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Developing a model of manipulating hydraulic cleaning tool trajectory using local 
spline functions is one of the research objectives. It is important to emphasize that the 
above-mentioned functions do not require pre-analytical determination of spline coef-
ficients and ensure a simple technical performance. 
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1. Introduction. 
One of the ways to higher up the efficiency of machining, such as hydraulic cleaning of 

aircraft engine components, is the development of simple and plausible methods to assess the 
accuracy of positioning of hydraulic cleaning tools (HCT) during the processing [4]. 

Cleaning of complex surfaces (holes, channels, grooves, etc.) of engine frame 
parts includes their previous installation, which is proportionally associated with the 
dimensional coordinate system of the machine, and the subsequent positioning of HCT 
concerning the structural elements that are processed [3].  

When using high-precision electromechanical devices to clean the frame components 
with several functionally related holes, which have a high precision placement of axes, 
HCT should be in the exact position towards the coordinate axes of these elements.  

If high-precision devices of movement and the complex control system of axis ac-
curacy are used to position manipulating HCT to make the HCT axis match the axis of 
the hole, the hydraulic cleaning machine design can be complicated in general and its 
reliability can be reduced [5].  

For this class of machines it is necessary to develop simple and reliable methods of 
HCT positioning based on the spline function to describe their trajectory. 

2. Problem to be solved on the analysis of previous researches.  
The HCT movement trajectory is usually given in the Cartesian coordinate system 

and the position and orientation are specified by the matrix H(t) [2] (Fig. 1):  

 
Fig. 1. Schematic diagram of the surface hole cleaningwith manipulating HCT 
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퐻(푡) = 푛(푡) 푠(푡) 푎(푡)				
0 0 0

푝(푡)
1

                                      (1) 

where 푝 – a vector of the HCT center position in the base coordinate system 푋 푌 푍  
which is associated with constant HCT; 푛, 푠, 푎 – unit vectors that form a coordinate 
system associated with the HCT.   

It is necessary to find the equation of motion 푞 (푡) for all 푖 = 1, 2, … , 푠 units of 
HCT compounds using the matrix 퐻(푡) by solving an inverse kinematics problem.  
Splines with the coefficients in the interval [푡 , 푡 ] determined by several values of 
the coordinates 푔  are called ‘local’. These coefficients do not depend on the values 푔  
all along the grid [1]. A spline that passes through the specified nodes 푔 , is called ‘in-
terpolating’. A spline that approximates the given sequence, but does not pass through 
all nodes 푔  is called ‘approximating’. Let 푆 , 푆 ,  be an interpolating (approximat-
ing) spline of degree 푚, and defect 휈: ∆ = 푔 − 푔 , ∆ = ∆ + ∆ , ∆ = ∆ +
∆ , 		∆ = ∆ + ∆  – central difference of the first, second, third and fourth order. 

Determining the coefficients 푎  of local splines 푆 , , and the nature of a spline 
(interpolating or approximating), its degree 푚 and defect 휈, all of that should be per-
formed according to the objectives. The movement of the manipulator can be specified 
only by the values of generalized coordinates 푔 , or generalized coordinates 푔  and ve-
locities 푔̇ , or coordinates 푔 , velocities 푔̇  and acceleration 푔̈ . In various cases it is 
necessary to provide different degrees of the trajectory smoothness, in other words we 
need to fulfill one of the following conditions: 

푔(푡) ∈ 퐶 [푎, 푏],                                                       (2) 
푔(푡) ∈ 퐶 [푎, 푏],                                                       (3) 
푔(푡) ∈ 퐶 [푎, 푏],                                                       (4) 
푔(푡) ∈ 퐶 [푎, 푏],                                                       (5) 

with given initial (푔 , 푔̇ , 푔̈ ) and final (푔 , 푔̇ , 푔̈ ) conditions. 
The splines of degree 푚 defect ratio  휈 are defined as follows [1]: 

 
푆 , (푡) = ∑ 푎 (푡 − 푡 ) , 푖 = 0,1, … , 푛;		

푆 , (푡) ∈ 퐶 [푎, 푏].
	                               (6) 

Some local splines are constructed depending on the specified 푔 , 푔̇ , 푔̈  and the 
degree of trajectory smoothness. Let us consider the construction of splines like that for 
the uniform grid ∆ .  

To construct a spline that interpolates the given values 푔 , the two following equa-
tions to determine the coefficients of this spline ought to be constructed: 

푎 = 	푔 ,                                                      (7) 
∑ 푎 = 푔 ,                                                (8) 

It is necessary to take 푚 = 1 for the system of equations (7) and (8) to have a 
unique solution. Then we are going to have the required spline of the first degree 
푆 , = 푎 + 푎 푡, where 푎 = 푔 , 푎 = ∆ . 

The next step is to set the condition of continuous velocity all along the interval ∆ : 
푆̇ (푡 ) = 푆 ̇ (푡 ),                                             (9) 

where 푆 (푡) = ∑ 푎 푡 . 
It is necessary to fulfill the condition 푆 (푡 ) = 푆 (푡 ) to make the spline exist.     (10) 
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The spline should not be lower than the second degree to fulfill the condition (9). 
However, at most 2푛 coefficients can be calculated from the system of equations (9) 
and (10). If we find 푔̇ = ∆  acceptable, then we can rewrite equation (9) as: 

푆	̇ (푡 ) = ∆ ,                                                      (11) 
푆	̇ (푡 ) = ∆ ,                                                   (12) 

Taking into consideration that the given spline 푆 ,  is local, we can determine its 
coefficients by the values of 푔 , 푔 , 푔 . Let us assume 

푎 = 푘 푔 + 푘 푔 + 푘 푔 ,                                  (13) 
where  푘 , 푘 , 푘  are some constants. 

From equations (11), (12) we can calculate 푎 = ∆ , 푎 = 0,5	∆ . If we put 
푎 , 푎 , 푎 	 into equation (10), then we have: 

(푘 + 0,5)푔 + 푘 푔 + (푘 − 0,5)푔 = 푘 푔 + 푘 푔 + 푘 푔 .    (14) 
The expression (14) becomes an identity if the coefficients are equal in both parts of the 

equation under the following condition: 푔 , 푔 , 푔 , 푔 . Then 푘 = 0, 	푘 = 0,5, 	푘 =
0,5, end 푎 = 0,5(푔 + 푔 ). The resulted spline 푆 ,  is an approximating one. 

Constructing an interpolating spline that ensures the trajectory passing through the 
set of nodes with the given value of derivatives 푔̇  in the nodes, the system of equations 
(7), (8) ought to be added with the equations: 

 푎 = 푔̇ ,                                                      (15) 
∑ 푗푎 = 푔                                                  (16) 

Taking into account that the resulted system has 4푛 equations, we can construct a 
third degree spline of defect 2 (under condition that 푚 = 3): 

푎 = 푔 ;	푎 = 푔̇ ;	푎 = 3∆ − 푔 ̇ + 2푔̇ ;	푎 = −2∆ + 푔 ̇ + 푔̇    (17) 
If the value of derivatives at the nodal points is not determined, the interpolating 

spline 푆 ,  can be constructed in accordance with the condition (11). Then we have 
푎 = 푔 ;	푎 = ∆ ;	푎 = 2∆ ;	푎 = −∆  from the expressions of the equation (17). 

The next step is to construct a spline that ensures continuity of the second deriva-
tive of the trajectory: 

푆 ̈ (푡 ) = 푆̈ (푡 ).                                             (18) 
Obviously, in this case the conditions (9) and (10) are fulfilled. The degree of the 

spline, which ensures fulfillment of the condition (18) should not be lower than the 
third. We can obtain the fourth equation under the following condition:  

푆̈ (푡 ) = ∆                                                     (19) 
From the equations (18) and (19) we have 푎 = 0,5∆ ;		푎 = ∆ . Taking into 

account 푎 = 푘 푔 + 푘 푔 + 푘 푔  and substituting 푎 , 푎 , 푎  in the equation 
(9), we obtain 0,5푔 + (푘 − 0,5)푔 + (푘 − 0,5)푔 + (푘 − 0,5)푔 =
푘 푔 + 푘 푔 + 푘 푔 , where 푘 = 0,5; 푘 = 0; 푘 = −0,5 and 푎 = 0,5(푔 −
푔 ). In an analogical manner we calculate 푎 = (푔 + 4푔 + 푔 ) from the 
equation (10). The resulted spline 푆 ,  is an approximating one.  

The next task is to construct an interpolating spline that ensures a movement with 
the set speed 푔̇  and acceleration 푔̈  in the nodal points. If we need to determine the 
coefficients of this spline the equations (7), (8), (15) and (16) can be added with the 
next ones:                                            2푎 = 푔̈ ,                                                        (20) 

∑ 푗(푗 − 1)푎 = 푔 ̈ .                                          (21) 
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As a result, the coefficients 푎  of the fifth degree spline of defect 3 have been ob-
tained: 푎 = 푔 , 푎 = 푔̇ , 푎 = 0,5푔̈ , 푎 = 0,5푔 ̈ − 1,5푔̈ − 4푔 ̇ − 6푔̇ +
10∆ , 푎 = −푔 ̈ + 1,5푔̈ + 7푔 ̇ + 8푔̇ − 15∆ , 푎 = 0,5푔 ̈ − 0,5푔̈ −
3푔 ̇ − 3푔̇ + 6∆ . 

Using the obtained spline 푆 ,  is appropriate when links of the manipulator are 
equipped with acceleration sensors that generate the value 푔̈ . If the manipulating de-
vice is equipped only with position and velocity sensors it is appropriate to take that 
푔̈ = 푔 ̇ − 푔̇ . Then:  

푎 = 0,5(푔 ̇ − 푔 ̇ ) 
푎 = 0,5푔 ̇ − 6푔 ̇ − 4,5푔̇ + 10∆  
푎 = −푔 ̇ + 9,5푔 ̇ + 6,5푔̇ − 15∆  
푎 = 0,5푔 ̇ − 4푔 ̇ − 2,5푔̇ + 6∆  

3. Conclusion 
Approximating splines should be used when it is necessary to only ensure continu-

ity of programmed movement or its derivatives. Under this condition the degree of an 
approximating spline is lower than the degree of an interpolating spline having the 
same degree of trajectory smoothness. 

The results show that the proposed method of a trajectory formation ensures a 
smooth movement of HCT and their impactless contact at a point of positioning. 
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М. В. КІНДРАЧУК, В. М. НИГОРА, І. М. БІЛЕЦЬКИЙ 

ГЕОМЕТРИЧНЕ МОДЕЛЮВАННЯ ТРАЄКТОРІЇ СКЛАДНОГО РУХУ 
 МАНІПУЛЯЦІЙНИХ ГІДРООЧИЩУВАЛЬНИХ ОРГАНІВ 

Виконано моделювання траєкторії складного руху маніпуляційних гідроочищувальних 
органів з використанням локальних сплайн-функцій. Важливо підкреслити, що вищезга-
дані функції не вимагають попереднього аналітичного визначення коефіцієнтів сплайну 
та забезпечують просте технічне виконання. 

Ключові слова: гідроструминний виконавчий орган, складна траєкторія, маніпулятор, 
сплайн – функції, позиціонування, ступінь плавності руху, вузлові точки простору. 
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