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Elastic indentation of a half-space by a non-ideal Berkovich in-
denter is simulated by means of a boundary element method. Pa-
per accounts for tangential displacements which are usually ne-
glected in analysis of indentation data. A simple expression is de-
rived for the impact of the tangential displacements on the values
of the reduced Young’s modulus determined due to the Oliver-
Pharr technique.

Introduction. Depth-sensing indentation is a widely used tech-
nique in the study of mechanical properties of materials [1]. It yields
information about hardness and elastic modulus and is also applicable
for determination of yield stress and strain hardening exponent. Depth-
sensing measurements at penetration depths of tens or hundreds of na-
nometers are referred to as nanoindentation [2; 3], is particularly well
suited to the characterization of coated and other surface-engineered
systems [4—6].

One of the more commonly used methods for extracting hardness
and elastic modulus from nanoindentation load—displacement data is
that of Oliver and Pharr [7-9]. It has an advantage that difficult meas-
urements of the contact area at the nano-scale are not required, since it is
calculated from the contact depth. Thus, the accuracy of the Oliver-
Pharr technique depends on how well it predicts the contact area. The
most possible factors distorting the value of the contact area are the
roughness of contacting surfaces [10], non-ideal shape of indenters [11;
12], pile-up or sink-in [9; 13] and tangential displacements [14—16]. In
the present investigation we refine on the Oliver-Pharr method by al-
lowance for the non-ideal shape of the indenter tip (rounding) and for
the tangential displacements.

The Oliver-Pharr method does not account for the tangential dis-
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placements. The method is based on the Bulychev-Alekhin-Shorshorov
(BASh) relation [8; 17; 18] which is restricted to frictionless contact
between elastic bodies and smooth surfaces and considers only the nor-
mal displacements on the surface of solids. Neglect of the tangential
displacements leads to the incompatibility of strains in the area around
the contact [14; 15]. Moreover, the tangential displacements themselves
at the boundary of the contact region can achieve approximately 22 % of
the indentation depth depending on the Poisson’s ratio of the elastic half-
space [14; 15]. Therefore, accounting for the tangential displacements
demands a particular investigation.

The objective of the study is to specify how much impact the tan-
gential displacement effects have on nanoindentation studies of material
properties. To attain the goal we use the mathematical model of elastic
contact represented in the previous paper [19] and expand the BASh
relation for the tangential displacements. The model concerns an espe-
cially important case of shallow indentation (usually less than 100 nm)
where the tip rounding is on the same order as the indentation depth. It
considers the indentation of half-spaced samples by the rigid Berkovich
indenter and accounts for the tangential displacements on the surface of
the sample.

Short description of the model. We use the mathematical model
of a unilateral contact between the Berkovich rigid indenter and an elas-
tic half-space (sample). The indenter with the equation of the surface

x; =—f(x,x,) is pressed by the force P to a boundary of the contact-
ing sample (see Fig. 1, a). The sample is considered as a positive half-
space x; > 0. The origin O of Cartesian coordinates, X, X,, X, is put
at the single point of the initial contact between the indenter and the

sample. The contact region S is an orthogonal projection of the contact
between the sample and the lateral surface of the indenter on the plane

x; = 0 after deformation. The tip of the blunted indenter is simulated as

a smooth surface (the homogeneous functions with the degree 2)
2

r
JM) =2

where R is the radius describing the shape of the blunted indenter tip. It
accounts for the asymmetry of the Berkovich indenter, Fig. 1, b.
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Method of non-linear integral boundary equations (NIBEs) [20]
was applied to formulate the contact problem. The numerical solution of
NIBEs was carried out by means of the boundary element method. The
final formula for the load-displacement diagram is

N2
P(h) =Td~PO(h)~h% : (1)
here function F, (%) is the dimensionless compression force, it was ob-

tained numerically from the solution of NIBEs at different values of the
mutual approach / ; d is the bluntness of the indenter tip. Parameter A
is defined through the reduced Young’s modulus E*,

1 1 _1—1)52+1—ul.2

.
S

(subscripts denote the parameters
i
‘6i’5

of the sample and of the indenter “i”). For more details about the
model and derivation of solution of NBIEs the reader is referred to [19].
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Fig. 1. (@) Geometry of the simulated blunted indenter, BCDE, and of the ideal
Berkovich indenter, O'DE. The segment BD is the arc of the circle with the

centre A4 and radius R; d is the bluntness of the indenter tip. OB is the displace-
ment of the indenter, which causes the contact BC with the sample. (b) Cross-
section of the simulated blunted indenter. The contour lines correspond to vari-
ous positions of D
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Effect of tangential displacements on the nanoindentation
study of the reduced Young’s modulus.

Expression for the dimensionless compression force is given in
the following form

h
R(h)=E +b(vs)'\/;, 2

where F, =1.277 is a constant, b(v,) is a function depending on the

Poisson’s ratio of the sample material, 5(0.5) = 0. The effect of tangen-

tial displacements is associated with the second term in (2). If the tan-
gential displacements in the model are neglected, then the dimensionless

compression force is constant F, (%)= F,, regardless of the value of
Poisson’s ratio v, . So, expressions for the load calculated with allow-
ance for the tangential displacements P,,(/#) and neglecting them
P .5 (h) canbe derived from (1) and (2)

N

By (h) z%d'l’o'h% +%-b(%)-h2,
J2d

3
PnoTD(h)zT'Po 'héa

3)

Following the technique of Oliver and Pharr we need an equation
for the contact stiffness. The reduced Young’s modulus is determined

from the contact stiffness S at the beginning of unloading and the pro-
jected contact area A using BASh relation [8; 17; 18]

S:%E*\/Z,

where f is a constant that depends on the geometry of the indenter

(1.034 for a Berkovich indenter and about 1 for the tip bluntness). As
was mentioned in introduction, the BASh relation neglects the tangential
displacements. We can derive from (3) a refined relation for the contact

stiffness S ;,, that accounts for the tangential displacements

S TD:%M/EHE* -G-JE-PO B +2-b(u‘¥)-h]. (4)
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Tangential displacements influence the reduced modulus E~ by

means of the contact stiffness only because the contact area is no longer
explicitly presented in (4). The contact stiffness that neglects the tangen-
tial displacements is

dP, .. (h .
S Mz%\/}ﬁE \/gPoh% (%)

noTD = d]’l

Let E,, denotes the reduced modulus determined with allowance
for the tangential displacements (4) and EonD denotes the modulus
determined neglecting them (5). Relation between Ej, and E, ,, can
be found from the comparison of S ,, with S ., . The contact stiff-
ness is evaluated at the beginning of unloading ~A=/h__ [8], see Fig. 2.
We should also account for the final displacement /, after complete
unloading [8]. Thus we set 7=/, —h, to compare the contact stiff-
ness in (4) and (5):

3 1/2
E, SN R (=) .
E

w0 2T By =) 250 ()
P

_i.b(Uj). hmax_h/ ~1-b(.)- hmax_h/

3 P d d

Fig. 2. A schematic load-displacement curve of a nanoindentation test. /1 —
maximal displacement, h,— final displacement, /;_— contact depth, S — contact
stiffness
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Here we used that b(v,) << B, =1.277, see table. The model

was developed for a rigid indenter. Therefore the effect of tangential
displacements on determination of the Young’s modulus and of the re-
duced Young’s modulus is the same:

Es,TD — E*';D zl_b(us)\/@ (6)
Ey,m) D Enr) D d

Furthermore, we investigated the case of shallow indentation,
Doy —h = d . Therefore (6) reduces to:

E B3
0~ I 1w, ™)
Es,noTD EnoTD

As follows from (6) and (7), the models neglecting tangential dis-
placements overestimate the reduced and the Young’s modules. For a
wide range of materials the error in determination of the elastic modulus
is about 4 % (see table 1). For materials with the Poisson’s ratio less
than 0.2 the error approaches to 6 %.

Table
The values of the parameters b [19] depending on the Poisson’s ra-
tio of the sample

v, 10%-b

0 6.17 £0.08
0.1 5.56 £0.08
0.2 4.63 +£0.07
0.3 3.38 £0.05
04 2.03 +£0.05
0.5 0

A difficulty of the Oliver-Pharr method is the estimation of the
contact area [13; 18]. To avoid this, we propose to find the unknown
parameters (d or E*=1/7A) by fitting the function P(4) in (1) to the
elastic part of the indentation curves.

Conclusions

A simple expression is provided for the impact of the tangential

displacements on nanoindentation studies of the reduced Young’s mod-
ulus. Neglecting tangential displacements one overestimates the
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Young’s modulus up to 6 % depending on the Poisson’s ratio of the
sample.
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