK (M<K for compressed sensing scenarios) ma-
trix-form approximation of the integral-form perturbed
SFO &:V — U, in which the regular component S is
specified by the employed modulation and synthesis
mode [3, 4, 12]. In (8), v, n, u are treated as zero-mean
random vectors composed of the entries (v}t , {1}

and {u, W

m=1

of the discrete-form approximations of the

fields u, n and v with respect to the employed orthogo-
nal decomposition function set {4,(p)} in the observa-
tion domain and the expansion (pixel) set {g,(r)} in the
scene domain, respectively [3, 4, 8]. These vectors are
characterized by the correlation matrices,

R, =D(b) =diag(b), the diagonal matrix with the vec-
tor-form SSP b at its principal diagonal, R, =N

and R, =< SRV§+ >+N,L, correspondingly, where the
averaging <-> is performed over the randomness of per-
turbations Ag of the regular SFO S. In (8), superscript ~
stands for Hermitian conjugate (adjoint operator [11]),
and N, is the white observation noise power n. Vector b
represents a lexicographically ordered by multi index
k = (k.,k,) vector-form representation of the SSP map
B = {b(k,, k,)} over the K, xK, pixel-framed 2-D scene
(ke = 1,..., K k, = 1,..., Ky; k = 1,..., K = KK}
[12, 17]. The matrix-form representation of the uncer-
tain SFO in (4) is given by [13]

S =S+Aq, )
in which the MxK nominal SFO matrix S is composed of
the scalar products {[Sg,.n, l,;k=1,...Ksm=1, ...,
M} [11] while all problem model uncertainties are attrib-

uted to the distortion term Ag . In the stochastic
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treatment, such Ag is modeled as a random zero-mean
matrix with the bounded second-order moment, i.c.

<Ag> =0; <HAs ||2> :<tr{AsAg 1) <n (10)

where || A ||’= tr{ A(A{ } defines the squared Frobenius

matrix norm, tr{-} is the trace operator, superscript " de-
fines the Hermitian conjugate (conjugate transpose), and
n is the bounding constant [12] that we consider as a

user specified problem model parameter. In the limiting
case, 7 =0, the SFO perturbations are neglected, hence

the problem is simplified to the certain nonlinear inverse
problem with Gaussian statistics of all vectors in (8).

E.  Discrete-Form Imaging Problem Formalism

A solver to the nonlinear inverse problem for recovery
of the SSP vector b from the available data recordings u,
ie.,

B =es tstmtegv {b ‘ u} (1 1)

obviously depends on the employed estimation strategy.
For the commonly accepted Gaussian model [3] of

the complex reflectivity v and random (Gaussian or non-

Gaussian [3, 4, 11]) SFO perturbations term Ag in (9),
the composite noise, Agv+n, in (8) is, in general, non-
Gaussian distributed and signal dependent [1, 7, 11], and
it is not even practical to model it as a mixture of Gaus-
sians due to insufficient training data and the lack of
knowledge about the number of Gaussian mixtures [11].
This makes infeasible application of the Bayesian estima-
tion strategy.

The feasible competing approach that we propose to
follow in this study is based on the worst case statistical
performances optimization adapted minimum risk in-
spired DEDR framework [12] that does not require
knowledge of the particular probabilistic characteristics
of the data model (8). The general-form DEDR solver
b = est,p, {b | u} secks for an SSP estimate in the posi-
tive convex cone solution set in the Euclidian im-

age/solution space B, with the metric structure induced

by the generalized ¢, -/, scalar products [13]
||b||;( | =[b,b]+[Vb,Vb]=[b,(1+V*)b]  (12)

which involves equibalanced /¢, structured image norm

and image gradient norm. In our metrics construction
(12), operator V is defined via the square root of the dis-

crete-form Laplace operator V> [11], hence Vb returns
the K-D equivalent of the image gradient [11]. After the
desired SSP vector estimate (11) in the properly struc-

tured solution space B, > b,b is found, the final SSP

distribution is reconstructed via the composition

E(K)(r):z,ill;kgk(r) (13)

over the pixel-framed observation scene specified by the
employed set of pixels (usually rectangular)

{g(rsreRry, .
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The feature enhanced RS imaging problem at hand is
to develop the framework (in this study, the unified
POCS-regularized DEDR-restructured MVDR method)
and the related technique(s) for high-resolution estimation
(feature-enhanced reconstruction) of the SSP as a solution
to the following nonlinear inverse problem

b= estpepravor 1P [0 = Sv+ n; R, =diag(b)} (14)

via processing the available recordings (8) of the com-
plex (coherent) trajectory data u degraded by the com-

posite noise (multiplicative Ag and additive n) with the

SFO perturbation statistics <SR S" > unknown to the

observer.

The DEDR framework developed in the previous stud-
ies [12, 13] provides the solution to the generic SSP re-
covery problem (11) that is feasible only for non-sparse
SSP vectors. Moreover, such method involves cumber-
some regularized inversions of the matrix-form point
spread function (PSF) operators, in which the regularizer

(diag(b))™" is feasible for non-sparse SSP vectors b only.

To treat competing operational scenarios with sparse SSP
vectors b the new modified version of the DEDR strategy

that does not involve inversions (diag(b))™' should be

conceived. In this study, we propose to follow the DEDR-
restructured MVDR strategy, and develop the solvers that
completely exclude matrix inversions at all solution
stages.

II. MobIriED DEDR-MVDR METHOD
A. Adaptation of Robust MVDR Beamforming for Radar
Imaging

The classical robust adaptive MVDR method adapted
for the high resolution nonparametric radar imaging de-
fines the estimates of all SSP vector entries via the square

detected ({-}sq-peT)
{ l;k = {[u7wk(6)]}SQ-DET Vk=1.,K} (15)

adaptive beamformer outputs computed as inner products
{[u,w, (B)]; k=1,...,K } of the data vector u with the so-
called  optimal  beamformer  weight  vectors
{w, (l;); k=1.,K } [9, 18]. Those are solution-

dependent; hence optimal adaptive processing is per-
formed. Particular structures of the weight vectors

{w, (f)) } depend on the employed statement of the rele-
vant optimal beamforming problem. In the most general
robust MVDR setting [18], such {w, (l;) } are defined
via solving the following convex constrained optimiza-
tion problem
{(1/2) <|[u,w,]*> = min  subject to {[s; ,w;]=1
for all look directions k= 1,...,K } (16)

where {s,; k= 1,....K } are the corresponding column

vectors of the regular SFO matrix S. In the STAP signal
processing terminology, those {s,; k = 1,....K } are re-
ferred to as so-called steering vectors [18]. Later on, we
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will explain the MSF processing related sense of such
steering vectors. Solution to the problem (16) yields the
closed-form expressions to the optimal weight vectors
[9, 18]

{w, (f)) = R}'s, ; k=1,...K} with optimal scaling

factors {a,= (s;R,'s,)" ;k=1,..K}. (17)

Note that all weight vectors defined by (17) are solu-
tion-depended due to the dependence of the data theoreti-

cal covariance matrix R, =R, (b)=Sdiag(b)S™ +R, on
the SSP vector b. Putting vectors (17) into (15) yields the
nonlinear solution-dependent SSP estimator [9, 18]

(b I

; , K 18
©sR, (b)s, } (19

optimal (in the MVDR sense) for the theoretical model-
dependent (b-dependent) covariance matrix inverse
R,'(b) where now s; defines the kth steering vector
composed of the corresponding kth row (k = 1,..., K) of
the adjoint regular SFO matrix S" [12]. In the practical
RS imaging scenarios, the unknown exact (model) co-

variance matrix R, (b) is substituted by its J-sample
maximum likelihood (ML)

Y= ﬁu =(/ J)ijlu(_/)u*(_/) that results in the corre-
sponding MVDR algorithm for SSP estimation [18]

estimate [1]

1
+yw -l
s, Y s,

(b, = ck=1,..,K} (19)

feasible for the full rank estimated data covariance matrix
Y only.

B. DEDR-Restructured Robust MVDR Technique for
Enhanced SSP Reconstruction

From simple algebra, it is easy to corroborate that the
theoretical model-based MVDR estimator (18) is algo-
rithmically equivalent to the solution (with respect to the
SSP vector b) of the nonlinear equation

b —> solution to the Eq. —
{D(b)} 4, = {IW(D)R, (bYW (b)} (20)
with the solution operator (SO)
W(b)=(D(b)S'S+N,I)'Db)S*. (21)

Substituting in (20) the theoretical covariance ma-
trix R, by its sample estimate Y = liu yields the follow-
ing DEDR-restructured MVDR strategy

b—> solution to the Eq.—>
b = {D(b)},,, = {W(b)YW(b)},, =
= {A(D)QA(D)} (22)

with the solution independent sufficient statistics (SS)
matrix Q =S"YS and the solution-dependent reconstruc-
tion matrix operator

A = A(b) = (D(b)¥ + N, 1) D(b) . (23)

31



JIOKAUWS 1 HABUTALINS

In (21), (22), operator {-}qi returns the vector of the
principal diagonal of the embraced matrix, and in (23),
¥ =S'S represents the matrix-form ambiguity function
operator of the MSF linear low-resolution complex image
formation system [1, 12, 13]. Note that in the DEDR-

restructured MVDR estimator (22), matrix A = A(f))

defined by (23) does not involve inversion of D(b) ,
hence, the solver to (22) results in the desired sparsity
preserving DEDR-MVDR-optimal technique that admits
zero entries (sparsity) in the SSP vector.

To adapt the solver (22) to the uncertain model of the
perturbed SFO operator (9), we now follow the generic
DEDR framework [12]. It suggests the robust approach
for adjusting the SO (21) to the worst case statistical per-
formances (WCSP) optimization model of the DEDR
problem that yields the so-called robustified SO of the 2™
kind [12]

W(b)=A(b)S" =(D(b)¥+N,I)'Db)S"  (24)

with the regularizing factor defined as a composite noise
power Ny = N, +3, the additive observation noise power
Nyaugmented by the loading factor B > 0 adjusted to the

regular SFO Loewner ordering factor and its statistical
uncertainty bound 7 specified in (10) (see [12] for de-

tails). Hence, the robust modification of the DEDR-
MVDR estimator (22) is now constructed simply by re-
placing in (21), (23) N, by the composite (loaded) regu-
larizing factor Ny = N, +P. In practical estimation sce-
narios, the diagonal loading factor 3 can be put spatially
varying over the scene and evaluated empirically from
the speckle-corrupted low-resolution MSF image follow-
ing one of the local statistics methods exemplified in
[12].

Now, we are ready to adapt the robust sparsity pre-
serving DEDR-MVDR solver defined by (20), (24) to the
considered here single look F-SAR mode (J = 1) via sub-

stituting Y by uu” and defining the complex MSF imag-
ing system output
q=S"u, (25)

in which case, the robust sparsity preserving DEDR-
MVDR solver (20), (24) yields the solution in the form of
the elementwise square detected (SQ-DET) output of the

reconstructive operator A(f)) applied to the complex
MSF image q , i.c.,

b —> solution to the Eq. — b = {A(b)q}s.per =
{AD)qq AD)},, (26)
with the restructured (diagonal loaded)
A=A(b)=(DO®Y+N,D)'Db) (27)

From simple algebra, it is easy to corroborate that for
the adopted single-look RAR/F-SAR modalities with the
real-valued signal independent sufficient measurement
statistics

Q =diag(g); g=1q} (28)

SQ-DET
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available for further processing (i.e., the square detected
low resolution MSF output (25)), the estimator (26) is
algorithmically equivalent to the following DEDR-
modified robust MVDR solver

b —>solution to theEq. —> ®(b)b =D*(b)g=f (29)
with the solution-depended weighted MSF data vector
f=f(b)=D(b)g, (30)

and the solution-dependent MSF imaging system point
spread function (PSF) matrix-form operator

® = ®(b) = (D(b)¥ + N, I)e(D(D)¥ +N,I)’ (31)

where symbol e defines the Schur-Hadamard (elemen-
twise) matrix product.

III. IMPLEMENTATION SCHEMES
A. POCS Regularized Iterative-Form Implementation

The next stage of our design consists in construction
of the sparsity promoting POCS operator and its incorpo-
ration into (29) that yields the resulting POCS-
regularized DEDR-restructured robust MVDR-optimal
solver

b —>solution to the Eq. — P {®(b)b = D*(b)g =} (32)

with the solution-dependent robust reconstructive operator
A= A(f)) defined by (27) and the composite POCS op-
erator P =P, P, P, . Thus, we construct the composite
POCS operator as a cascade action of three operators.
Hence, the action of such 7P is threefold. First, the local
statistics-based despeckling filter [1, 12, 24] B="F,,,
transforms the speckle corrupted MSF  image
g=1qq"}4,, into the despeckled low resolution image

A

b =P, 18} that serves as an input (the zero-

despMSF — b[O]
step iteration by, ) for the further iterative reconstructive
processing.

Second, P, transforms (29) into the implicit contractive

mapping iterative scheme, i.e., B, = P, , with two cor-

iter »
responding discrepancy terms related to the ¢, — ¢, struc-
tured metric specified by (12). Last, P, =P, acts as a
hard threshholding operator that at each iterationi =1, ...
clips off all entries of l;[i] lower than the user specified

nonnegative sparsity preserving tolerance threshold level

.

From the fundamental theorem of POCS [11] it follows
that composite P, P, serves also as a convergence guar-
anteed POCS operator. With such cascade P the (32) is
transformed into the implicit iterative feature enhanced
DEDR-MVDR technique

by =Pty + 4 (f =@y by )+ AV — (@bl (33)

different from all other competing approaches [1-14].
Instead of equibalanced ¢, —¢, weights specified in (12),
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here we have incorporated two regularization factors (hy-
perparameters) A;, 4, that balance the relative contribu-
tion of two ¢, —¢, metrics structured discrepancy terms
in (33). The simplest equibalanced model assumes
A1 = A, = 1. The iterative process is initialized with

B[O] =P,.,gand is terminated at b;; for which the user

specified convergence tolerance level ¢ is attained at
some i = [ or the maximal admissible number of itera-
tions / is performed. In the simulations reported in the
next Section, we have adopted € = 0.05 with balanced
21 = 1, 12 =0.5.

B.  Schematic- Form Implementation Structure

To construct the schematic processing implementa-
tion structure of the POCS-regularized DEDR-MVDR
technique (32), (33) we make the use of the operator
feedback loop structure of Figure 3(a) that yields the
composite transfer matrix

(a)

A=(AA,+k)'A,. (34)

With the specifications, k= N, , A, =D(l;[i]) and

with A, = W, this scheme is exactly suited to perform
the computing operations required by the solver (32),
(33). The schematic-form computational structure of the
resulting iterative POCS-regularized DEDR-MVDR
technique (33) is presented in Figure 3(b).

It is worthwhile to note that the constructed imple-
mentation scheme of Figure. 3(b) does not involve matrix
inversions at all processing levels. Also, incorporation of
the sparsity preserving POCS operator P, = P, speeds-

up the overall iterative process as we next corroborate in
the simulations reported in Section V. These two aspects
constitute significant advantages of the developed
DEDR-MVDR method for feature enhanced SSP vector
recovery.

b[n] = Despursr By =B e smon
v
Low-Resolution High- Resolution
Output Output
(b)

Fig. 3 (a) Feedback loop structure of operator A defined by (34); (b) Double feedback loop-type implicit iterative algorithmic structure

of the sparsity preserving DEDR-MVDR technique. Block labeled by |o[* defines the element-wise square detection operator,

block labeled by z ' defines the one step delay operator.

IV. NUMERICAL SIMULATIONS
A.  Simulation Details

In the simulations, we treated a conventional F-SAR
system under typical system specifications, the same as in
the comparative previous studies [9, 12, 13]. Following
such specifications, we considered the 1024x1024 pixel-
framed scene and adopted triangular shape of the imaging
F-SAR slant range ambiguity function and Gaussian
shape of the corresponding azimuth MSF ambiguity func-
tion. The degradations at the image formation level due
to the SFO uncertainties were simulated using the statis-
tical model of a SAR image defocusing [3, 4, 8]. The
fractional resolution along the x (azimuth) and y (range)
scene coordinates were controlled by assigning different
effective pixel widths k. and k, of the range and the azi-

muth PSFs and their varying over the scene that account
to the range variation effect [4]. To comply with the
technically motivated MSF fractional image the SFO
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uncertainty was simulated adopting the fully developed
speckle model (single-look F-SAR modality) from the
comparative studies [1, 9, 12], i.e., the blurred scene im-
age was degraded with the composite (signal-dependent)
noise simulated as a realization of ,?-distributed random

variables with the pixel mean value assigned to the actual
degraded scene image pixel, i.e., zero dB signal-to-noise
ratio, SNR = 0 dB [4]. Such degradations encompass
both uncontrolled SFO distortions and MSF mismatches
attributed to propagation medium perturbations and un-
compensated carrier trajectory deviations that may occur
in some severe operational scenarios [2, 4, 13].

The simulation experiment compares the developed
DEDR-MVDR technique (33) implemented via the struc-
tural processing using the scheme of Figure 3(b) with two
most prominent competing SAR-adapted enhanced imag-
ing techniques, namely: the celebrated variational analy-
sis (VA) inspired anisotropic diffusion (AD) method [16,
20, 23] adapted to SAR imaging in [12, 13], and the ad-
vanced modified robust adaptive spatial filtering (RASF)
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method of [13] that does not involve the image gradient
norm in the ¢, only structured image space.

B.  Quantitative Performance Metrics

In order to quantitatively evaluate the image en-
hancement performances obtained with different com-
pared employed reconstruction methods, we have em-
ployed three performance metrics commonly used in the
image analysis applications [1, 19, 21, 22]. The first one,
is the so-called improvement in the output signal-to-noise
ratio (IOSNR) measured via the ratio of the correspond-

ing squared ¢, error norms defined as [12, 19]

IOSNR™ =10log,, (|| -

—b“Q) (35)

The second quantitative evaluation metric is the mean

absolute error (MAE)
b (k. k,) - (X,ky)}(%)

1 &
where {b(k,,k,)} represent the pixel values of the initial

MAE™ =10log,, {

Ay k=lk =1

SSP and {l;(” ) (k,.k,)} represent the pixel values of the

SSP reconstructed applying the pth tested technique
(»p=1,2,3,4). As a note, this metric is well suitable for
quantification of fine image reconstruction details, such
as edge preservation (sharpening) and resolution of small
targets on the extended scene [19, 21].

Finally, the third employed quality metric is the so-
called structural similarity index measure (SSIM). The
SSIM quantifies the perceptual difference between the
distorted image and the reference image. It was originally
designed in [21, 22] as a quantitative measure that closely
emulates the human visual system. Following [21, 22],
the structural information in an image relates to those
attributes that represent the structure of objects in the
scene independent of the average luminance and contrast.
The mean squared error (MSE) and the peak signal-to-
noise ratio (PSNR) quality metrics might not be well
matched to perceived visual quality. Two distorted im-
ages with the same or close MSE and PSNR may have
very different types of errors, some of which are much
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where b represents the original SSP frame, g is the low-
resolution speckle-corrupted image formed by a frac-
tional SAR system that employs the conventional MSF
method (28), and H” represents the SSP reconstructed
from the corrupted MSF image g applying the pth imag-
ing method from the simulated family (p = 1, 2, 3, 4):
p = 1 corresponds to the original low resolution MSF

image b= g; p = 2 corresponds to the image enhanced
with the celebrated non-parametric model-free anisot-
ropic diffusion (AD) procedure adapted to SAR imaging
[12, 13]; p = 3 relates to the image recovered employing
the most prominent competing DEDR-related RASF al-
gorithm [13]; p = 4 corresponds to the feature enhanced
image reconstruction performed with the developed here
DEDR-MVDR method.

(b)

Fig. 4. Original scene for the first and second scenarios (not observable with the simulated F-SAR systems).

more visible than others. That is why; SSIM is a better
indicator of perceived image quality. It is defined as fol-
lows [21, 22]

(24,145, +Cl)(20 - +C2)
(,sz +;ul;w>2 +C1)(O-b2 o +C )

where, as in (35), b represents the original SSP frame and

b® is the SSP estimate formed applying the correspond-
ing pth method from the tested family (p =1, ..., 4), and
coefficients C;, C, are included to avoid instability [21,
22]. In (37), the image luminance is estimated as the
mean intensity

SSIM(b,B‘P’) - (37)

1 K
= EZxk; (38)
k=1

the standard deviation

n—mﬁT (39)

k=1

is used as an estimate of the image contrast, and the
structure comparison is performed via evaluating the co-
variance between the corresponding compared images

=) (v -y ) (40)
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In the simulations reported in the next Section, we
have used C;= le-4 and C, = 9e-4 following the structure
suggested in [21, 22].

C. Simulation Results and Discussion

Figure 4 presents the high resolution despeckled
scene image formed with a hypothetical full-focused
SAR (not observable with the simulated F-SAR) for two
scenes borrowed from the real-world SAR imagery [26].

The low resolution speckle corrupted scene images in
Figure 5(a) and in Figure 6(a) correspond to the simu-
lated single look F-SAR (quick look modality (25), (28))
for the operational scenario specifications similar to those
from the competing studies [1, 9, 13] as specified in the
Figure captions. Figures 5(b) thru 5(d) and Figures 6(b)
thru 6(d) report the feature-enhanced radar imaging re-
sults obtained with different compared DEDR-related
techniques as specified in the Figure captions. These re-
sults verify that the best perceptual F-SAR image en-

hancement performances as well as convergence rates
were attained with the developed POCS regularized
DEDR-MVDR method. In the first scenario related to the
scene shown in Figure 4(a), the simulated degradations in
the resolution are moderate over the range direction
(x,= 10) and significantly larger over the azimuth direc-

tion (&, = 20). In the second scenario related to the scene

shown in Figure 4(b), the fractional SAR system suffers
from much more severe degradations due to additional
defocusing in both directions (x, = 15; x, = 30). Next,
Figures 5(b) and 6(b) show the images enhanced apply-
ing the competing anisotropic diffusion (AD) technique
[16, 23]. The images reconstructed using the competing
DEDR-related RASF method [12] are shown in Figures
5(c) and 6(c), and the corresponding images optimally
reconstructed applying the developed here DEDR-
MVDR technique (after 12...14 performed iterations) are
presented in Figures 5(d) and 6(d), respectively.

d

Fig. 5. Simulation results for four tested imaging modalities: (a) low resolution speckle corrupted MSF image of the first scene formed with a simu-
lated F-SAR system; modeled system parameters: squared triangular range point spread function (PSF), the width (at ' of the peak value) x,= 10
pixels; squared Gaussian bell azimuth PSF, the width (at /2 of the peak value) &= 20 pixels; the worst case single-look scenario with fully developed
speckle, (SNR = 0 dB); (b) the same scene image enhanced using the AD technique (convergence at 43 iterations); (c) result of reconstructive imag-
ing performed with the DEDR-related RASF method (convergence at 34 iterations); (d) the same image reconstructed applying the developed here
DEDR-MVDR technique (convergence at 12 iterations). All results are reported for the zero-level threshold 7 = 0.
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Table 1 reports the quantitative performances evalu-
ated via three quality metrics (27), (28) and (29) obtained
with three tested DEDR-related feature enhanced SSP

estimation methods. Those are also indicative of the su-
perior quantitative recovery performances attained with
the proposed DEDR-MVDR technique.

Fig. 6. Simulation results for four tested imaging modalities: (a) low resolution speckle corrupted MSF image of the second scene formed with a
simulated F-SAR system; modeled system parameters: squared triangular range point spread function (PSF), the width (at /2 of the peak value)
&, = 15 pixels; squared Gaussian bell azimuth PSF, the width (at ' of the peak value) &= 30 pixels; the worst case single-look scenario with fully
developed speckle, (SNR = 0 dB); (b) the same scene image enhanced using the AD technique (convergence at 44 iterations); (c) result of reconstruc-
tive imaging performed with the DEDR-related RASF method (convergence at 36 iterations); (d) the same image reconstructed applying the fused
MVDR-POCS technique (convergence at 14 performed iterations). All results are reported for the zero-level threshold = 0.

Table 1: Quantitative results obtained for the two simulated scenarios using three different quality metrics.

First scenario

K= 10 =20
IOSNR(dB) MAE(dB) SSIM
AD 2.61 18.91 0.42
RASF 2.75 18.70 0.42
DEDR-
MVDR 3.51 18.65 0.49

Second scenario

=15 =30

IOSNR(dB) _ MAE(dB) SSIM

AD 2.18 18.83 0.37

RASF 2.32 18.59 0.45
DEDR-

MVDR 3.05 18.59 0.56

V. CONCLUSION

In this paper, we have treated the feature enhanced
RS imaging problem particularly adapted to the conven-
tional RAR/F-SAR sensors. The image recovery problem
was casted and treated in the inverse problem statement
as an enhanced resolution reconstruction of the desired
SSP of the remotely sensed scene from the low resolution
MSF image. The solution to the inverse problem at hand
was derived based on the generic DEDR framework. The
DEDR solution strategy does not require a priori knowl-
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edge of the data signal statistical distributions and is
aimed at the optimal balancing of the adaptive resolution
enhancement over the spatially selective composite noise
suppression (both additive noise and multiplicative
speckle). To find an efficient solution, we have per-
formed the DEDR restructuring of the celebrated robust
MVDR virtual beamforming-based high resolution SSP
reconstruction technique particularly adapted to the
RAR/F-SAR sensing modalities that yields the new uni-
fied DEDR-MVDR-optimal inverse problem solver. The
developed DEDR-MVDR method manifests considerably
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enhanced SSP reconstruction features. It outperforms the
prominent competing high-resolution imaging techniques
in the perceptual image recovery quality as well as in the
attainable quantitative performance enhancement meas-
ures. Those are achieved due to incorporation into the
DEDR solution framework the edge preserving and spar-
sity promoting POCS regularization levels. Moreover,
due to the employed composite POCS regularization the
DEDR-MVDR enhanced radar imaging technique is im-
plementable in a considerably speeded-up implicit itera-
tive mode that completely excludes cumbersome matrix
inversions at all processing stages. The new DEDR-
MVDR method does not need the observer’s supervision,
facilitates parallel processing and manifests super-
resolution performances that make it a viable candidate
for perspective digital-form implementation in low cost
RAR/F-SAR sensing instruments.
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Ne1.-C.26-38.

Jlns nH(OPMAIIMOHHOTO aHAIN3a JaHHBIX JUCTAHIIMOHHO-
TO 30HANPOBAHMS, (POPMHUPYEMBIX OOBIYHBIMH PATHOIOKAIIHOH-
HBIMH cucTeMaMu 6okoBoro 063opa (PJIC-BO) u panuonokato-
paMu C HENOJIHOH ((paKIMOHHO) CHHTE3NPOBAHHOW alepTypo
(®-PCA), mnepBHYHBIE paJHOJOKAIMOHHBIE H300paXKEHHS
(PJIN) ¢ HU3KKUM pa3pelIeHreM, 3allyMJICHHbIE CIIEKJIOM, OJIK-
Hbl OBITH JOIOJIHUTENLHO OOpabOTaHbl Ul TOBBIICHUS HX
KadecTBa. B mpemmaraemoii pabote 3Ta mpodieMa penraeTcs B
KOHTEKCTe OOpaTHBIX 3a7ad BBICOKOpAa3peIlaromeil pecraBpa-
UM PATUOSPKOCTHBIX M300pakKeHWi 30HAUPYEMBIX CICH H3
MIePBUYHBIX CIeKI3amryMineHHsIx PJIM HuU3KOro paspemeHus.
Brauane, criemys METOJONOTMH DErylspH3alii Ha OCHOBE
JIECKPUITUBHOTO ITaHKpoBaHus dkcriepuMenta (PAT13), metox
BHPTYaJIBHOTO aJallTUBHOTO AuarpammooOpaszoBanust Keiinona
(MuHMManbHON Bapuanuu 6e3 cmeruenus (MBBC)) apantupy-
ercst K 3amadye pexkoHctpykumn PJIM. Jlamee, B P/IIO-
pectpykryupoBanHbslii MBBC BBOAsTCS AOMONHUTENIBHBIE pe-
TYJISIPU3aIHOHHBIC YPOBHH MPOEKINIT Ha BEITYKJIEIE MHOXKECTBA
(IIBM), opueHTHpOBaHHBIE Ha OOECIeYeHHE CXOJUMOCTH Pec-
TaBPAllMOHHOW HWTEPAlMOHHOW CXEMBI U IIOJICPKKY BO3MOXK-
HOHM pa3peKeHHOCTU (sparsity) B Pe3yJbTHUPYIOIIEM PEKOHCT-
pyuposanHoM PJIM. Bsenenue wmHoroyposnesbix IIBM B
PAIID-ontumManeHO  pecTpykTypupoBanHyro MBBC cxemy
MIPUBOIUT K HOBOMY MeToay pectaBpauuu PJIN (ampecoBaHHO-
My kak PAIID-MBBC), koTopslil 00ecreunBaeT CymecTBEHHOE
yIIydIIeHHe KadecTBa PEKOHCTPYKIMH H300pakeHHS 3a Cuer
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MPOCTPAHCTBEHHO CEJICKTUBHOIO aJalTHBHOIO IOJAaBJICHUS
crexina P/II13-ontuMansHO cOalaHCHPOBAHHOTO C ITOBBINICHH-
€M paspellleHus M MOAINEPKKON sparsity. BbpIUMCIUTENBHO,
npeanoxenHsii PAIID-MBBC merton peanu3oBaH B BHIE He-
SBHOW WTEpPAIlMOHHOW CXEMBI MOJHOCTBIO HCKIIIOYaromen 00-
pallleHuss MaTPUIl Ha BCEX JTarax peKOHCTPYKTUBHOI 00paboT-
xu PJIU. [lpuBeneHHble JaHHBIE YUCIEHHOTO MOJIEIMPOBAHUS
MIOJTBEPKIAIOT Oojtee BBHICOKYIO 3 (EKTHBHOCTH HPEIUIOKEH-
Horo P/III9-MBBC MeTona B cpaBHEHUU C JPYTUMU KOHKYpU-
PYIOIIVMH HENapaMeTPUYeCKHMH aIalTHBHBIMH METOHaMHU
noBblleHus kauectsa PJIN.

Knrouesvie cnosa: nuarpaMmooOpa3oBaHUe, peryisipusa-
I HA OCHOBE JECKPUNTHBHOTO TUIAHWPOBAHMS SKCIIEPUMEHTA
(PAIID), pagronokaTop ¢ CHHTE3UpOBaHHOH anepTypoit (PCA),
paIuoNIOKaIlIMOHHOE N300paXKeHHe, pa3pelieHue.

Tabn. 1. Puc. 6 . bubmmorp.: 26 Ha3zs.

YK 621.396

®opMyBaHHsI HAJPO3AIIAIOYMX PpagioNoKaNiifHUX Ta
PCA 300paskenb: peryJasipusaniiamii miaxia na 6asi Bipryann-
Horo pgiarpamoctBopennss / HO.B.IlIkBapro, X.A. Amao,
X.W. Snve3 // Tlpuknanaa pamioenekTpoHiKa: HayK.-TeXH. XKyp-
Hait. —2016. — Tom 15. — Ne 1. — C. 26—38.

Jnst indopMariifHoro aHamizy JaHUX JUCTAHIIHHOTO 30H-
IyBaHHS, IO (OPMYIOThCS 3BHYAHHUMH PamioIOKaliiHUMU
cuctemMamu 6okoBoro orsiny (PJIC-BO) Ta pamionokaTopamu 3
yacTKoBO (¢pakuiiino) cuuresoBanoro anepryporo (O-PCA),
HepBHHHI pazionokauiiiHi 300paxenns (PJI3) 3 HU3bKUM pO3i-
JICHHSIM, 3aIIyMJICHI CIIEKJIOM, MOBUHHI J0IaTKOBO 0OpPOOIISITH-
¢Sl TS MABUIIEHHS 1X SKOCTi. B po0OTi, 0 MPOMOHYETHCS, 1S
mpobJeMa BUPILIYEThCS B KOHTEKCTI OOCPHEHHX 3a7ad HaJpO3-
JISAI0U0i  pecTaBparii pajiosickpaBUX 300paXKeHb CIEH, IO
30HIYIOTECS, 3 MEPBHHHMX CIekmsamyMieHux PJI3 Hu3bpKoro
posninenss. Crioyatky, BUXOISIYHU 3 METOJOJIOTIT perysipu3anii
Ha 0a3i JecKpunTHBHOTO IulaHyBaHHs excriepumenty (PJIIIE),
METO/]] BIpTYaJIbHOTO aJaNTHBHOrO jAiarpamoctBopeHHs Keiimo-
Ha (MiHiManbHOI Bapiauii 6e3 3cyBy (MBB3)) amantyerscs 1o
3agaui pekoHctpykuii PJI3. [dani, B PAIIE — pectpykrypoBaHiit
MBE3 BBOIATBHCS JONATKOBI peTyJspU3amiiHi piBHI MPOEKITii
Ha Bunykii MHOkuHE ([IBM), 30pieHTOBaHI Ha 3a0e3mev4eHHs
30iry pecraBpalliifHOl iTepamiiHOi CXeMH Ta MiITPUMKY MOX-
JIMBOTO PO3PIIKEHHS (sparsity) B pe3yJbTyFOUOMY PEKOHCTPY-
roBanomy PJI3. Beenenns OararopiBeBux [IBM B PIIIE —
ONTUMalbHY pecTpykTypoBaHy MBB3 cxemy nae HOBHIi MeTO
pecraspauii PJI3 (Busnauennii six PATIE-MBB3), sxuii 3a06e3-
neyye iCTOTHE MiABHIICHHS SIKOCTI PEKOHCTPYKIil 300pa’keHb
32 paxyHOK HPOCTOPOBO CENEKTUBHOTO aJaNTHUBHOTO 3ariy-
menns cnekna P/ITTE — ontumanbHo 30a1aHCOBAHOTO 3 TTi/IBH-
MIEHUM PO3AUICHHSIM Ta MIATPUMKOIO po3pimkeHHs. Ob6uuncio-
BaybHO 3anpornonoBanuii P/IITE — MBB3 merton peanizoBaHo y
BUTJISIII HESIBHOT ITEpaliiHOi CXeMHU, sIKa TIOBHICTIO BUKJIFOYAE
00epHEHHS MaTpHUIlb Ha BCIX eTarnax peKOHCTPYKTHBHOI 00p0o0-
ku PJI3. HaeneHi pe3ynbTaTd MareMaTHYHOTO MOJEIIOBAHHS
HiITBEPDKYIOTh OUIBII BUCOKY e(DEeKTHBHICTh 3alPOIIOHOBAHO-
ro PATIE- MBB3 metony mopiBHSHO 3 iIHIIUMH KOHKYPYIOUHMH
HeTapaMeTPHYHUMK  aJalTHBHIMHU METOJAMH  MiJBHIICHHS
sxocti PJI3.

Kniouosi cnoea: miarpaMOCTBOPEHHS, peTyJsipH3alii Ha
6a3i jeckpunTHBHOrO IutaHyBaHHs ekcnepumenty (P/IIIE),
panionokaTop 3 cuHTe30BaHOw aneptyporo (PCA), pamionoka-
1iifHe 300paskeHHs, PO3/IIICHHSL.

Tabn. 1. Puc. 6. bi6miorp.: 26 Haiim.
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