УДК 681.3.06

КРИПТОСТОЙКИЕ СКРУЧЕННЫЕ КРИВЫЕ ЭДВАРДСА С МИНИМАЛЬНОЙ СЛОЖНОСТЬЮ ГРУППОВЫХ ОПЕРАЦІЙ

А.В. БЕССАЛОВ, К.А. ОЛЕШКО, Д.Н. ПОРЕЧНАЯ, О.В. ЦЫГАНКОВА, О.Н. ЧЕРНЫЙ

Дан анализ оценок сложности групповых операций для скрученных кривых Эдвардса. Предложен метод минимизации вычислений путем выбора минимального значения параметра кривой. Приведены таблицы общесистемных параметров 25 криптостойких рекордно быстрых кривых со значениями модулей поля длиной 192, 224, 256, 384 и 521 бит.

Ключевые слова: скрученные кривые Эдвардса, полные кривые Эдвардса, порядок кривой, порядок точки, квадратичный вычет, квадратичный невычет, сложность операций.

введение

Термин «скрученные кривые Эдвардса» был введен авторами работы [2]. В работе [6] мы дали критический анализ противоречий, некорректных определений и статистики распределений числа кривых разных классов в работе [2] и предложили новую классификацию кривых в обобщенной форме Эдвардса, одним из классов которых мы и рассматриваем скрученные кривые Эдвардса. Важным свойством этих кривых является то, что при p = 1mod4 все они имеют порядок 4n (n – нечетное) с минимальным четным кофактором 4. Циклическая подгруппа этих кривых простого порядка n обладает всеми преимуществами полных кривых Эдвардса [1], что открывает пути для их криптографических приложений и стандартизации.

Для полных кривых Эдвардса над простым полем задача поиска криптостойких кривых и их табуляция впервые была решена нами в работе [4]. В данной работе мы решаем ту же задачу для нециклических скрученных кривых Эдвардса. В разделе 1 приведен анализ сложности групповых операций на них и полных кривых Эдвардса в проективных координатах. Далее в разделе 2 мы предлагаем метод минимизации сложности операций путем использования минимального значения параметра *а* кривой. В разделе 3 описан метод и инструменты поиска быстрых криптостойких скрученных кривых Эдвардса с табуляцией результатов расчетов общесистемных параметров 25 кривых в диапазоне стандартных значений модуля поля.

1. СЛОЖНОСТЬ ГРУППОВЫХ ОПЕРАЦИЙ НА СКРУЧЕННОЙ КРИВОЙ ЭДВАРДСА

В работе [6] мы предложили новую классификацию кривых в обобщенной форме Эдвардса с уравнением

$$E_{a,d}: \frac{x^2 + ay^2 = 1 + dx^2 y^2}{a, dF_p^*, d \neq 1, \ a \neq d, \ p \neq 2.$$
(1)

В зависимости от свойств квадратичности параметров aud в [6] определены 3 непересекающиеся класса кривой (1): полные кривые Эдвардса

$$\left(\left(\frac{aa}{p}\right) = -1\right)$$
, скрученные кривые Эдвардса

$$\left(\left(\frac{a}{p}\right) = -1, \left(\frac{d}{p}\right) = -1\right)$$
 и квадратичные кривые Эд-

вардса $\left(\left(\frac{a}{p}\right)=1\left(\frac{d}{p}\right)=1\right)$. В данном разделе мы

приведем оценки сложности групповых операций для первых двух классов, интересных для криптографических задач. Модифицированный универсальный закон сложения точек кривой (1) имеет вид [5]

$$(x_1, y_1) + (x_2, y_2) = = \left(\frac{x_1 x_2 - a y_1 y_2}{1 - d x_1 x_2 y_1 y_2}, \frac{x_1 y_2 + x_2 y_1}{1 + d x_1 x_2 y_1 y_2}\right).$$
(2)

При совпадении двух точек получим из (2) закон удвоения точек

$$2(x_1, y_1) = \left(\frac{x_1^2 - ay_1^2}{1 - dx_1^2 y_1^2}, \frac{2x_1 y_1}{1 + dx_1^2 y_1^2}\right).$$
 (3)

Использование модифицированных законов (2), (3) позволяет сохранить общепринятую горизонтальную симметрию (относительно оси *x*) обратных точек. Нейтральный элемент группы здесь равен O = (1,0). обратную Определяя теперь точку как $-P = -(x_1, y_1) = (x_1, -y_1)$, получим согласно (1) $(x_1, y_1) + (x_1, -y_1) = (1, 0) = \mathbf{0}$. Кроме нейтрального элемента **О** на оси *х* также всегда лежит точка $D_0 = (-1,0)$ второго порядка, для которой в соответствии с (3) $2D_0 = (1,0) = \mathbf{0}$. В зависимости от свойств параметров а и d можно получить еще 2 особые точки второго порядка, а также 0, 2, 4, 6, или 8

точек 4-го порядка. Как следует из (1), на оси у могут лежать точки $\pm F_0 = (0, \pm 1/\sqrt{a})$ 4-го порядка, для $\pm 2F_0 = D_0 = (-1,0)$. Эти точки сущекоторых ствуют над полем \mathbf{F}_p , если параметр *а* является квадратичным вычетом.

1.1.Сложение точек

Для полных кривых Эдвардса этот анализ приведен в работе [1]. Так как в уравнении кривой (1) появился новый параметр а, требуется оценить, насколько он увеличивает вычислительные затраты. Введем третью координату Z как общий знаменатель в (2). Пусть $x = \frac{X}{Z}$, $y = \frac{Y}{Z}$, тогда однородное урав-

нение кривой (1) в проективных координатах имеет вид

$$(X^{2} + aY^{2})Z^{2} = Z^{4} + dX^{2}Y^{2},$$

 $X = xZ, \quad Y = yZ.$

Сумма двух точек теперь записывается как $(X_1:Y_1:Z_1) + (X_2:Y_2:Z_2) = (X_3:Y_3:Z_3).$ C учетом подстановок выразим координаты суммарной точки согласно (2):

$$x_{3} = \frac{X_{3}}{Z_{3}} = \frac{Z_{1}Z_{2} \left(Z_{1}^{2}Z_{2}^{2} + dX_{1}X_{2}Y_{1}Y_{2}\right) \left(X_{1}X_{2} - aY_{1}Y_{2}\right)}{\left(Z_{1}^{2}Z_{2}^{2} + dX_{1}X_{2}Y_{1}Y_{2}\right) \left(Z_{1}^{2}Z_{2}^{2} - dX_{1}X_{2}Y_{1}Y_{2}\right)}$$
$$y_{3} = \frac{Y_{3}}{Z_{3}} = \frac{Z_{1}Z_{2} \left(Z_{1}^{2}Z_{2}^{2} - dX_{1}X_{2}Y_{1}Y_{2}\right) \left(X_{1}Y_{2} + X_{2}Y_{1}\right)}{\left(Z_{1}^{2}Z_{2}^{2} + dX_{1}X_{2}Y_{1}Y_{2}\right) \left(Z_{1}^{2}Z_{2}^{2} - dX_{1}X_{2}Y_{1}Y_{2}\right)}$$

Обозначим:

$$A = Z_1 Z_2; B = A^2; C = X_1 X_2; D = a Y_1 Y_2;$$

$$E = dCD; F = B - E; G = B + E.$$

Torga:

$$X_3 = A \cdot G \cdot (D - C),$$

$$Y = A \cdot E ((X + Y)) \cdot (X + Y) - C - D)$$

$$Y_3 = A \cdot F((X_1 + Y_1) \cdot (X_2 + Y_2) - C - D),$$

$$Z_3 = F \cdot G.$$

Подсчет числа элементарных операций здесь дает 10 умножений М, одно возведение в квадрат S и 2 умножения U на параметры a и d кривой. Итак, находим сложность вычисления суммы различных точек, выраженную через число умножений и возведений в квадрат в поле $V_E = 10M + 1S + 2U$ [2].

1.2. Удвоение точек

Используя уравнение кривой (1), закон удвоения (3) запишем в форме, не зависящей от параметра d

$$2(x_1, y_1) = \left(\frac{x_1^2 - y_1^2}{2 - x_1^2 - y_1^2}, \frac{2x_1y_1}{x_1^2 + y_1^2}, \right).$$

Тогда координаты точки удвоения согласно (3):

$$\begin{aligned} x_{3} &= \frac{X_{3}}{Z_{3}} = \frac{\left(\left(\frac{X_{1}}{Z_{1}}\right)^{2} - a\left(\frac{Y_{1}}{Z_{1}}\right)^{2}\right) \left(\left(\frac{X_{1}}{Z_{1}}\right)^{2} + a\left(\frac{Y_{1}}{Z_{1}}\right)^{2}\right)}{\left(2 - \left(\frac{X_{1}}{Z_{1}}\right)^{2} - \left(\frac{Y_{1}}{Z_{1}}\right)^{2}\right) \left(\left(\frac{X_{1}}{Z_{1}}\right)^{2} + a\left(\frac{Y_{1}}{Z_{1}}\right)^{2}\right)} = \\ &= \frac{\left(X_{1}^{2} - Y_{1}^{2}\right) \left(X_{1}^{2} + Y_{1}^{2}\right)}{\left(2Z_{1}^{2} - X_{1}^{2} - Y_{1}^{2}\right) \left(X_{1}^{2} + Y_{1}^{2}\right)}, \\ y_{3} &= \frac{Y_{3}}{Z_{3}} = \frac{2\frac{X_{1}}{Z_{1}}\frac{Y_{1}}{Z_{1}} \left(2 - \left(\frac{X_{1}}{Z_{1}}\right)^{2} - a\left(\frac{Y_{1}}{Z_{1}}\right)^{2}\right)}{\left(2 - \left(\frac{X_{1}}{Z_{1}}\right)^{2} - a\left(\frac{Y_{1}}{Z_{1}}\right)^{2}\right) \left(\left(\frac{X_{1}}{Z_{1}}\right)^{2} + a\left(\frac{Y_{1}}{Z_{1}}\right)^{2}\right)} = \\ &= \frac{2X_{1}Y_{1}\left(X_{1}^{2} + Y_{1}^{2}\right)}{\left(2Z_{1}^{2} - X_{1}^{2} - aY_{1}^{2}\right) \left(X_{1}^{2} + aY_{1}^{2}\right)} \\ \text{Обозначим} \\ A &= X_{1}^{2}, B &= aY_{1}^{2}, C &= Z_{1}^{2}, D &= (A + B), \\ E &= (A - B), F &= 2C - A - B, \\ G &= (X_{1} + Y_{1})^{2}, \quad H &= G - D. \\ \text{Torum:} \end{aligned}$$

гогда:

$$X_3 = DE,$$

$$Y_3 = 2XYF,$$

$$Z_2 = DF.$$

Подсчет числа возведений в квадрат и умножений в поле дает суммарную сложность удвоения $T_{E} = 3M + 4S + 1U[2].$

Значения сложности групповых операций в проективных координатах для полных кривых Эдвардса [1] и скрученных кривых Эдвардса приведены в таблице 1.

Таблица 1

Класс кривых	Сложность групповой операции	
	Сложение точек	Удвоение
		точек
Полные	10M + 1S + 1U	3M+4S
кривые		
Эдвардса		
Скрученные	10M + 1S + 2U	3M + 4S + 1U
кривые		
Эдвардса		

Наименьших вычислительных затрат, как следует из таблицы, требуют операции на полных кривых Эдвардса. Особенно они выигрывают при удвоении, которое обходится без операции умножения 1U. По сравнению с кривыми в форме Вейерштрасса полные кривые Эдвардса дают выигрыш в скорости экспоненцирования точки в 1.5 – 1.6 раза [7].

2. МЕТОД ДОСТИЖЕНИЯ МИНИМАЛЬНОЙ СЛОЖНОСТИ ГРУППОВЫХ ОПЕРАЦИЙ НА СКРУЧЕННОЙ КРИВОЙ ЭДВАРДСА

Как следует из таблицы 1, ввод дополнительного параметра a в уравнение скрученной кривой (1) увеличивает вычислительные затраты сложения точек на одну операцию 1U и удвоения точек на 1U в сравнении с полной кривой Эдвардса. В этом подразделе мы предлагаем простой способ, как можно избавиться от этих дополнительных затрат и достичь максимальной производительности экспоненцирования точки на скрученной кривой Эдвардса.

В работе [6] показано, что квадратичное кручение скрученной кривой Эдвардса дает квадратичную кривую Эдвардса и обратно: $E_{a,d}^t E_{ca,cd}$ (здесь

 $\left(\frac{c}{p}\right) = -1, \left(\frac{ad}{p}\right) = 1$). Кроме того, внутри классов

скрученных и квадратичных кривых Эдвардса имеет место изоморфизм кривых $E_{a,d}E_{d,a}$.

Свойства изоморфизма и квадратичного кручения можно обосновать также, используя *j*-инвариант кривой в обобщенной форме Эдвардса [2,3]

$$j(a,d) = \frac{16(a^2 + d^2 + 14ad)^3}{ad(a-d)^4},$$

$$ad(a-d) \neq 0.$$
 (4)

Как известно [3,8], изоморфные кривые (с порядком $N_E = p + 1 - t$) и кривые квадратичного кручения (с порядком $N_E^t = p + 1 + t$) имеют один и тот же *j*-инвариант. Из (4) сразу следуют свойства симметрии *j*-инварианта относительно переменных *ca*, *cd* и их инверсий:

$$j(a,d) = j(d,a), \tag{5}$$

$$j(a,d) = j(ca,cd), \tag{6}$$

$$j(a,d) = j(a^{-1}, d^{-1}),$$
(7)

$$j(a,d) = j(1,d/a) = j(1,a/d).$$
 (8)

Внутри класса скрученных кривых Эдвардса нет пар квадратичного кручения, но для каждой кривой имеется изоморфная кривая со свойством (5) или

$$E_{a,d}E_{d,a}$$
, причем $\left(\frac{a}{p}\right) = -1, \left(\frac{d}{p}\right) = -1.$

Идея состоит в том, что при поиске подходящей для криптографии скрученной кривой Эдвардса нет смысла в переборе различных значений параметров a и d. Можно зафиксировать один из этих параметров (например, параметр a) и варьировать другим в области его допустимых значений. Если задать этот фиксированный параметр на минимальном числовом

уровне
$$a =$$
, таком что $\left(\frac{a}{p}\right) = -1$, то можно сэконо-

мить полевую операцию 1U (умножение на параметр кривой) при сложении точек, а также и удвоении точки кривой. Например, если = 2, тогда одно сложение (тождественное умножению на 2) можно считать «бесплатной» операцией. При этом достигается минимальная сложность групповой операции, равная сложности операции для полной кривой Эдвардса. Это же справедливо для всех малых.

Нам требуется доказать, что при фиксации параметра a =, перебор всех допустимых параметров dдает все возможные значения *j*-инварианта и, соответственно, порядков скрученной кривой.

Утверждение 1. При фиксированном значении параметра $a = \kappa puboй$ (1) ее *j*-инвариант j(,d)принимает (p-1)/4 возможных значений при p = 1mod4 и (p-3)/4 возможных значений при p = 3mod4 при всех $\left(\frac{d}{p}\right) = -1, d \neq .$

Доказательство. Рассмотрим квадратичные кривые Эдвардса с параметрами $\left(\frac{a}{p}\right) = 1, \left(\frac{d}{p}\right) = 1.$ Для любой такой кривой существует изоморфизм $E_{a,d} E_{1,d/a} E_{1,a/d}.$ Обозначим $= \frac{d}{a}$. Из всех $\frac{(p-1)}{2}$ квадратов мультипликативной группы па-

раметр $\neq 1$ принимает ровно $\frac{(p-3)}{2}$ допустимых значений. При $p = 1 \mod 4$ для каждого, кроме квадрата = -1, существует пара изоморфных кривых $E_{1,}$. Случай = $-1 =^{-1}$ вырождает пару изоморфных кривых в одну кривую. Тогда *j*-инвариант (8) кривой $E_{1,}$ принимает ровно $\frac{(p-1)}{4}$ значений. При $p = 3 \mod 4$ имеется ровно $\frac{(p-1)}{2}$ квадратов и (p-3)

 $\frac{(p-3)}{2}$ допустимых значений. В этом случае элемент (-1) является квадратичным невычетом и су-

ществует ровно $\frac{(p-3)}{4}$ пар изоморфных кривых и

такое же число *і*-инвариантов.

Парой кручения каждой квадратичной кривой Эдвардса является скрученная кривая в форме (1) при

$$\left(\frac{a}{p}\right) = \left(\frac{d}{p}\right) = -1, \text{ t.e. } E_{a,d}^{t} E_{ca,cd}, \quad \left(\frac{c}{p}\right) = -1.$$

Следовательно, число изоморфных пар скрученных кривых, равное числу *j*-инвариантов с теми же значениями, что и для квадратичных кривых Эдвард-

са, также равно $\frac{(p-1)}{4}$ при p = 1mod4 и $\frac{(p-3)}{4}$ при p = 3mod4. Осталось доказать, что

все изоморфные пары скрученных кривых Эдвардса могут быть получены при одном фиксированном значении параметра a = .

Воспользуемся свойствами (5), (6), и умножим

параметры второго *j*-инварианта на $c = \frac{a}{d}$,

$$j(a,d) = j(d,a) = j\left(a,\frac{a^2}{d}\right).$$
(9)

Отсюда следует, что любая пара изоморфных скрученных кривых Эдвардса определяется единственным параметром a = и множеством всех пар квадратичных невычетов d и $d^{-1}, d \neq$. Объемы множеств таких пар, как и число изоморфизмов скрученных кривых Эдвардса, остается таким же, как и для квадратичных кривых Эдвардса. Утверждение доказано.

Как ранее отмечалось, все скрученные кривые Эдвардса имеют порядок 4n при p = 1mod 4, поэтому нам интересен для криптографии лишь этот случай. Минимальное числовое значение квадратичного невычета = 2 существует лишь при $p = \pm 3mod8$ [8]. Следующее желаемое значение квадратичного невычета = 3 требует выполнения $p = \pm 5mod12$ [9]. В таблице 2 приведены для примера простые числа $p = 1 \mod 4$, для которых = 2 и = 3 (соответствующие столбцы помечены знаком +).

Таблица 2

р	3	7	29	7	1	3	1	3	9	7
α=2	+		+	+		+	+			
α=3		+			+				+	

Хотя эта выборка из первой сотни простых чисел с заданными свойствами не репрезентативна, можно сделать предположение, что около 80% простых чисел $p = 1 \mod 4$ являются модулями полей, содержащих квадратичные невычеты 2 или 3. В других случаях всегда можно найти минимальное значение параметра a =, что позволяет пренебречь сложностью операции 10 в оценках сложности групповых операций сложения и удвоения точек.

Пример 1. Пусть *p* = 29 и *a* == 2. Согласно формулы (4) можно сначала найти *j*-инвариант единственной квадратичной кривой Эдвардса j(1,-1) = 17 и соответствующей скрученной кривой Эдвардса j(2,-2) = 17. Далее в соответствии с утверждением 1 и формул (9) находим 6 *j*-инвариантов для изоморфных пар скрученных кривых Эдвардса

$$j(2,3) = j(2,11) = 18, \ j(2,8) = j(2,15) = 12,$$

$$j(2,10) = j(2,12) = 16,$$

$$(2,14) = j(2,21) = 18, \ j(2,18) = j(2,26) = 23,$$

$$i(2,19) = j(2,17) = 18.$$

Все скрученные кривые Эдвардса с одинаковым *j*-инвариантом имеют одинаковый порядок. Но число допустимых порядков в нашем примере почти вдвое меньше числа различных вычисленных *j*-инвариантов. Действительно, все скрученные кривые при $p = 1 \mod 4$ имеют минимальный кофактор 4 порядка кривой. В границах Хассе [$p \pm 2\sqrt{p}$] имеются лишь 3 значения таких порядков $N_F \in \{20, 28, 36\}$. В данном примере получены такие результаты:

$$N_E = 20$$
 при $j(2,-2) = 17$,
 $N_E = 28$ при $j(2,d) \in \{16,18\}$
 $N_E = 36$ при $j(2,d) \in \{12,23\}$

Подчеркнем, что кривые с одинаковым *j*-инвариантом не обязательно изоморфны, но всегда имеют одинаковый порядок. В то же время одинаковый порядок могут иметь кривые с разными значениями *j*инвариантов и, разумеется, неизоморфные кривые.

Итак, задавая в скрученной кривой Эдвардса минимальное не квадратичное значение параметра a =, можно достичь максимальной производительности вычисления групповых операций и экспоненцирования точек, равной производительности вычислений на полной кривой Эдвардса с параметром a = 1.

3. РЕЗУЛЬТАТЫ ВЫЧИСЛЕНИЙ ОБЩЕСИСТЕМНЫХ ПАРАМЕТРОВ КРИПТОСТОЙКИХ СКРУЧЕННЫХ КРИВЫХ ЭДВАРДСА С МИНИМАЛЬНОЙ СЛОЖНОСТЬЮ

В данном разделе мы рассматриваем простые поля с модулями длиной 192, 224, 256, 384 и 521 бит, которые рекомендуются стандартом FIPS-186-4-2013, и приводим перечень параметров скрученных кривых Эдвардса простого почти порядка N_E = 4n (n – простое) над каждым из полей. Результаты расчетов общесистемных параметров кривых в шестнадцатеричной системе чисел сведены в таблицы 3 – 7. Здесь модули длины L обозначены как p_L . Модули полей *p1mod4* выбирались как простые числа с малым двоичным весом Хэмминга 3..5. Для каждой кривой приведены значения р, порядки $n = N_E / 4$ генератора G криптосистемы и его координаты (x_G, y_G) , а также значения параметров aud.

Надо заметить, что параметр a = 2 является квадратичным невычетом лишь при $p = \pm 3mod8$. Это значит, что двоичное представление числа pзаканчивается тремя младшими разрядами $101 = 5_{10}$ или $011 = 3_{10}$, а все более старшие разряды дают 0mod8. В нашем алгоритме случайного поиска простых чисел с малым весом лишь одно значение $p = 2^{255} + 2^{38} + 2^2 + 1$ в таблице 5 отвечает этому условию (здесь a = 2), поэтому практически все кривые имеют минимальный параметр a = 3.

Проверка чисел *р* и *n* на простоту производилась с помощью тестов Миллера-Рабина и Лукаса-Лемера, реализованных в языках программирования C#, Java и в системе Wolfram Mathematica.

Вычисление символов Лежандра для нахождения подходящих параметров *a* и *d* производилось с помощью библиотечных функций языка Java и системы Wolfram Mathematica.

Порядки эллиптических кривых рассчитывались по алгоритму SEA (Schoof- Elkies -Atkin), реализованном в библиотеке PARI/GP.

Точки-генераторы были найдены удвоением случайной точки, удовлетворяющей уравнению (1), с использованием системы Wolfram Mathematica и языка Java. Удвоения достаточно, так как на нециклической скрученной кривой порядка 4n максимальный порядок точки равен 2n.

В каждой из приведенных ниже таблиц содержатся параметры 5 скрученных кривых Эдвардса с минимальным значением параметра a = 2,3 или 5. Далее параметр d подбирался как наименьшее из значений, при котором порядок кривой 4n становился

почти простым. Порядок кривых по длине сравним с длиной поля.

Таблица 3

Скрученные кривые Эдвардса почти простого порядка над полем с модулем *p*₁₉₂

101 16 12
$p = 2^{191} + 2^{10} + 2^{12} + 1$
p =
800000000000000000000000000000000000000
1001
n =
200000000000000000000004447D62B952200D604
D2BFB9
a = 2
a - 5
$\mathfrak{a} = DD$
xG =
79FD21DC7BF961D56CDD092798C3016F11C2034F
154A94B5
yG =
17B25C0DADFD379FF3D7CD1EAEFD83328B9454
10BE11D5DB
1022112022
$n - 2^{191} + 2^{45} + 2^{41} + 1$
p = 2 + 2 + 2 + 1
p =
800000000000000000000000000000000000000
0001
n =
1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
0DB69D80B
a = 5
d = B7
$v_{c} =$
AU =
41D4C5/EE995524D000442F0DCE51A0EA01C08C9
2D80110B
yG =
3EC06FDFB33AFA858E30D898F9C18606CA62E79
F6175FD80
$p = 2^{191} + 2^{46} + 2^{36} + 1$
p=
800000000000000000000000000000000000000
0001
IFFFFFFFFFFFFFFFFFFFFFFC219C1BBD9EF986
92F7D3077
a = 3
d = 4D
xG =
50707DB9B16BF11C894E2A2F25A2887A6AB3A59
21F9A ACDE
yG =
yG = 1BEF37EF93DBA0D7203F96BD14FCDA0E6B1CF1

$p = 2^{191} + 2^{49} + 2^{27} + 1$	2D4F15BA1A686CAEDB9D43F9525BF78683DAA3
p =	9B82301FCA8A7874BE
800000000000000000000000000000000000000	
0001	$\mathbf{n} = 2^{223} + 2^{38} + 2^{36} + 1$
n =	
1 1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	n =
E47806083	P —
r4/800983	800000000000000000000000000000000000000
a = D	00500000001
d = AC	
XG =	
3BFDC9D07301A8A3A9BEC18540B0EEDC0F7C3C	IFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
D21F652EFE	A6362578E1CD28C9
yG =	a = 3
3C48E70B7F04C446A8CC208696DA2592A56FB29C	d = 215
79888D52	
	xG =
$p = 2^{191} + 2^{158} + 1$	60536D73F2A4EF1F54C1048734301E01306FF7F331
p =	719201335D5A55
800000040000000000000000000000000000000	
0001	yG =
n =	DDBFD9D1AFD09CD322F639F524CC60F9A7A727
20000001000000000000004DE2B37DC449E40E33	139F56BBF8D127940
C414B9	
a=5	$\mathbf{p} = 2^{223} + 2^{61} + 2^{41} + 1$
d =	p =
80000003FEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	800000000000000000000000000000000000000
EEECOE	02000000001
rrreor vG =	n =
AO = 200205DA12CEDAE57617AE4011C57DDCE7042ED	20000000000000000000000000000000000000
209293DA12CEDAE3/01/AF4911C3/DDCE/043EB	BF010CB396FA9
	a = 5
$y_{U} =$	d = 3D
584///5099DF8A/F451D8DA8FE995A28A0D4F108	xG =
B0302917	X0 - 50507C0EEE622450507C0EEE622450507C0EEE623
	A A D7100DDB A 6 A F7
	AAD/109DDDA0AI/
	yu - 1266 A 500701070270245 A A A 111E52 CDC07000222
Таблица 4	1500A5D9781878270245AAA111E55CDC079D0522
Скрученные кривые Эдвардса почти простого	CB4A8C805309452A
порядка над полем с модулем p_{224}	$2^{223} + 2^{72} + 2^{20} + 1$
	$p = 2^{-10} + 2^{10} + 2^{10} + 1$
$n=2^{223}+2^{24}+2^{20}+1$	p =
p = 2 + 2 + 2 + 1	800000000000000000000000000000000000000
P 8000000000000000000000000000000000000	000000100001
000001100001	n =
000001100001	1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
	C631D4CA120783E9
II - 2000000000000000000000000000000000000	a = 3
20000000000000000000000000000000000000	d = 15C
9E631F041A2B9	xG =
a = 3	5C611714E8FD05D966F07BD978DF524642C21CF3
d = 93	BDBB6BA1FE037DD8
xG =	yG =
6C7CC9C10F4259CBEB0D1973AF0E4FC64AE442A	3499A41BF2C767BD41A045CDB7285F9E49075984
301A90DFEEB5BC081	21C0B78D29D5A7E0
yG =	$p = 2^{223} + 2^{66} + 2^{14} + 1$

p =	BD3CF60CD27D370FF3265
800000000000000000000000000000000000000	a = 3
00000004001	d = 6C
n =	xG =
20000000000000000000000000000000000000	7E5D3187BA7EF18EF3066E57C722DCE95279A019
3404E060EAC01	45D6B4C2E918B56C32EE35D1
5404E000EAC01	45D0B4C2E518B50C52FT55D1
a-5	yU =
d = 26	3AC8B/A5A64DA05FF1F288/0506E451F103DA6E
xG =	E32FAB89D3D903E073660572E
2A795ABA13A5D9DC2BEB32468049F7E8E287393	
711EA0A66DCBFF040	$p = 2^{255} + 2^{38} + 2^2 + 1$
yG =	p =
532C172BF052220CDE0B63A2F421DB65E8A676B9	800000000000000000000000000000000000000
6D7FA0307DDC0E53	000000000400000005
	n =
	200000000000000000000000000000000000000
Τ.σ	20000000000000000000000000000000000000
Гаолица 5	C83EF9F44858B6E952E4F
Скрученные кривые Эдвардса почти простого	a=2
порядка над полем с модулем p_{256}	d = 1CC
$n - 2^{255} + 2^{46} + 2^{42} + 1$	xG =
p - 2 + 2 + 2 + 1	25091FBF427205B62204FD7FE48236752C1FE497E
p =	F2DB3197938BA36D9A27554
800000000000000000000000000000000000000	vG =
000000044000000001	52A7749533218E16BB1E32137CE731DC0E26149CE
n =	2E1CE1279D7/E066D05252
2000000000000000000000000000000330A60EA43D	2E1CF1578D74E000D75255
F5957AC18C44AB8122EB7	a ²⁵⁵ a ⁷⁰ a ⁶⁶ t
a = 3	$p = 2^{255} + 2^{76} + 2^{66} + 1$
d = 1 A F	p =
$\mathbf{v}\mathbf{G} =$	800000000000000000000000000000000000000
AU - 25001EDE427205D(2204ED7EE4022(752C1EE407E	00440000000000000001
25091FBF42/205B62204FD/FE48256/52C1FE49/E	n =
F2DB319/938BA36D9A2/554	20000000000000000000000000000000000000
yG =	F0880BB2B78314AFD2E9
52A7749533218F16BB1F32137CE731DC0F26149CE	a = 3
2E1CF1378B74E066B952532	$d = 13 \Lambda$
$p = 2^{255} + 2^{41} + 1$	d = 15A
p =	
800000000000000000000000000000000000000	IC32148FB9F80F/8D2E848/9553296DA0858C29EF
000000002000000000000000000000000000000	EAD3EDCCBFC55E8FEE15C85
n –	yG =
II - 2000000000000000000000000000000000000	2D4ED6C59052B9113E76AEDACBC668F3BB0EE5
20000000000000000000000000000000000000	819C5B5221A311118DECAAE65E
B2676199F9EFB8C86EA9D1	
a = 3	
d = BC	Таблица 6
xG =	
1306A0056F9B6F44758D8146286E140B8D2A4C717	Скрученные кривые Эдвардеа почти простого
9CCB2B515E9EAE4A679F81	порядка над полем с модулем $p_{_{384}}$
vG =	$p = 2^{383} + 2^{155} + 1$
33CD1A3853C6059B39DE2485F320CC00D97E1BB	n = 1
77D5C79025BF01D1F3C0D8868	800000000000000000000000000000000000000
$n - 2^{255} + 2^{66} + 2^{60} + 1$	
p-2 + 2 + 2 + 1	
p =	0000001
800000000000000000000000000000000000000	n =
00041000000000000001	1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
	FFFFFFFE935B9B743CFBDC890CDB6FC507DB7
n =	744384DF7B5FAF81D1
20000000000000000000000000000000000000	a = 3
	-

d = EC	39949C9783884C7491E5D3F0D33704A278A6D4DF
xG =	52C56C9B83FDC59BCF9282A42BFB06B377CF4E0
5B83FE601E531F45B83FE601E531F45B83FE601E5	0933842AD9B65511
31F45B83FE601E537AC9B6A004550477AC9B6A00	
4550477AC9B69FF	n =
	11 200000000000000000000000000000000000
$\lambda \Omega =$	20000000000000000000000000000000000000
5FF608B37764C7FE1719D75DA24646D8869E60637	FFFFFB43327D7C94B4BEA93CCCFCA103CF64D6
F0C477A548C46BDECB0270BF2C840E083654F633	A40B8F00E9016B
67D737325053472	a = 3
010101020000112	d = 22D
	d = 33B
n =	xG =
1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	56499011F2275F6A3E9421923C69AA0F8C47A25B
FFFFFFFFD2E846F4DD24CB4DC3014E1B9B39C5	D16EF68635243D6B1867A732DC11CA8C8CEFF30
6050D2E5EE1970522	122EDE22C0D2D060
095005757718/0525	152EFDF55C9D2D909
a = 3	уG
d = 10A	=46D521F9D3A98FF01C4D5676A6CBB88A78AB84
xG =	F2502A0A30E9A51A64A26D60FD47F8B02E0B5F1
2301C9793214EC6152B4CEED1370408ACAE9709	713783CEC878DAE6108
2301C9/93214FC0132D4CEED13/9498ACA0F8/08	/13/85CFC8/8DAF0108
9186C2301C97932151F631C2E01020FDA9C3F995C	
9A81DB118C9FA39	
vG =	Таблица 7
70 A FEE027E A 08107017851B6E7DD052DC852C052	
D(A) D D D D D D D D D D D D D D D D D D D	Скрученные кривые Эдвардеа почти простого
D6A2DDE0E0E1AF9EA/81CDC8AF1ED4E9B024B	порядка над полем с модулем p_{521}
FA5FAB992443F80C745	2520 + 266 + 265 + 1
	$p = 2^{-1} + 2^{-1} + 2^{-1} + 1$
	p =
$2^{383} + 2^{233} + 1$	100000000000000000000000000000000000000
$p = 2^{-10} + 2^{-10} + 1$	000000000000000000000000000000000000000
p=	000000000000000000000000000000000000000
800000000000000000000000000000000000000	
000000000000000000000000000000000000000	000000000001
000000000000000000000000000000000000000	n =
0000001	400000000000000000000000000000000000000
n =	000000000000000000000000000000000000000
20000000000000000000000000000000000000	CO000000000000000000000000000000000000
FFFFCEA783C2F07E63118A47FDB07FBAD3E7424	FDD4AAE5B3388CCE2/95EC03189/92//8B80EDB
37E35EA11EA81	1251
37E35EATTEAGT	a = 3
a = 3	d = 2A8
d = 15A	
xG =	
45FB6177745030C78D712C115E5354E6F6AB496F6	BA5B99F7375F86F6D700E0DCD8E750E64FE9
68C2DB6A55EB1EE2E0A10052C4EE00DE252D2012	EA4F44B5C4CF022B45EDD2B81962129B6AED970
00CJDD0AJJED1EF2F94100J2C0FF09DF2J3D3013	FCAF0754EA418054E5AAB55FD9911C
F48B5134EFD5220	
yG =	
35525C097B1F9D1DB5ABB1695B62EF88E79DDCE	yG =
007 A CD 8 F 167 F 7022 A 2 F C 379 A F 0.47 C 184 F 8 C 00024	91E0646D69810E9FC606F87EA7BFA7140B144
507ACD0F107E7022A2ECJ77AF0A7C104F0C09934	6EEA937536CDDC166C301BB0ECE279DA1583891
F230A30522FA27EE3	3154E7BEDE69C7AC43D2756A270005
	625E52E0D1454 41E77E21D4D
n =	023F32F9D143A41E//E31D4B
200000000000000000000000000000000000000	
rrrc4e3r90e2b483b/2DB4DC623D/ECECFE39	$\mathbf{p} = 2^{520} + 2^{80} + 2^{39} + 1$
A562991D60A279	
a = 3	µ-
d = 7B0	100000000000000000000000000000000000000
vC =	000000000000000000000000000000000000000
	000000000000000000000000000000000000000
5EE2C5033D54291ACD632030F57D0AD23E537766	001
CAEF2EC8E7117FA4D247D71E488F0FAA45B5A1	001
E8FEA7E6617BFA140E	n =
	3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
- 01	

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	CC573F239662B9F91CB315CFC8E598AE7E472CC5
4E5DCC909AAE45C02D90E60764C007	73F239662B9F91CB2
6526D0C9B9E66517E45515A05	vG =
a = 2	y = 0 EDD0491DDAEC22AD00D0C546E5D6C690001
a - 5	FDD9401BDAFC22AD99D0C340F3B0C080901
$d = \delta /$	3508A/94255AEE551A/4142CBE4095FD25/08A0C
xG =	2/631A6AF3DF61BB4F83C481614132F/13D0B860
6287A808BC52FD146441B870582B459B15414	EAB37B7F74748D2
9EC3E444F88F3950A07DF4AC946781D7517D8628	$p = 2^{520} + 2^{73} + 1$
7A808BC52FD146441B870582B459B154	p =
1AC73E64D0C0D347D72A7	100000000000000000000000000000000000000
vG =	
6 A 20 E C 6 A 25 8 7 8 5 E 1 6 B 2 A A 00 B E 0 C 6 D 2 E 00 C 8 0	000000000000000000000000000000000000000
0A20EC04238783110B2A400BF0C0D2E50C80	000000000000000000000000000000000000000
80AE25A90F405029EE2A148A0EF2DF0DF9E08/F1	0000000001
E0248//38C92/BAF4B0C50A9349BA68	n =
FAF1D3B24BB6E0D8E991B1	3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
$p = 2^{520} + 2^{110} + 2^4 + 1$	960C064B6AEA3B6851C23CCDC50B6
p =	E6921941026DF9E4883D1C157
100000000000000000000000000000000000000	a = 7
000000000000000000000000000000000000000	d =
000000000000000000000000000000000000000	100000000000000000000000000000000000000
000000000000000000000000000000000000000	
00000000011	
n =	00000000000000000000000000000000000000
3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	FFFFFFFFFFFE786B
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	xG =
C69628BD3C3257DB51B5FC7477094B	4CFD4C477A7FABB556313753CD284B6B2315
E7A8266F720BFB22D9AA02123	E866A9C3A38F399E19FCEC6BA0796367AFBD7B6
a = 5	AAE33967252EA110AF880CB1038A2E
$d = D^2$	699072C8FACACCE0F919B3C67
u D 2	
AU = DE025EE40AE7AAD7DD2(DDE025EE40AE7AA)	$y_{U} =$
DE935EF49AF/A4D/BD26BDE935EF49AF/A4	/4E83FF02F90FB98F028FC1D0BD94A0093E94
D/BD26BDE935EF49AF/A4D/BD26BDE935EF49A	E6250BA9DDEE68F1DE65242E496D90B9CEAE817
F7A4D7BD26BDE935EF49AF7A4D7B	717DFB7EC4E9E2D7A0004FDBB99B2
D5E62C0F3160798B03CC581E62C1C	79AA75BF2E785DB9A5D415EBA
yG =	
7CD02BB98782E14860C91A53E907B7C4FDA	
A1C6898375790CB3FDED238FD9A069B8C53B67A	ЗАКЛЮЧЕНИЕ
C5DC0C8B782D74624 4 69D91450D20C	
C0DCA8P76DP07004008CP402F1	
C3DCA6D70DD37334006CD43211	стандартизации и имплементации скрученные кривые
	Эдвардса имеют рекордную скорость экспоненциро-
- 570 - 248 - 278	вания точки. ьольшинство из рассчитанных кривых
$p = 2^{320} + 2^{340} + 2^{270} + 1$	наряду с минимальным значением параметра $a = 3$
p =	имеют всего двух- или трехразрядное шестнадцате-
1000000000000000000000000000000000000	ричное значение второго параметра d что практиче-
000100000000000000040000000000000000000	
000000000000000000000000000000000000000	ски позволяет пренебречь сложностью операции 10 и
000000000001	2U для скрученных кривых в таблице 1. Оценки
n =	сложности сложения точек $V_{E} = 10M + 1S + 2U$ и
11	
	удвоения точки $T_E = 3M + 4S + IU$ достигают в
0004000000000000000FFFFDCB98F10F9CF/0F01	нашем случае нижних грании
805040CBDD9D354DDFB78BBD8EE3F20DD416BE	27 17
23E0E1D08D	$V_{F} = 10M + 1S = \frac{32}{5}M$, $T_{F} = 3M + 4S = \frac{17}{5}M$,
a = 5	3 3
d = 53	a 2
xG =	если принять $S = -M$ [1]. Кроме того, в отличие от
D8F7F6D0EEC7BFB687763DFDB43BB1EFED	5
A1DD8F7F7A9E6BE90A54F35F4888E598AE7E472	предыдущей работы [4] с параметрами полной кривой

Эдвардса, здесь найдены кривые для модулей поля

*p*₅₂₁ с наивысшим стандартным уровнем стойкости.

Литература

- Bernstein D.J., Lange T. Faster Addition and Doubling on Elliptic Curves // Advancesin Cryptology – ASIACRYPT'2007 (Proc. 13th Int. Conf. On the Theory and Applicationof Cryptology and Information Security. Kuching, Malaysia. December 2–6, 2007). Lect. Notes Comp. Sci. V. 4833. Berlin: Springer, 2007. P. 29 – 50.
- [2] Bernstein Daniel J., Birkner Peter, Joye Marc, Lange Tanja, Peters Christiane. Twisted Edwards Curves.//IST Programme under Contract IST–2002–507932 ECRYPT, and in part by the National Science Foundation under grant ITR–0716498, 2008. P. 1 – 17.
- [3] *Morain F*. Edwards curves and CM curves. ArXiv 0904/2243v1 [Math.NT] Apr.15, 2009.
- [4] Бессалов А.В., Дихтенко А.А. Криптостойкие кривые Эдвардса над простыми полями. Прикладная радиоэлектроника, 2013, Том 12, №2. – С. 285-291.
- [5] Бессалов А.В., Цыганкова О.В. Взаимосвязь семейств точек больших порядков кривой Эдвардса над простым полем. Проблемы передачи информации. – Том 51, вып 4, 2015. – С.92 – 98.
- [6] Бессалов А.В., Цыганкова О.В. Классификация кривых в форме Эдвардса над простым полем. Прикладная радиоэлектроника: научно-техн. журнал. – 2015. – Том 14. – №4. – С.197 – 203.
- [7] Бессалов А.В., Цыганкова О.В. Производительность групповых операций на скрученной кривой Эдвардса над простым полем. Радиотехника, №181, 2015. С.58 63.
- [8] Бессалов А.В., Телиженко А.Б. Криптосистемы на эллиптических кривых: учеб. пособие. – К.: ІВЦ «Політехніка», 2004. – 224с.
- [9] Дэвенпорт Г. Высшая арифметика: введение в теорию чисел // Пер. с англ. под редакцией Ю.В.Линника. – М: «Наука», 1965. – 176с.

Бессалов Анатолий Владимирович, д-р. техн. наук, профессор, профессор физикотехнического института НТУУ «КПИ им. Игоря Сикорского».

Олешко Константин Андреевич, магистрант физико-технического института НТУУ «КПИ им. Игоря Сикорского».

Поречная Дарья Никитична, магистрант физико-технического института НТУУ «КПИ им. Игоря Сикорского».

Цыганкова Оксана Валентиновна, аспирант физико-технического института НТУУ «КПИ им. Игоря Сикорского».

Черный Олег Николаевич, магистрант физико-технического института НТУУ «КПИ им. Игоря Сикорского».

УДК 681.3.06

Криптостійкі скручені криві Едвардса з мінімальною складністю групових операцій / А.В. Бессалов, К.А. Олешко, Д.Н. Поречна, О.В. Циганкова, О.М. Чорний // Прикладна радіоелектроніка: наук.-техн. журнал. – 2016. – Том 15, № 3. – С. 141 – 150.

Дано аналіз оцінок складності групових операцій для скручених кривих Едвардса. Запропоновано метод мінімізації обчислень за допомогою вибору мінімального значення параметра a кривої. Наведено таблиці загальносистемних параметрів 25 криптостійких рекордно швидких кривих зі значеннями модулів поля довжиною 192, 224, 256, 384 і 521 біт.

Ключові слова: скручені криві Едвардса, повні криві Едвардса, порядок кривої, порядок точки, квадратичний лишок, квадратичний нелишок, складність операцій.

Табл.: 07. Бібліогр.: 09 найм.

UDC 681.3.06

Secure twisted Edwards curves with minimal complexity of group operations / A.V Bessalov, K.A. Oleshko, D.M. Porechna, O.V. Tsygankova, O.M. Chornyi // Applied Radio Electronics: Sci. Journ. – 2016. – Vol. 15, № 3. – P. 141 – 150.

An analysis of evaluations of group operations complexity for twisted Edwards curves is given. A method of minimizing calculations by selecting the minimum value of the curve parameter (a) is suggested. Tables of system-wide settings of 25 record fast cryptographically secure curves in finite fields with modules of lengths 192, 224, 256, 384, and 521 bits are provided.

Keywords: twisted Edwards curves, complete Edwards curves, order of a curve, order of a point, quadratic residue, non-quadratic residue, complexity of operations.

Tab.: 07. Ref.: 09 items.