УДК 621.317.76

МЕТОД РАСЧЕТА КВАРЦЕВЫХ ГЕНЕРАТОРОВ СВЧ

Куценко Ю.Н., д.т.н., Орел А.Н., к.т.н., Орел И.А., аспирант

Таврический государственный агротехнологический университет

Тел.: 067-13-62-448

Аннотация – рассмотрено методику расчета энергетических характеристик кварцевых генераторов СВЧ диапазона, которые используются в устройствах для электромагнитной терапии животных.

Ключевые слова: кварцевый генератор, СВЧ-излучение, автогенератор.

Постановка проблемы. Одной из актуальнейших проблем, которая стоит перед аграрным комплексом Украины на современном этапе, является повышение продуктивности в животноводстве с сохранением и увеличением поголовья сельскохозяйственных животных, которое в большой степени зависит от своевременного лечения их травматизма. В результате травм и их осложнений больные животные снижают продуктивность, преждевременно выбраковываются, нередко гибнут [1, 2].

В настоящее время для лечения травм животных в основном используют медикаментозные способы лечения. Применение антибиотиков и других медикаментов не всегда способствует выздоровлению животных и, кроме того, лекарственные препараты с молоком и мясом попадают в организм человека, оказывая на него отрицательное воздействие. Во многих странах мира ведется неустанный поиск немедикаментозных средств лечения и профилактики заболеваний животных [3, 4].

Решение поставленной задачи возможно на основе применения электромагнитных излучений СВЧ и КВЧ диапазонов [5,6]. Поскольку СВЧ терапия животных связана с резонансным действием и возбуждением акустоэлектрических волн в замкнутых клеточных мембранах, то для передачи максимальной энергии облучения биологическим объектам (95%) следует использовать высокостабильные СВЧ генера-

© Куценко Ю.Н., Орел А.Н., Орел И.А.

^{*} Научный руководитель – Куценко Ю.Н., д.т.н.

торы (нестабильность частоты $10^{-7} - 10^{-8}$), перестраиваемые по частоте и выходной мощностью до 50 мВт [7, 8].

Анализ последних исследований. Анализ литературных источников показывает, что отсутствие специализированных высокостабильных монохроматических источников СВЧ излучения сантиметрового диапазона делает проблематичной постановку вопроса о создании низкоэнергетической электротехнологии лечения сельскохозяйственных животных [9, 10].

При решении данной задачи необходимо проводить теоретический анализ основных характеристик кварцевого генератора и анализ его кратковременной нестабильности в зависимости от флуктуационных параметров элементов схемы автогенератора [11, 12].

Формулирование целей статьи (постановка задания). Целью статьи является расчет энергетических характеристик автогенератора, с использованием кварцевых генераторов.

Основные материалы исследования (основная часть). В настоящее время существует большое количество схем кварцевых генераторов до частот 100 МГц, методики расчета которых разнообразны и ограничены в частотной области генерации. В то же время в инженерной практике необходим достаточно простой метод расчета кварцевых генераторов в диапазоне частот от 200 до 500 МГц, доступный при использовании справочных данных или данных, измеренных простыми методами.

Ниже приводится один из возможных вариантов такой методики расчета, которая справедлива в широкой частотной области и при значительных выходных мощностях. Для расчета энергетических соотношений стационарного режима воспользуемся упрощенной структурной схемой рис. 1. При этом положим, что реактивные компоненты $Z_{\rm вx}$, $Z_{\rm вых}$, $Z_{\rm в в лияют на фазовые соотношения в генераторе (на баланс фаз), то есть на частоту генерации, и не влияют на баланс амплитуд.$

Рассмотрим баланс амплитуд. Из рис. 1 видно, что выходная мощность транзистора $P_{\text{вых}}$ выделяется в нагрузке, а часть ее через цепь ОС поступает на вход (базу) транзистора, причем некоторая доля входной мощности рассеивается на кварцевом резонаторе $P_{\text{кв}}$

$$P_{\text{bbix}} = P_{\text{H}} + P_{\text{KB}} + P_{\text{BX}}. \tag{1}$$

Коэффициент передачи транзистора по мощности

$$K_{\rm p} = \frac{P_{\rm BMX}}{P_{\rm BX}}.$$
 (2)

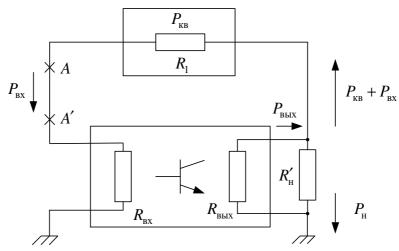


Рис. 1. Эквивалентная схема кварцевого генератора.

Обозначим через $K_{\mathcal{Q}}$ коэффициент использования добротности резонатора

$$K_{Q} = \frac{P_{KB}}{P_{PX}} = \frac{R_{1}^{1}}{R_{PX}}, \tag{3}$$

где R_1^1 — эквивалентное сопротивление потерь составного резонатора. Полагая $R_{\rm BX}=R_{\scriptscriptstyle H}^1$, схему рис. 1 можно представить в виде рис. 2.

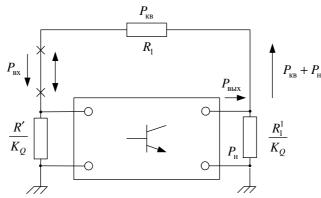


Рис. 2. Эквивалентная схема кварцевого генератора.

Подключение кварцевого резонатора к точкам с сопротивлениями $\frac{R_1^1}{K_Q}$ снижает его добротность до некоторой величины

$$Q_{9} = Q \frac{R_{1}^{1}}{R_{1} + 2 \frac{R_{1}^{1}}{K_{Q}}} = \frac{Q_{K_{Q}}}{K_{Q} + 2},$$
(4)

где Q – ненагруженная добротность кварцевого резонатора. Из выражений (2) - (4) имеем

$$K_{p} = \frac{P_{H} + \frac{P_{KB}}{K_{Q}} + P_{KB}}{\frac{P_{KB}}{K_{Q}}} = K_{Q} \left(\frac{P_{H}}{P_{KB}} + 1\right) + 1.$$
 (5)

Выражение (5) является условием баланса амплитуд генератора в стационарном режиме. После преобразования (5) получим выражение для выходной колебательной мощности генератора

$$P_{\scriptscriptstyle H} = \frac{P_{\scriptscriptstyle KB}}{K_{\scriptscriptstyle Q}} \left(K_{\scriptscriptstyle p} - K_{\scriptscriptstyle Q} - 1 \right). \tag{6}$$

На практике обычно $K_p > 1 > K_O + 1$. Тогда имеем

$$P_{\rm H} = \frac{P_{\kappa g} K_p}{K_Q} = \frac{P_{\kappa g} K_p}{2} \left(\frac{Q}{K_Q} - 1\right). \tag{7}$$

Из выражения (6) видно, что при $K_p=K_Q+1$, $P_H=0$, так как вся выходная мощность расходуется на поддержание самовозбуждения.

Обозначим через K_{QH} коэффициент снижения добротности резонатора

$$K_{Q_{\rm H}} = \frac{Q_{\rm s}}{Q} = \frac{K_{Q}}{K_{Q} + 2}.$$
 (8)

Коэффициент передачи цепи обратной связи равен

$$K_{oc} = \frac{P_{ex}}{P_{oc}} = \frac{1}{K_{Q} + 1}.$$
 (9)

Отсюда

$$K_{oc} = \frac{1 - K_{\varrho}}{1 + K_{\varrho}} \,. \tag{10}$$

Используя выражение для коэффициента регенерации $G=K_{oc}\cdot K_p$, нетрудно получить

$$K_{QH} = \frac{K_p - G}{K_p + G}. \tag{11}$$

Из выражения (11) видно, что при некотором заданном коэффициенте G, который обычно выбирается равным 2, увеличения $K_{Q^{H}}$ можно добиться лишь посредством повышения K_{p} . К этому выводу также можно прийти из анализа выражения (6). При повышении K_{p}

требуемый коэффициент регенерации G может быть обеспечен при меньших значениях $P_{\kappa g}$. В то же время для обеспечения максимального $Q_{\mathfrak{I}}$ сильное снижение $P_{\mathfrak{K}}$ нежелательно. Оптимальным с этой точки зрения будет значение $P_{\kappa g}$, не вызывающее нелинейных эффектов (многочастотности) колебаний в непосредственной близости к частоте n механической гармоники резонатора. Эта мощность обычно оговаривается на каждый тип резонатора.

Для отечественных резонаторов на 250 МГц величина $P_{\text{\tiny KB}}$ =0,5 мВт. В связи с выше изложенным удобно выразить $P_{\text{\tiny H}}$ через K_p , $P_{\text{\tiny KB}}$, K_{OH}

$$K_{Q} = \frac{2K_{Qn}}{1 - K_{Q}}; {12}$$

$$P_{H} = P_{K} \frac{K_{p} (1 - K_{QH}) - K_{QH} - 1}{2K_{QH}}.$$
 (13)

Реальную величину K_{QH} можно определить из формулы (12), а затем по формуле (13) можно вычислить при заданном значении K_p максимально достигнутую выходную мощность P_H . Используя выше приведенные соотношения достаточно просто произвести энергетический расчет генератора при заданном G, K_{KB} и Q_3 .

По известным (измеренным) значениям $Re(Z_{\text{вх}})$ и зависимости $K_p(P_{\text{вх}})$ можно определить коэффициент трансформации и фазовый сдвиг, после чего составить схему генератора.

Bывод. Инженерная методика по расчету основных энергетических параметров автогенератора проста, действительна для широкой полосы частот и может использоваться для синтеза кварцевых генераторов в диапазоне частот от 200 до 500 МГц.

Список использованных источников

- 1. Общая ветеринарная хирургия / А. В. Лебедев, В. А. Лукьяновский, Б. С. Семенов [и др.]. М.: Колос, 2000. 488 с.
- 2. *Герцен П.П.* Профилактика и лечение травм в промышленном животноводстве / *П.П. Герцен.* Кишинев : Кармя Молдовеняска, 1981. 354 с.
- 3. Веремей Э.И. Справочник по применению лекарственных средств в ветеринарной хирургии / Э.И. Веремей, А.Н. Елисеев, В.А. Лукьяновский. Минск : Уроджай, 1989. 170 с.
- 4. *Улащина В.С.* Актуальные вопросы электролечения и ультразвуковой терапии / *В.С. Улащина*. Минск : Уроджай, 1983. 144 с.
- 5. *Пресман А.С.* Электромагнитные поля и живая природа / *А.С. Пресман.* М. : Наука, 1968. 288 с.

- 6. Девятков А.Д. Миллиметровые волны и их роль в процессах жизнедеятельности / А.Д. Девятков, М.Б. Голант, О.В. Бецкий. М. : Радио и связь, 1991. 169 с.
- 7. *Исмаилов Э.Ш.* Биофизическое действие СВЧ излучений / Э.Ш. *Исмаилов.* М.: Энергоатомиздат, 1987. 144 с.
- 8. *Кузнецов А.П.* Электромагнитные поля живых клеток в КВЧ диапазоне / *А.П. Кузнецов* // Электронная техника : Сер. 1. Электроника СВЧ. 1991. Вып. 7 (441). С. 3 6.
- 9. Справочник по радиоизмерительным приборам / под ред. В.С.Насонова. - М.: Сов. радио, 1986. - 485 с.
 - 10. Hewlett Packard Test Measurement Catalog, 1984 1998.
- 11. *Малахов А.Н.* Флуктуации в автоколебательных системах / *А.Н. Малахов.* М.: Наука, 1967. 660 с.
- 12. *Кабанов Д.А.* Обобщенный подход к исследованию автогенераторов / *Д.А. Кабанов* // Радиотехника и электроника. 1974. № 8. С. 1690 1697.

МЕТОД РОЗРАХУНКУ КВАРЦОВОГО ГЕНЕРАТОРА НВЧ

Куценко Ю.М., Орел О.М., Орел И.О.

Анотація — розглянуто методику розрахунку енергетичних характеристик кварцових генераторів НВЧ діапазону, які використовуються в пристроях для електромагнітної терапії тварин.

METHOD OF CALCULATION CRYSTAL OSCILLATOR MICROWAVE

Y. Kutsenko, O. Orel, I. Orel

Summary

The method of calculating energy characteristics of quartz microwave generators, which are used in devices for electromagnetic therapy animals.