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INTRODUCTION 

Modern imaging radar and synthetic aperture radar 
(SAR) systems can provide microwave images of terres-
trial surfaces in different wavebands independent of 
weather conditions and sunlight illumination. The major-
ity of conventional airborne monitoring or navigation 
missions use low cost real aperture radar (RAR) or frac-
tional SAR (F-SAR) sensing systems. However, the frac-
tional synthesis mode inevitably sacrifices spatial resolu-
tion and usually suffers from operational scenario uncer-
tainties attributed to random signal perturbations in a 
turbulent atmosphere, imperfect system calibration, 
multiplicative speckle noise, and possible uncontrolled 
carrier trajectory deviations [1–4]. All low cost airborne 
RAR/F-SAR systems employ the so-called matched spa-
tial filtering (MSF) based processing of the trajectory 
data signals in both the slant range and cross range (azi-
muth) directions performed over the “fast” and “slow” 
trajectory time scales, correspondingly, for image forma-
tion. The MSF method is sometimes referred to as a 
quick-look or compressed sensing mode [1, 7, 9], but 
despite its wide application it is able to produce only low 
resolution (i.e., blurred) imagery corrupted by both addi-
tive noise and multiplicative speckle. The mapping capa-
bilities of such RAR/F-SAR sensors are insufficient to 
reach the goals of multi-purpose analysis of the provided 
imagery, which make the interpretation of the remotely 
sensed data very difficult and in some operational scenar-
ios even impossible [3–7]. If the on-board coherent full 
aperture synthesis mode with further adaptive platform 
motion and atmospheric errors corrections are unavail-
able (as it is a case in all low cost remote sensing (RS) 
and autonomous navigation missions with RAR/F-SAR 
sensors), the challenging problem consists in an attempt 
to perform feature enhanced recovery of the low resolu-
tion (LR) radar imagery via it computational processing 

[3, 9–15]. The crucial problem relates to performing 
some space-time adaptive processing (STAP) of such 
degraded radar/F-SAR images to make them suitable for 
further intelligent data analysis and interpretation in par-
ticular RS applications. In the signal processing settings, 
such STAP tasks are traditionally addressed as feature 
enhanced radar image recovery that is basically aimed at 
considerable image resolution enhancement balanced 
over noise and speckle suppression. These tasks can be 
formalized in a framework of nonparametric inverse 
problems of reconstruction of the scattered field spatial 
spectrum pattern (SSP) i.e., estimation of the average 
scene power reflectivity referred to as a scene image [6, 
11–17]. Representing a spatial map of the RS scene 
power reflectivity (i.e., the second-order statistics of the 
random backscattered field), the SSP may possess a local 
spatial sparsity property peculiar for some piecewise 
smooth scenes [7, 9, 12, 13]. The deficiency in the spatial 
resolution and presence of noise and speckle make the 
SSP recovery problem ill-posed [7, 11, 12, 13, 18, 19]. 
Modern approaches for solving such a class of uncertain 
nonlinear inverse problems are based on a combination 
(fusion) of some regularized image restoration/recovery 
techniques with adaptive de-speckling methods (e.g., see 
[5, 7, 11, 17–20] and the references therein). In harsh 
sensing environments, solution of the SSP recovery in-
verse problem is complicated due to the random perturba-
tions in the signal formation operator (SFO) that cause 
multiplicative degradations (speckle) with the statistics 
(in general, non-Gaussian) usually unknown to the ob-
server [5, 6, 11–14]. The restoration or recovery tasks are 
aimed at spatial resolution enhancement that needs per-
forming of some approximated adaptive SFO inversion; 
the latter should also be balanced over suppression of the 
image-dependent speckle noise. The conventional multi-
look de-speckling approach [2–7] does not satisfy these 
requirements because it considerably sacrifices the spatial 
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resolution. There is a vast amount of literature on ap-
proaches that provide superior performances over the 
MSF method for SSP estimation when certain assump-

tions are met (e.g., see [3, 10–20] and the references 
therein). 

 

  

         (a)             (b) 
Fig. 1: (a) Essential elements of a typical remote sensing imaging radar; (b) Geometry  

of a RAR/F-SAR imaging scenario with carrier trajectory deviations. 

The most crucial restriction, however, relates to the 
featured above inverse problem nonlinearity and model 
uncertainty. Moreover, non-Gaussian statistics of speckle 
and SFO perturbations (usually unknown to the observer) 
make infeasible application of the Bayesian inference 
strategies [11–17] for SSP recovery. Some competing 
developments [7, 11, 14, 18, 20] argue to employ ad-
vanced digital beamforming techniques to improve the 
recovered image performances. However, the still unre-
solved problem relates to adaptation of the beamforming-
based techniques to solving the inverse problems of fea-
ture-enhanced recovery of the scene SSP maps already 
provided with the LR RAR/F-SAR sensors. 

In this study, we consider the nonlinear inverse prob-
lem of feature-enhanced SSP reconstruction from a co-
herent (complex) LR RAR/F-SAR images formed em-
ploying the conventional MSF processing method [2, 4, 
8, 12]. The recovery problem is stated and treated in the 
descriptive experiment design regularization (DEDR) 
framework [12, 13] unified with the robust minimum 
variance distortionless response (MVDR) virtual beam-
forming approach [1, 18]. The new challenging proposi-
tions are threefold: (i) to solve the nonlinear inverse prob-
lem at hand with considerable resolution enhancement 
over noise suppression gains; (ii) to construct the solution 
in a form of an MVDR inspired virtual beamforming-
based procedure that does not involve cumbersome data 
matrix inversions at all processing levels, and at the same 
time guarantees preservation of a sparsity of the recov-
ered scene SSP (if exists); and (iii) to build an efficient 
iterative scheme for speeded-up implementation of the 
MVDR-based sparsity promoting SSP recovery proce-
dure. To achieve these goals, we incorporate into the 
DEDR strategy for SSP reconstruction the additional 
convergence guaranteed composite projectors onto the 
convex solution sets (POCS) [11–13]. Next, we put the 
DEDR-POCS solution into the modified MVDR virtual 
beamforming framework that excludes matrix inversions 
at all processing levels. Last, we construct the implicit 

contractive mapping iterative scheme for efficient com-
putational implementation of the developed POCS-
regularized DEDR-restructured robust MVDR-based 
method for SSP recovery. In the reported simulations, we 
corroborate the effectiveness of our new DEDR-MVDR 
method in the resolution enhancement over noise sup-
pression gains as well as in the convergence rates via its 
comparison with the competing feature-enhanced radar 
imaging techniques in the literature [1–7, 11–15].  

The rest of the paper is organized as follows. The 
problem model that we treat in this paper is structurally 
similar to the previous studies [1, 9, 12, 13], thus the sys-
tem-level and general phenomenological background and 
some numerical model details are repeated for conven-
ience to the reader in Section I. In Section II, we develop 
our new DEDR–restructured virtual MVDR beamform-
ing based technique (that we address here as the unified 
DEDR-MVDR method). Here, we also provide modifica-
tions of the DEDR-MVDR-based solution procedure to 
avoid cumbersome matrix inversions at all processing 
levels. Two processing schemes for computational im-
plementation of the developed image recovery method 
are built in Section III. The algorithmic developments are 
followed by the effectiveness corroborative numerical 
simulations featured in Section IV. Concluding remarks 
in Section V summarize the addressed study.  

  

I. PROBLEM PHENOMENOLOGY 

A. Basics of a Radar Imaging System 

Conventional low resolution real aperture radar 
(RAR) microwave imaging radar systems operate via 
forming fan shaped antenna beams, with wide radi-
ated/received patterns in elevation, to illuminate a re-
spectable swath width in range, and narrow azimuth an-
tenna patterns, to accumulate the image line by line [1–5, 
8, 11].  
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(a) (b) 

Fig. 2 (a) Full-focused synthetic aperture radar geometry; (b) Problem geometry for an unfocused and fractionally focused  
synthetic antenna modalities; R0 represents the range from an elementary scattered target to the center of the synthesized array. 

This is illustrated in Figure 1 (a). Imaging radars are 
differentiated between each other on how they achieve 
resolution in the range and azimuth directions. Resolution 
is a measure of image sharpness; the minimum distance 
two objects (elementary scatterers) have to have in order 
that their echoes are separable. In the real-world airborne 
RS scenarios, the carrier flight trajectory is not always 
nominal; there can be uncontrolled (modeled as unknown 
deterministic or random) deviations from the nominal 
flight trajectory (the carrier deviations) during the flight 
time, changes in the flight altitude, imperfect radar cali-
brations, etc. Figure 1(b) illustrates these effects peculiar 
for a RAR/F-SAR system. Here, the radar system is 
aboard a platform moving at a speed sV  

in a non-nominal 
trajectory, γ  defines the angle between the radar beam 
and the normal line to the earth surface in a particular 
point of interest, p  

defines the duration of the radar im-

pulse width, v  
is the width of the vertical radar beam, 

h  
indicates the antenna beam footprint, aW  represents 

the effective antenna height, D is the effective antenna 
length, and gW  

represents the swath width. 
In the systems that employ simple pulse modulated 

signals, the slant range resolution is determined by the 
pulse duration [2–4, 8]. The technical way to increase 
range resolution capability is to employ chirp modulated 
pulses that admit efficient pulse compression via per-
forming MSF of the trajectory signals in the range direc-
tion [2, 4, 8]. Such sensing modality provides sufficiently 
high range resolution capabilities evaluated for the chirp 
modulated pulse signals as range = (1.4c)/(2B) [8] where 
c represents the speed of propagation of electromagnetic 
waves and B is the chirp signal bandwidth. Thus, the 
range resolution problem is technically resolved employ-
ing chirp pulse compression techniques, e.g., [2–4, 8]. 
The crucial problem, on the other hand, relates to the low 
azimuth (cross range) resolution attainable with conven-
tional RAR sensors [1–5, 8, 11]. The technical way to 
increase the azimuth resolution is to synthesize the an-
tenna aperture, well known as SAR sensing, e.g., [2–4, 7, 

8], etc. Thus, the azimuth resolution depends on the par-
ticular mode of the trajectory data signals recording em-
ployed in a particular sensing scenario. Here beneath, to 
complete the background, we feature three general radar 
sensing modalities that affect the overall azimuth resolu-
tion capabilities.  

B. System-Level Limitations on Azimuth Resolution  

Three typical trajectory data acquisition modes affect 
the resulting azimuth resolution capability [2, 3, 8].  

1) The conventional RAR modality with MSF tra-
jectory signal processing provides azimuth resolution 
strictly dependent upon the width of the radiated beam [2, 
3, 8]. 

2) The so-called unfocused synthetic antenna mo-
dality (unfocused SAR) is able to perform some aperture 
synthesis, in which the synthetic antenna length is made 
as long as the unfocused technique permits [4, 8]. 

3) In the focused synthetic antenna mode, the syn-
thesized array length can be made equal to the back pro-
jected linear width of the radiated beam at each range 
gate (potential, so-called full-focused modality) or its 
fraction (fractionally-focused modality). 

The linear azimuth resolution for the conventional 
RAR case is given by [2, 8] 

       
(RAR )  = a

R
D
 .                         (1) 

For the unfocused F-SAR modality, the linear azi-
muth resolution is defined as [8] 

  
(unf SAR)

1 = 
2a R  ,                            (2) 

whereas for the full-focused SAR, the resolution is in-
creased to its potentially attainable value [2] 

     
(foc SAR) eff-max = 

2a
DR   .                      (3) 

Here  represents the wavelength of the radar signal 
transmitted, D is the horizontal aperture length of a 
physical antenna, R is the range to the scattering element 
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on the scene (related to a particular considered range 
gate), eff = /2Leff represents the effective half-power 
beamwidth of the synthetic aperture, and Leff is the length 
of the synthetic aperture. For the full focused mode, Leff 
equals to the back projected antenna footprint width, i.e., 
Leff = Leff-max = R/D that results in the potentially attain-
able azimuth resolution (3).  

Clear that in the conventional RAR modality, for 
achieving moderate azimuth resolution a very narrow 
beam should be radiated. The half-power beamwidth 
eff(RAR) = /D produces the linear azimuth resolution (1), 
i.e., the product of beamwidth /D with the range R. In 
the unfocused SAR modality, the conventional data proc-
essing technique performs MSF of the trajectory signal 
acquired within the unfocused synthetic aperture [2–5, 8]. 
In this case, the coherent signals received at the synthetic 
array points are integrated, with no attempt made to shift 
the phases of the signals before integration [8]. This lack 
of phase adjustment imposes a limitation on the maxi-
mum open/unfocused synthetic antenna length that can be 
generated. This maximum unfocused synthetic antenna 
length occurs at a given range when the round-trip dis-
tance from a radar target to the center of the synthetic 
array differs no greater than by / 4  from the round-trip 
distance between the radar target and the extremities of 
the unfocused synthetic aperture array that result in the 
linear azimuth resolution given by (2) [8] as examplified 
in Fig. 2.  

Last, in the fractional focused SAR (F-SAR) modality 
(see Fig. 2(b)), only a fraction (say,  < 1) of the poten-
tial full-focused aperture Leff = Leffmax = R/D is em-
ployed to coherently register the trajectory signals for 
further MSF processing, hence the linear azimuth resolu-
tion attainable employing the conventional MSF process-
ing is a 1/ coarser than the potential value (3), i.e.,   

      
(F-SAR)  = ; 1.

2a
D 


                     (4) 

Next step is to cast and treat the problem of feature 
enhanced radar imaging via processing of the trajectory 
data signal coherently registered with a RAR, F-SAR, or 
unfocused SAR sensors (the latter can also be viewed as 
a particular F-SAR modality) in the framework of image 
recovery inverse problems.  

C. General Radar Imaging Problem Formalism 

Referring to the previous related studies [1, 9, 12, 13] 
consider a coherent remote sensing (RS) experiment with 
a narrowband RAR/F-SAR imaging system that enables 
us to model the extended scene backscattered field by 
imposing its time invariant complex scattering function 
v(r) in the scene domain (scattering surface) Rr. The 
measurement data wavefield u(p)=s(p)+n(p) consists of 
the echo signals s and additive noise n and is assumed to 
be available for observations and recordings within the 
prescribed time-space observation domain Pp, where  
p = (t, )T defines the time-space points in the trajectory 
observation domain P=TP. The model of the RAR/F-
SAR trajectory data signal u is defined by specifying the 
linear stochastic equation of observation (EO) of an op-
erator form [12], u = v + n; v  ; u, n  ; 

:    , in the Hilbert spaces   and   with the 2  
metrics structures induced by the scalar products [11]  

1 2 1 2[ , ] ( ) ( ) ;
P

u u u u d P  p p p p
   

and 

1 2[ , ]v v  1 2( ) ( ) ;
R

v v d R  r r r r ,                   (5) 

respectively. In the conventional integral-form representa-
tion format, the observation trajectory signal u(p) is ex-
pressed as  

( ) ( , ) ( ) ( );
R

u S v d n p p r r r p
 

( ) ( ); ( ), ( ) ( ) ,v R u n P r p p 
 
             (6) 

where ( , )S p r represents the functional kernel of the per-

turbed SFO :    . Its mean,    ; 
:    , is completely specified by the regular kernel 

component given by the averaging 
( , ) = ( , )>S Sp r p r (over the randomness of 

:    ) that is defined by the employed signal wave-
field formation model [4, 11, 12]. Such regular SFO ker-
nel ( , )S p r is fully determined by the time-space modu-
lation of signals employed in a particular radar system [5, 
11, 12]. The variation about the mean,  Δ   , 
models perturbations of the wavefield at different propa-
gation paths. In different problem model treatments, such 
SFO perturbation component, Δ , can be considered as 
unknown deterministic or random. In the stochastic 
model treatment, Δ  is characterized by the general Ry-
tov’s statistical model [5]. 

Following the above operator observation model for-
malism, we next assume an incoherent nature of the ex-
tended object/scene scattered wavefield ( ) ( )v Rr  . 
This is naturally inherent to all real-world radar RS sce-
narios [2, 5, 11, 12] and leads to the -form of the scat-
tered wavefield correlation function  

Rv(r1,r2) = 1 2( ) ( )>v v r r = b(r1)(r1– r2); 
   b(r) = 2| ( ) |v r ;   r, 1 2, Rr r          (7)  

where v(r) and b(r) = 2| ( ) |v r  are referred to as the 
scene random complex reflectivity and its average power 
reflectivity/scattering function or spatial spectrum pattern 
(SSP), respectively. In the standard settings, v(r) is mod-
eled as a zero mean random Gaussian field [2, 5], while 
the statistics of u(p) depend on the employed statistical 
models of additive noise n(p) and the SFO perturbations. 

The considered here RS imaging problem is formally 
stated as follows: to derive an estimate ˆ( )b r  of the scene 
SSP b(r) (referred to as the desired RS power image) by 
processing the available finite dimensional RAR/F-SAR 
measurements of the trajectory data signal u(p). It is clear 
that any feasible estimator of ˆ( )b r  must involve a solu-
tion of the operator equation of observation (6) opti-
mal/suboptimal in the sense of some posed criterion. Such 
a solution assumes inversion (or some approximated in-
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version/pseudo-inversion) of the SFO, with the desired 
SSP estimate related to the complex scattering function 
via the second order statistical model (7). Thus, such a 
problem falls into a class of stochastic nonlinear inverse 
problems. Moreover, due to the SFO perturbations (mod-
eled as unknown deterministic or stochastic with statistics 
usually unknown to the observer), the problem at hand 
should be treated as an uncertain stochastic nonlinear in-
verse problem. Note that random SFO model makes the 
statistics of the observation signal u(p) non-Gaussian (and 
unknown to the observer). This makes unfeasible applica-
tion of the Bayesian inference strategies. Hence some 
non-Bayesian regularization-based problem solvers 
should be developed and applied.    

D. Problem Model 

Following standard trajectory signal discretization 
schemes [3, 4, 12] consider the vector-form approxima-
tion 

   u = Sv + n = , SSv Δ v n               (8)  

of the integral equation of observation (6). Here, vector 
v represents the lexicographically ordered pixel-format 
representation of the random scene reflectivity function 
v(r) observed through the MK perturbed matrix-form 
SFO   SS S Δ  and contaminated by additive Gaussian 

noise vector n. The discrete-form SFO, SS S Δ  , is 
the MK  (M<K for compressed sensing scenarios) ma-
trix-form approximation of the integral-form perturbed 
SFO :    , in which the regular component S is 
specified by the employed modulation and synthesis 
mode [3, 4, 12]. In (8), v, n, u are treated as zero-mean 
random vectors composed of the entries 1{ }K

k kv  , 1{ } 
M

m mn  
and 1{ }M

m mu   of the discrete-form approximations of the 
fields u, n and v with respect to the employed orthogo-
nal decomposition function set {hm(p)} in the observa-
tion domain and the expansion (pixel) set {gk(r)} in the 
scene domain, respectively [3, 4, 8]. These vectors are 
characterized by the correlation matrices, 

( ) diag( ) vR D b b , the diagonal matrix with the vec-
tor-form SSP b at its principal diagonal, 0NnR I  

and 0 ,N  u vR SR S I  correspondingly, where the 
averaging <·> is performed over the randomness of per-
turbations SΔ  of the regular SFO S. In (8), superscript + 

stands for Hermitian conjugate (adjoint operator [11]), 
and N0 is the white observation noise power n. Vector b 
represents a lexicographically ordered by multi index  
k = (kx, ky) vector-form representation of the SSP map  
B = {b(kx, kx)} over the KyKx pixel-framed 2-D scene 
{kx = 1,…, Kx; ky = 1,…, Ky; k = 1,…, K = KxKy}  
[12, 17]. The matrix-form representation of the uncer-
tain SFO in (4) is given by [13]  

    S  =  SS Δ ,           (9) 

in which the M×K nominal SFO matrix S is composed of 
the scalar products {[ , ]k mSg h  ; k = 1, …, K; m = 1, …, 
M} [11] while all problem model uncertainties are attrib-
uted to the distortion term SΔ . In the stochastic 

treatment, such SΔ  is modeled as a random zero-mean 
matrix with the bounded second-order moment, i.e. 

 SΔ  = 0;  2|| || SΔ  = tr{ 
S SΔ Δ }            (10) 

where 2|| ||SΔ = tr{ 
S SΔ Δ } defines the squared Frobenius 

matrix norm, tr{} is the trace operator, superscript + de-
fines the Hermitian conjugate (conjugate transpose), and 
  is the bounding constant [12] that we consider as a 
user specified problem model parameter. In the limiting 
case, 0  , the SFO perturbations are neglected, hence 
the problem is simplified to the certain nonlinear inverse 
problem with Gaussian statistics of all vectors in (8).  

E. Discrete-Form Imaging Problem Formalism    

   A solver to the nonlinear inverse problem for recovery 
of the SSP vector b from the available data recordings u, 
i.e., 

       
ˆ { | }strategyestb b u                       (11) 

obviously depends on the employed estimation strategy.  
For the commonly accepted Gaussian model [3] of 

the complex reflectivity v and random (Gaussian or non-
Gaussian [3, 4, 11]) SFO perturbations term SΔ  in (9), 
the composite noise, SΔ v n , in (8) is, in general, non-
Gaussian distributed and signal dependent [1, 7, 11], and 
it is not even practical to model it as a mixture of Gaus-
sians due to insufficient training data and the lack of 
knowledge about the number of Gaussian mixtures [11]. 
This makes infeasible application of the Bayesian estima-
tion strategy.  

The feasible competing approach that we propose to 
follow in this study is based on the worst case statistical 
performances optimization adapted minimum risk in-
spired DEDR framework [12] that does not require 
knowledge of the particular probabilistic characteristics 
of the data model (8). The general-form DEDR solver 

DEDR
ˆ { | }estb b u  seeks for an SSP estimate in the posi-

tive convex cone solution set in the Euclidian im-
age/solution space ( )K with the metric structure induced 
by the generalized 2 2   scalar products [13] 

    

2 2[ , ] [ , ] [ , ( ) ]
K
     b b b b b b I b         (12) 

which involves equibalanced 2  structured image norm 
and image gradient norm. In our metrics construction 
(12), operator  is defined via the square root of the dis-
crete-form Laplace operator 2  [11], hence b  returns 
the K-D equivalent of the image gradient [11]. After the 
desired SSP vector estimate (11) in the properly struc-
tured solution space ( )

ˆ,K  b b is found, the final SSP 
distribution is reconstructed via the composition 

  ( )
ˆ ( )Kb r =

1
ˆ ( )K
k kk

b g
 r

                
(13) 

over the pixel-framed observation scene specified by the 
employed set of pixels (usually rectangular) 

1{ ( ); }K
k kg R r r  . 

локация и навигация



31Прикладная радиоэлектроника, 2016, Том 15, № 1

The feature enhanced RS imaging problem at hand is 
to develop the framework (in this study, the unified 
POCS-regularized DEDR-restructured MVDR method) 
and the related technique(s) for high-resolution estimation 
(feature-enhanced reconstruction) of the SSP as a solution 
to the following nonlinear inverse problem  

   DEDR-MVDR
ˆ { | ; diag( )}est   vb b u Sv n R b

   (14) 

via processing the available recordings (8) of the com-
plex (coherent) trajectory data u degraded by the com-
posite noise (multiplicative SΔ  and additive n) with the 

SFO perturbation statistics  vSR S 
 unknown to the 

observer.  
The DEDR framework developed in the previous stud-

ies [12, 13] provides the solution to the generic SSP re-
covery problem (11) that is feasible only for non-sparse 
SSP vectors. Moreover, such method involves cumber-
some regularized inversions of the matrix-form point 
spread function (PSF) operators, in which the regularizer 

1(diag( ))b  is feasible for non-sparse SSP vectors b only. 
To treat competing operational scenarios with sparse SSP 
vectors b the new modified version of the DEDR strategy 
that does not involve inversions 1(diag( ))b should be 
conceived. In this study, we propose to follow the DEDR-
restructured MVDR strategy, and develop the solvers that 
completely exclude matrix inversions at all solution 
stages.  

II. MODIFIED DEDR-MVDR METHOD 

A. Adaptation of Robust MVDR Beamforming for Radar 
Imaging 

The classical robust adaptive MVDR method adapted 
for the high resolution nonparametric radar imaging de-
fines the estimates of all SSP vector entries via the square 
detected ({}SQ-DET) 

   { SQ-DET
ˆ ˆ{[ , ( )]} 1,...,k kb k K  u w b }    (15) 

adaptive beamformer outputs computed as inner products 
{ ˆ[ , ( )]; 1,...,k k Ku w b } of the data vector u with the so-
called optimal beamformer weight vectors 
{ ˆ( ); 1,...,k k Kw b } [9, 18]. Those are solution-
dependent; hence optimal adaptive processing is per-
formed. Particular structures of the weight vectors 
{ ˆ( )kw b } depend on the employed statement of the rele-
vant optimal beamforming problem. In the most general 
robust MVDR setting [18], such { ˆ( )kw b } are defined 
via solving the following convex constrained optimiza-
tion problem  

{(1/2) <|[u,wk]|2>  min
kw     subject to {[sk ,wk ] = 1 

  for all look directions k = 1,…,K }           (16) 

where { ks ; k = 1,…,K } are the corresponding column 
vectors of the regular SFO matrix S. In the STAP signal 
processing terminology, those { ks ; k = 1,…,K } are re-
ferred to as so-called steering vectors [18]. Later on, we 

will explain the MSF processing related sense of such 
steering vectors. Solution to the problem (16) yields the 
closed-form expressions to the optimal weight vectors  
[9, 18] 

{ ˆ( )kw b = k
1

k

uR s ; k = 1,…K} with optimal scaling 

factors {k = 1 1( )k k
  

us R s  ; k = 1,…K}.       (17) 

Note that all weight vectors defined by (17) are solu-
tion-depended due to the dependence of the data theoreti-
cal covariance matrix ( ) diag( )   u u nR R b S b S R  on 
the SSP vector b. Putting vectors (17) into (15) yields the 
nonlinear solution-dependent SSP estimator [9, 18]  

 1

1ˆ
( )k

k k

b  
us R b s

            

optimal (in the MVDR sense) for the theoretical model-
dependent (b-dependent) covariance matrix inverse 

1 ( )
uR b  where now k

s  defines the kth steering vector 
composed of the corresponding kth row (k = 1,…, K) of 
the adjoint regular SFO matrix S+ [12]. In the practical 
RS imaging scenarios, the unknown exact (model) co-
variance matrix ( )uR b  is substituted by its J-sample 
maximum likelihood (ML) estimate [1] 

ˆ uY R ( ) ( )1
(1 / ) J

j jj
J 


  u u that results in the corre-

sponding MVDR algorithm for SSP estimation [18] 

    { 1

1
k̂

k k

b  
s Y s

; k = 1,…, K }              (19) 

feasible for the full rank estimated data covariance matrix 
Y only.  

B. DEDR-Restructured Robust MVDR Technique for 
Enhanced SSP Reconstruction  

From simple algebra, it is easy to corroborate that the 
theoretical model-based MVDR estimator (18) is algo-
rithmically equivalent to the solution (with respect to the 
SSP vector b) of the nonlinear equation 

ˆ solution to theEq. b  
diag diag{ ( )} { ( ) ( ) ( )} uD b W b R b W b             (20) 

with the solution operator (SO) 

   
1

0( ) ( ( ) ) ( )N   W b D b S S I D b S .            (21) 

Substituting in (20) the theoretical covariance ma-
trix uR by its sample estimate ˆ uY R  yields the follow-
ing DEDR-restructured MVDR strategy 

ˆ solution to theEq. b  
diag diag

ˆ ˆ ˆ ˆ{ ( )} { ( ) ( )} b D b W b YW b = 
diag

ˆ ˆ{ ( ) ( )} A b QA b                         (22) 

with the solution independent sufficient statistics (SS) 
matrix Q S YS and the solution-dependent reconstruc-
tion matrix operator 

   
1

0
ˆ ˆ ˆ( ) ( ( ) ) ( )N   A A b D b Ψ I D b .          (23) 
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In (21), (22), operator {}diag returns the vector of the 
principal diagonal of the embraced matrix, and in (23), 

Ψ S S  represents the matrix-form ambiguity function 
operator of the MSF linear low-resolution complex image 
formation system [1, 12, 13]. Note that in the DEDR-
restructured MVDR estimator (22), matrix A = ˆ( )A b  

defined by (23) does not involve inversion of ˆ( )D b , 
hence, the solver to (22) results in the desired sparsity 
preserving DEDR-MVDR-optimal technique that admits 
zero entries (sparsity) in the SSP vector. 

To adapt the solver (22) to the uncertain model of the 
perturbed SFO operator (9), we now follow the generic 
DEDR framework [12]. It suggests the robust approach 
for adjusting the SO (21) to the worst case statistical per-
formances (WCSP) optimization model of the DEDR 
problem that yields the so-called robustified SO of the 2nd 
kind [12] 

   
1ˆ ˆ ˆ ˆ( ) ( ) ( ( ) ) ( )N  

  W b A b S D b Ψ I D b S       (24) 

with the regularizing factor defined as a composite noise 
power 0N N   , the additive observation noise power 
N0 augmented by the loading factor   0 adjusted to the 
regular SFO Loewner ordering factor and its statistical 
uncertainty bound   specified in (10) (see [12] for de-
tails). Hence, the robust modification of the DEDR-
MVDR estimator (22) is now constructed simply by re-
placing in (21), (23) N0 by the composite (loaded) regu-
larizing factor 0N N   . In practical estimation sce-
narios, the diagonal loading factor   can be put spatially 
varying over the scene and evaluated empirically from 
the speckle-corrupted low-resolution MSF image follow-
ing one of the local statistics methods exemplified in 
[12].  

Now, we are ready to adapt the robust sparsity pre-
serving DEDR-MVDR solver defined by (20), (24) to the 
considered here single look F-SAR mode (J = 1) via sub-
stituting Y by uu and defining the complex MSF imag-
ing system output 

   
q S u ,                             (25) 

in which case, the robust sparsity preserving DEDR-
MVDR solver (20), (24) yields the solution in the form of 
the elementwise square detected (SQ-DET) output of the 
reconstructive operator ˆ( )A b  applied to the complex 
MSF image q , i.e.,  

SQ-DET
ˆ ˆ ˆsolution to the Eq. { ( ) }   b b A b q  

diag
ˆ ˆ{ ( ) ( )}A b qq A b .                   (26) 

with the restructured (diagonal loaded)  
1ˆ ˆ ˆ( ) ( ( ) ) ( )N 

  A A b D b Ψ I D b        (27) 

From simple algebra, it is easy to corroborate that for 
the adopted single-look RAR/F-SAR modalities with the 
real-valued signal independent sufficient measurement 
statistics 

 SQ-DET
diag( ); { } Q g g q                    (28) 

available for further processing (i.e., the square detected 
low resolution MSF output (25)), the estimator (26) is 
algorithmically equivalent to the following DEDR-
modified robust MVDR solver  

2ˆ ˆ ˆ ˆsolution to theEq. ( ) ( )   b Φ b b D b g f     (29) 

with the solution-depended weighted MSF data vector 

    
2ˆ ˆ( ) ( ) f f b D b g ,                        (30) 

and the solution-dependent MSF imaging system point 
spread function (PSF) matrix-form operator 

  
ˆ( ) Φ Φ b ˆ ˆ( ( ) ) ( ( ) )N N 

   D b Ψ I D b Ψ I      (31) 

where symbol   defines the Schur-Hadamard (elemen-
twise) matrix product. 

III. IMPLEMENTATION SCHEMES 

A. POCS Regularized Iterative-Form Implementation 

The next stage of our design consists in construction 
of the sparsity promoting POCS operator and its incorpo-
ration into (29) that yields the resulting POCS-
regularized DEDR-restructured robust MVDR-optimal 
solver 

2ˆ ˆ ˆ ˆsolution to the Eq. { ( ) ( ) }   b Φ b b D b g f  (32)  

with the solution-dependent robust reconstructive operator 
ˆ( )A A b  defined by (27) and the composite POCS op-

erator 3 2 1  . Thus, we construct the composite 
POCS operator as a cascade action of three operators. 
Hence, the action of such  is threefold. First, the local 
statistics-based despeckling filter [1, 12, 24] 1 desp�  
transforms the speckle corrupted MSF image 

diag{ }g qq  into the despeckled low resolution image 

[0]
ˆ ˆ { }despMSF desp b b g  that serves as an input (the zero-

step iteration [0]b̂ ) for the further iterative reconstructive 
processing.  
   Second, 2 transforms (29) into the implicit contractive 
mapping iterative scheme, i.e., 2 = iter , with two cor-
responding discrepancy terms related to the 2 2   struc-
tured metric specified by (12). Last, 3    acts as a 
hard threshholding operator that at each iteration i = 1, … 
clips off all entries of [ ]

ˆ
ib  lower than the user specified 

nonnegative sparsity preserving tolerance threshold level 
. 
   From the fundamental theorem of POCS [11] it follows 
that composite iter  serves also as a convergence guar-
anteed POCS operator. With such cascade   the (32) is 
transformed into the implicit iterative feature enhanced 
DEDR-MVDR technique 

         
2

[ ] 1 [ ] 2 [ ]1
ˆ ˆ ˆ ˆ{ ( ) [ ( )]}i i ii i i i i        b b f Φ b f Φ b (33) 

different from all other competing approaches [1–14]. 
Instead of equibalanced 2 2   weights specified in (12), 
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here we have incorporated two regularization factors (hy-
perparameters) 1, 2 that balance the relative contribu-
tion of two 2 2   metrics structured discrepancy terms 
in (33). The simplest equibalanced model assumes  
1 = 2 = 1. The iterative process is initialized with 

[0]
ˆ

despb g and is terminated at [ ]
ˆ

Ib  for which the user 
specified convergence tolerance level  is attained at 
some i = I or the maximal admissible number of itera-
tions I is performed. In the simulations reported in the 
next Section, we have adopted  = 0.05 with balanced  
1 = 1, 2 = 0.5.  

B. Schematic- Form Implementation Structure  

To construct the schematic processing implementa-
tion structure of the POCS-regularized DEDR-MVDR 
technique (32), (33) we make the use of the operator 
feedback loop structure of Figure 3(a) that yields the 
composite transfer matrix 

   
1

1 2 1( )k  A A A I A .                    (34)  

With the specifications, k = N , 1 [ ]
ˆ( )iA D b  and 

with A2 = Ψ , this scheme is exactly suited to perform 
the computing operations required by the solver (32), 
(33). The schematic-form computational structure of the 
resulting iterative POCS-regularized DEDR-MVDR 
technique (33) is presented in Figure 3(b). 

It is worthwhile to note that the constructed imple-
mentation scheme of Figure. 3(b) does not involve matrix 
inversions at all processing levels. Also, incorporation of 
the sparsity preserving POCS operator 3    speeds-
up the overall iterative process as we next corroborate in 
the simulations reported in Section V. These two aspects 
constitute significant advantages of the developed 
DEDR-MVDR method for feature enhanced SSP vector 
recovery. 
 

 

 

 

 
(a) (b) 

Fig. 3 (a) Feedback loop structure of operator A defined by (34); (b) Double feedback loop-type implicit iterative algorithmic structure  
of the sparsity preserving DEDR-MVDR technique. Block labeled by 2| | defines the element-wise square detection operator,  

block labeled by z–1 defines the one step delay operator. 

IV. NUMERICAL SIMULATIONS  

A. Simulation Details 

In the simulations, we treated a conventional F-SAR 
system under typical system specifications, the same as in 
the comparative previous studies [9, 12, 13]. Following 
such specifications, we considered the 10241024 pixel-
framed scene and adopted triangular shape of the imaging 
F-SAR slant range ambiguity function and Gaussian 
shape of the corresponding azimuth MSF ambiguity func-
tion. The degradations at the image formation level due 
to the SFO uncertainties were simulated using the statis-
tical model of a SAR image defocusing [3, 4, 8]. The 
fractional resolution along the x (azimuth) and y (range) 
scene coordinates were controlled by assigning different 
effective pixel widths rk  and ak of the range and the azi-
muth PSFs and their varying over the scene that account 
to the range variation effect [4]. To comply with the 
technically motivated MSF fractional image the SFO 

uncertainty was simulated adopting the fully developed 
speckle model (single-look F-SAR modality) from the 
comparative studies [1, 9, 12], i.e., the blurred scene im-
age was degraded with the composite (signal-dependent) 
noise simulated as a realization of 2

2 -distributed random 
variables with the pixel mean value assigned to the actual 
degraded scene image pixel, i.e., zero dB signal-to-noise 
ratio, SNR = 0 dB [4]. Such degradations encompass 
both uncontrolled SFO distortions and MSF mismatches 
attributed to propagation medium perturbations and un-
compensated carrier trajectory deviations that may occur 
in some severe operational scenarios [2, 4, 13].  

The simulation experiment compares the developed 
DEDR-MVDR technique (33) implemented via the struc-
tural processing using the scheme of Figure 3(b) with two 
most prominent competing SAR-adapted enhanced imag-
ing techniques, namely: the celebrated variational analy-
sis (VA) inspired anisotropic diffusion (AD) method [16, 
20, 23] adapted to SAR imaging in [12, 13], and the ad-
vanced modified robust adaptive spatial filtering (RASF) 
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method of [13] that does not involve the image gradient 
norm in the 2  only structured image space. 

B. Quantitative Performance Metrics  

In order to quantitatively evaluate the image en-
hancement performances obtained with different com-
pared employed reconstruction methods, we have em-
ployed three performance metrics commonly used in the 
image analysis applications [1, 19, 21, 22]. The first one, 
is the so-called improvement in the output signal-to-noise 
ratio (IOSNR) measured via the ratio of the correspond-
ing squared 2 error norms defined as [12, 19] 

  
 22(p) ( )

10
ˆ10 log pIOSNR   g b b b         (35) 

where b represents the original SSP frame, g is the low-
resolution speckle-corrupted image formed by a frac-
tional SAR system that employs the conventional MSF 
method (28), and ( )ˆ pb  represents the SSP reconstructed 
from the corrupted MSF image g applying the pth imag-
ing method from the simulated family (p = 1, 2, 3, 4):   
p = 1 corresponds to the original low resolution MSF 
image (1)b̂ = g; p = 2 corresponds to the image enhanced 
with the celebrated non-parametric model-free anisot-
ropic diffusion (AD) procedure adapted to SAR imaging 
[12, 13]; p = 3 relates to the image recovered employing 
the most prominent competing DEDR-related RASF al-
gorithm [13]; p = 4 corresponds to the feature enhanced 
image reconstruction performed with the developed here 
DEDR-MVDR method. 

 
(a) 

 
(b) 

Fig. 4. Original scene for the first and second scenarios (not observable with the simulated F-SAR systems). 

The second quantitative evaluation metric is the mean 
absolute error (MAE)  

   (p) ( )
10

1 1

1 ˆ10log , ,
yx

x y

KK
p

x y x y
k kx y

MAE b k k b k k
K K  

    
  

 (36) 

where { ( , )}x yb k k  represent the pixel values of the initial 

SSP and  ˆ{ ( , )}p
x yb k k  represent the pixel values of the 

SSP reconstructed applying the pth tested technique  
(p = 1, 2, 3, 4). As a note, this metric is well suitable for 
quantification of fine image reconstruction details, such 
as edge preservation (sharpening) and resolution of small 
targets on the extended scene [19, 21].  

Finally, the third employed quality metric is the so-
called structural similarity index measure (SSIM). The 
SSIM quantifies the perceptual difference between the 
distorted image and the reference image. It was originally 
designed in [21, 22] as a quantitative measure that closely 
emulates the human visual system. Following [21, 22], 
the structural information in an image relates to those 
attributes that represent the structure of objects in the 
scene independent of the average luminance and contrast. 
The mean squared error (MSE) and the peak signal-to-
noise ratio (PSNR) quality metrics might not be well 
matched to perceived visual quality. Two distorted im-
ages with the same or close MSE and PSNR may have 
very different types of errors, some of which are much 

more visible than others. That is why; SSIM is a better 
indicator of perceived image quality. It is defined as fol-
lows [21, 22] 

 
 

  
  

( )

( ) ( )

ˆˆ 1 2
( )

2 2 2 2
1 2ˆ ˆ

2 2
SSIM , ˆ

p
i

p p

p
C C

C C

  

   

 


   

b bbb

b bb b

b b (37) 

where, as in (35), b represents the original SSP frame and 
( )ˆ pb  is the SSP estimate formed applying the correspond-

ing pth method from the tested family (p = 1, …, 4), and 
coefficients C1 , C2 are included to avoid instability [21, 
22]. In (37), the image luminance is estimated as the 
mean intensity 

   1

1 ;
K

k
k

x
K




 x                             (38) 

the standard deviation  

  
 

1
22

1

1 K

k
k

x
K

 


 
  
 
x x           (39) 

is used as an estimate of the image contrast, and the 
structure comparison is performed via evaluating the co-
variance between the corresponding compared images 

   
  2

,
1

1 .
K

k k
k

x y
K

  


  x y x y             (40) 
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In the simulations reported in the next Section, we 
have used C1 = 1e-4 and C2 = 9e-4 following the structure 
suggested in [21, 22].  

 
C. Simulation Results and Discussion 

Figure 4 presents the high resolution despeckled 
scene image formed with a hypothetical full-focused  
SAR (not observable with the simulated F-SAR) for two 
scenes borrowed from the real-world SAR imagery [26]. 

The low resolution speckle corrupted scene images in 
Figure 5(a) and in Figure 6(a) correspond to the simu-
lated single look F-SAR (quick look modality (25), (28)) 
for the operational scenario specifications similar to those 
from the competing studies [1, 9, 13] as specified in the 
Figure captions. Figures 5(b) thru 5(d) and Figures 6(b) 
thru 6(d) report the feature-enhanced radar imaging re-
sults obtained with different compared DEDR-related 
techniques as specified in the Figure captions. These re-
sults verify that the best perceptual F-SAR image en-

hancement performances as well as convergence rates 
were attained with the developed POCS regularized 
DEDR-MVDR method. In the first scenario related to the 
scene shown in Figure 4(a), the simulated degradations in 
the resolution are moderate over the range direction  
( r = 10) and significantly larger over the azimuth direc-
tion ( a = 20). In the second scenario related to the scene 
shown in Figure 4(b), the fractional SAR system suffers 
from much more severe degradations due to additional 
defocusing in both directions ( r = 15; a = 30). Next, 
Figures 5(b) and 6(b) show the images enhanced apply-
ing the competing anisotropic diffusion (AD) technique 
[16, 23]. The images reconstructed using the competing 
DEDR-related RASF method [12] are shown in Figures 
5(c) and 6(c), and the corresponding images optimally 
reconstructed applying the developed here DEDR-
MVDR technique (after 12…14 performed iterations) are 
presented in Figures 5(d) and 6(d), respectively. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5. Simulation results for four tested imaging modalities: (a) low resolution speckle corrupted MSF image of the first scene formed with a simu-
lated F-SAR system; modeled system parameters: squared triangular range point spread function (PSF), the width (at ½ of the peak value) y = 10 

pixels; squared Gaussian bell azimuth PSF, the width (at ½ of the peak value) x = 20 pixels; the worst case single-look scenario with fully developed 
speckle, (SNR = 0 dB); (b) the same scene image enhanced using the AD technique (convergence at 43 iterations); (c) result of reconstructive imag-
ing performed with the DEDR-related RASF method (convergence at 34 iterations); (d) the same image reconstructed applying the developed here 

DEDR-MVDR technique (convergence at 12 iterations). All results are reported for the zero-level threshold  = 0.  
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Table 1 reports the quantitative performances evalu-
ated via three quality metrics (27), (28) and (29) obtained 
with three tested DEDR-related feature enhanced SSP 

estimation methods. Those are also indicative of the su-
perior quantitative recovery performances attained with 
the proposed DEDR-MVDR technique. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6. Simulation results for four tested imaging modalities: (a) low resolution speckle corrupted MSF image of the second scene formed with a 
simulated F-SAR system; modeled system parameters: squared triangular range point spread function (PSF), the width (at ½ of the peak value)  

y = 15 pixels; squared Gaussian bell azimuth PSF, the width (at ½ of the peak value) x = 30 pixels; the worst case single-look scenario with fully 
developed speckle, (SNR = 0 dB); (b) the same scene image enhanced using the AD technique (convergence at 44 iterations); (c) result of reconstruc-

tive imaging performed with the DEDR-related RASF method (convergence at 36 iterations); (d) the same image reconstructed applying the fused 
MVDR-POCS technique (convergence at 14 performed iterations). All results are reported for the zero-level threshold  = 0. 

  
Table 1: Quantitative results obtained for the two simulated scenarios using three different quality metrics.  

First scenario Second scenario 
 y = 10 x = 20   y = 15 x = 30  
 IOSNR(dB) MAE(dB) SSIM  IOSNR(dB) MAE(dB) SSIM 

AD 2.61 18.91 0.42 AD 2.18 18.83 0.37 
RASF 2.75 18.70 0.42 RASF 2.32 18.59 0.45 

DEDR-
MVDR 3.51 18.65 0.49 

 

DEDR-
MVDR 3.05 18.59 0.56 

         

V. CONCLUSION 
In this paper, we have treated the feature enhanced 

RS imaging problem particularly adapted to the conven-
tional RAR/F-SAR sensors. The image recovery problem 
was casted and treated in the inverse problem statement 
as an enhanced resolution reconstruction of the desired 
SSP of the remotely sensed scene from the low resolution 
MSF image. The solution to the inverse problem at hand 
was derived based on the generic DEDR framework. The 
DEDR solution strategy does not require a priori knowl-

edge of the data signal statistical distributions and is 
aimed at the optimal balancing of the adaptive resolution 
enhancement over the spatially selective composite noise 
suppression (both additive noise and multiplicative 
speckle). To find an efficient solution, we have per-
formed the DEDR restructuring of the celebrated robust 
MVDR virtual beamforming-based high resolution SSP 
reconstruction technique particularly adapted to the 
RAR/F-SAR sensing modalities that yields the new uni-
fied DEDR-MVDR-optimal inverse problem solver. The 
developed DEDR-MVDR method manifests considerably 
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enhanced SSP reconstruction features. It outperforms the 
prominent competing high-resolution imaging techniques 
in the perceptual image recovery quality as well as in the 
attainable quantitative performance enhancement meas-
ures. Those are achieved due to incorporation into the 
DEDR solution framework the edge preserving and spar-
sity promoting POCS regularization levels. Moreover, 
due to the employed composite POCS regularization the 
DEDR-MVDR enhanced radar imaging technique is im-
plementable in a considerably speeded-up implicit itera-
tive mode that completely excludes cumbersome matrix 
inversions at all processing stages. The new DEDR-
MVDR method does not need the observer’s supervision, 
facilitates parallel processing and manifests super-
resolution performances that make it a viable candidate 
for perspective digital-form implementation in low cost 
RAR/F-SAR sensing instruments. 
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УДК 621.396 
Формирование высокоразрешающих радиолокаци-

онных и РСА изображений: регуляризационный подход 
на основе виртуального диаграммообразования / 
Ю.В. Шкварко, Х.А. Амао, Х.И. Яньез // Прикладная ра-
диоэлектроника: научн.-техн. журнал. – 2016. – Том 15. – 
№ 1. – С. 26–38. 

Для информационного анализа данных дистанционно-
го зондирования, формируемых обычными радиолокацион-
ными системами бокового обзора (РЛС-БО) и радиолокато-
рами с неполной (фракционно) синтезированной апертурой 
(Ф-РСА), первичные радиолокационные изображения 
(РЛИ) с низким разрешением, зашумленные спеклом, долж-
ны быть дополнительно обработаны для повышения их 
качества. В предлагаемой работе эта проблема решается в 
контексте обратных задач высокоразрешающей реставра-
ции радиояркостных изображений зондируемых сцен из 
первичных спеклзашумленных РЛИ низкого разрешения. 
Вначале, следуя методологии регуляризации на основе 
дескриптивного планирования эксперимента (РДПЭ), метод 
виртуального адаптивного диаграммообразования Кейпона 
(минимальной вариации без смещения (МВБС)) адаптиру-
ется к задаче реконструкции РЛИ. Далее, в РДПЭ-
реструктуированный МВБС вводятся дополнительные ре-
гуляризационные уровни проекций на выпуклые множества 
(ПВМ), ориентированные на обеспечение сходимости рес-
таврационной итерационной схемы и поддержку возмож-
ной разреженности (sparsity) в результирующем реконст-
руированном РЛИ. Введение многоуровневых ПВМ в 
РДПЭ-оптимально реструктурированную МВБС схему 
приводит к новому методу реставрации РЛИ (адресованно-
му как РДПЭ-МВБС), который обеспечивает существенное 
улучшение качества реконструкции изображения за счет 

пространственно селективного адаптивного подавления 
спекла РДПЭ-оптимально сбалансированного с повышени-
ем разрешения и поддержкой sparsity. Вычислительно, 
предложенный РДПЭ-МВБС метод реализован в виде не-
явной итерационной схемы полностью исключающей об-
ращения матриц на всех этапах реконструктивной обработ-
ки РЛИ. Приведенные данные численного моделирования 
подтверждают более высокую эффективность предложен-
ного РДПЭ-МВБС метода в сравнении с другими конкури-
рующими непараметрическими адаптивными методами 
повышения качества РЛИ. 

Ключевые слова: диаграммообразование, регуляриза-
ция на основе дескриптивного планирования эксперимента 
(РДПЭ), радиолокатор с синтезированной апертурой (РСА), 
радиолокационное изображение, разрешение.    
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УДК 621.396 
Формування надрозділяючих радіолокаційних та 

РСА зображень: регуляризаційний підхід на базі віртуаль-
ного діаграмостворення / Ю.В. Шкварко, Х.А. Амао, 
Х.И. Яньез // Прикладна радіоелектроніка: наук.-техн. жур-
нал. – 2016. – Том 15. – № 1. – С. 26–38. 

Для інформаційного аналізу даних дистанційного зон-
дування, що формуються звичайними радіолокаційними 
системами бокового огляду (РЛС-БО) та радіолокаторами з 
частково (фракційно) синтезованою апертурою (Ф-РСА), 
первинні радіолокаційні зображення (РЛЗ) з низьким розді-
ленням, зашумлені спеклом, повинні додатково обробляти-
ся для підвищення їх якості. В роботі, що пропонується, ця 
проблема вирішується в контексті обернених задач надроз-
діляючої реставрації радіояскравих зображень сцен, що 
зондуються, з первинних спеклзашумлених РЛЗ низького 
розділення. Спочатку, виходячи з методології регуляризації 
на базі дескриптивного планування експерименту (РДПЕ), 
метод віртуального адаптивного діаграмостворення Кейпо-
на (мінімальної варіації без зсуву (МВБЗ)) адаптується до 
задачі реконструкції РЛЗ. Далі, в РДПЕ – реструктурованій 
МВБЗ вводяться додаткові регуляризаційні рівні проєкцій 
на випуклі множини (ПВМ), зорієнтовані на забезпечення 
збігу реставраційної ітераційної схеми та підтримку мож-
ливого розрідження (sparsity) в результуючому реконстру-
йованому РЛЗ. Введення багаторівневих ПВМ в РДПЕ – 
оптимальну реструктуровану МВБЗ схему дає новий метод 
реставрації РЛЗ (визначений як РДПЕ-МВБЗ), який забез-
печує істотне підвищення якості реконструкції зображень 
за рахунок просторово селективного адаптивного заглу-
шення спекла РДПЕ – оптимально збалансованого з підви-
щеним розділенням та підтримкою розрідження. Обчислю-
вально запропонований РДПЕ – МВБЗ метод реалізовано у 
вигляді неявної ітераційної схеми, яка повністю виключає 
обернення матриць на всіх етапах реконструктивної оброб-
ки РЛЗ. Наведені результати математичного моделювання 
підтверджують більш високу ефективність запропоновано-
го РДПЕ- МВБЗ методу порівняно з іншими конкуруючими 
непараметричними адаптивними методами підвищення 
якості РЛЗ. 

Ключові слова: діаграмостворення, регуляризації на 
базі дескриптивного планування експерименту (РДПЕ), 
радіолокатор з синтезованою апертурою (РСА), радіолока-
ційне зображення, розділення. 
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