# Буріння свердловин

УДК 622.24

# АЛГОРИТМ ПОРІВНЯННЯ ЗНАЧЕНЬ СПЕКТРАЛЬНОЇ ЩІЛЬНОСТІ ДИНАМІЧНОЇ СКЛАДОВОЇ ОСЬОВОЇ СИЛИ НА ДОЛОТІ ЗА РІЗНОЇ ШИРИНИ ФІЛЬТРАЦІЙНОГО ВІКНА

В. М. Мойсишин, В. В. Рис, Б. Д. Борисевич, І. М. Гураль

Івано-Франківський національний технічний університет нафти і газу; 76019, м. Івано-Франківськ, вул. Карпатська, 15; тел. +380 (3422) 4-21-23; e-mail: math @ nung. edu. ua

За результатами експериментальних досліджень зміни осьової динамічної сили на вибої свердловини встановлено, що між шириною фільтраційного вікна  $B_E$ , яке використовується під час визначення спектральної щільності, і значеннями цієї щільності, існує емпірична кореляційна залежність  $\overline{K}_{B_E} = f(B_E)$ , ймовірність існування якої більша за 0,98. Визначається середнє значення похибки між оцінками дисперсій експериментальних досліджень і дисперсіями, обчисленими з використанням залежності  $\overline{K}_{B_E} = f(B_E)$ . За середнім значенням похибки, що не перевищує 10%, вибирається інтервал значень  $B_E$ , для якого значення спектральної щільності порівнюються.

**Ключові слова:** стендові експериментальні дослідження, осьова динамічна сила, випадковий процес, стаціонарність, ергодичність, автокореляційна функція, спектральна щільність, фільтраційні вікна, емпірична кореляційна залежність.

# Вступ

Руйнування гірської породи під дією осьового навантаження на шарошкове долото – основний процес буріння нафтових та газових свердловин. Шарошкове долото рухаючись нерівною поверхнею вибою свердловини здійснює вертикальні переміщення, які породжують осьову динамічну силу  $F_{duh}$ . Загальне осьове навантаження на долото можна подати сумою двох складових: статичної  $F_{oc.cm}$  і динамічної  $F_{duh}$ , яка в процесі буріння може приймати як додатні так і від'ємні значення. Отже,

$$F_{oc} = F_{oc.cm} \pm F_{\partial u \mu}.$$
 (1)

Осьова динамічна сила (зокрема при розбурюванні твердих порід) може перевищувати  $F_{oc.cm}$  до 3,5 разів. Величина  $F_{\partial u h}$  визначає не тільки характер динамічного руйнування породи, але й динамічні напруження у вузлах та деталях бурильної колони і, як наслідок, їх довговічність.

Процес зміни осьової динамічної сили в часі представляє собою випадкову функцію, тобто функцію, яка в результаті досліду може прийняти той чи інший конкретний вид, який не можливо наперед передбачити. Згідно [2] емпіричний закон розподілу миттєвих значень  $F_{duh}$  з ймовірністю 0,95 відповідає нормальному, а сама функція є стаціонарною та ергодичною.

Основною статистичною характеристикою випадкового центрованого стаціонарного ергодичного процесу, яким є процес зміни осьової динамічної сили в часі, є автокореляційна функція, безпосередня оцінка якої для вибірки значень  $F_{duh}$  об'єму N визначається за формулою

$$R_{r} = R_{F_{\partial uu}}(rh) = \frac{1}{N-r} \sum_{n=1}^{N-r} F_{\partial uu.n} \cdot F_{\partial uu.n+r}, r = 0, 1, 2, 3...m,$$
(2)

де т – число кроків автокореляційної функції.

Величина часового зсуву, віддаль по осі *t* від початку відліку, становить *rh*, де *r* – номер кроку функції.

Максимальна величина часового зсуву

$$\tau = mh. \tag{3}$$

Похідною характеристикою від автокореляційної функції є спектральна щільність, яка характеризує частотний спектр випадкового процесу. Згідно [3] спектральна щільність – це розподіл потужності процесу зміни  $F_{\partial uh}$  по частотних складових спектра.

Для визначення спектральної щільності через кореляційну функцію використовується інтеграл Фур'є, який представляє собою суму гармонічних коливань з безперевним спектром.

Визначення спектральної щільності через кореляційну функцію є відомим стандартним методом, який іноді ще називають методом Блекмана і Тьюкі. Таким чином,

$$S_{F_{\partial uu}}(f) = 4 \int_{0}^{\infty} R_{F_{\partial uu}}(\tau) \cos 2\pi f \tau \, d\tau \,. \tag{4}$$

Дискретний аналог залежності (4) має вигляд

$$S_{F_{\partial uu}}(f) = 2h \left[ R_0 + 2\sum_{r=1}^{m-1} R_{F_{\partial uu}} \cos\left(\frac{\pi r f}{f_{3p}}\right) + R_r \cos\left(\frac{\pi r f}{f_{3p}}\right) \right], \quad (5)$$

де  $R_0$  – оцінка дійсного середнього значення квадрата значень випадкового процесу; h – крок дискретизації;  $R_r$  – оцінка автокореляційної функції для кроку r;  $f_{3p}$  – частота зрізу.

Значення  $R_0$  і  $f_{_{3p}}$  визначають за формулами:

$$R_0 = R_{F_{\partial u n}}(0) = \frac{1}{N} \sum_{n=1}^{N} (F_{\partial u n, n})^2, \qquad (6)$$

$$f_{3p} = \frac{1}{2h}.\tag{7}$$

#### Постановка задачі дослідження

Недоліком спектрального аналізу є його непараметричність, тобто відсутність можливості загальної оцінки параметрів кривої спектральної щільності. Оцінка спектральної щільності здійснюється по кожній координаті окремо [1]. Кожна координата спектральної щільності має, не залежно від довжини реалізації, тільки два степеня вільності. Обґрунтованість оцінки спектральної щільності досягається згладжуванням спектра за допомогою функцій, які називають спектральними вікнами. До найбільш поширених спектральних вікон відносять вікно Бартлета. Зрізане згладжування здійснюється за формулами

$$S_{F_{\partial uu}}(\omega_i) = \frac{1}{2\pi} \left[ R_0 + 2\sum_{r=1}^m \lambda_r R_{F_{\partial uu}}(\tau) \cos \omega_i \tau \right],$$
(8)

$$\lambda_{\tau} = 1 - \tau / m; \ 1 \le \tau \le m.$$
<sup>(9)</sup>

Дисперсія під час застосування цього вікна пропорційна виразу  $\frac{2}{3} \cdot \frac{m}{N}$ , число степенів вільності —  $\frac{2N}{m}$ . З ростом довжини реалізації збільшується *N*. Під час цього оцінка дисперсії падає, тобто стає обґрунтованою. Згідно формул (8) і (9) параметри спектрального вікна визна-

чаються числом кроків автокореляційної функції *m*. При зменшенні m покращується точність оцінки, але погіршується розділювальна здатність (збільшується ширина пропускання фільтра), тобто під час вибору величини вікна потрібно шукати розумний компроміс. За [1] пропонується наступний алгоритм проведення спектрального аналізу:

1. Для вибірки значень випадкової величини визначити автокореляційну функцію;

2. Методом Фур'є-перетворення для вибраного типу спектрального вікна одержати графіки спектральної щільності потужності процесу зміни випадкової величини під час використання різних значень кроку автокореляційної функції. На основі аналізу одержаних графіків вибрати таке значення m, яке, на думку експериментатора, найповніше характеризує внутрішню структуру процесу зміни випадкової величини.

Такий алгоритм є недосконалим, оскільки за результатами досліджень, проведених за неоднакових умов, часто приходиться аналізувати спектральні щільності, одержані з використанням різних величин фільтраційного вікна, а цей алгоритм не дозволяє порівнювати (співставляти) значення таких щільностей. Для порівняння значень спектральної щільності, одержаних за різних величин фільтраційного вікна, нами пропонується наступний алгоритм:

1. Для різних умов проведення експериментальних досліджень визначити автокореляційні функції і методом Фур'є-перетворення одержати графіки спектральної щільності за використання різних величин фільтраційного вікна (число значень не менше п'яти, *n*≥5.

2. Підібрати емпіричні кореляційні залежності  $S_{f,i} = f(B_E)$ , де  $S_{f,i}$  – оцінка дисперсії на частоті  $f_i$  гармонічної складової спектральної щільності,  $B_E$  – ширина фільтраційного вікна.

3. За ймовірності існування емпіричних залежностей  $S_{f,i} = f(B_E)$ більшої за 0,9 пропонується ввести безрозмірний коефіцієнт  $K_{B_E}$ , який враховує зменшення оцінкового значення спектральної щільності зі збільшенням величини фільтраційного вікна і визначається за відно- $S_{f,B_E}$ 

шенням  $\frac{S_{f.B_{E.n}}}{S_{f.B_{E.min}}}$ , де  $S_{f.B_{E.min}}$  – оцінкове значення спектральної щільнос-

ті, визначене за використання фільтраційного вікна з найменшою шириною (*n*=1).

4. Визначення статистичних характеристик вибірок значень  $K_{B_E}$  для всіх гармонічних складових спектра. Для скорегованих (одержаних після видалення артефактів) середніх значень вибірок визначається найкращий вид апроксимуючої залежності  $\overline{K}_{B_E} = f(B_E)$ .

5. Визначається середнє значення похибки між оцінками дисперсій експериментальних досліджень і дисперсіями, обчисленими із використанням залежності  $\overline{K}_{B_E} = f(B_E)$ . За середнім значенням похибки, що не перевищує 10%, вибирається інтервал значень  $B_E$ , для якого значення спектральної щільності порівнюються

# Приклад використання запропонованого алгоритму

Під час експериментальних досліджень процесу зміни осьової динамічної сили на долоті, де змінним фактором була жорсткість компонування бурильного інструменту, яка встановлювалась на двох рівнях, було одержано 16-ть реалізацій: для реалізацій №1…8 жорсткість Cскладала 225 кН/м, а для реалізацій №9…16 жорсткість С дорівнювала 6000кН/м. За цими реалізаціями було обчислено спектральну щільність за різної ширини (роздільної здатності) фільтраційного вікна. Графіки спектральної щільності потужності процесу зміни осьової динамічної сили на долоті одержані для 8-ми значень числа кроків m автокореляційної функції (25; 50; 75; 100; 125; 150; 175; 200).

Роздільна здатність (ширина фільтраційного вікна) визначалась за формулою

$$B_E = \frac{1}{mh}, \, \Gamma \mathfrak{r} \mathfrak{r}$$
(10)

де h – крок дискретизації безперервного запису осьової динамічної сили, h=0,002 с.

Таблиця 1. Значення числа кроків авто кореляційної функції т і ширини фільтраційного вікна *B<sub>E</sub>* 

| т     | 25 | 50 | 75   | 100 | 125 | 150  | 175  | 200 |
|-------|----|----|------|-----|-----|------|------|-----|
| $B_E$ | 20 | 10 | 6,67 | 5   | 4   | 3,33 | 2,86 | 2,5 |

В табл. 2 наведені значення оцінки дисперсій на частотах  $f_i$  гармонічних складових спектра потужності процесу зміни осьової динамічної сили на долоті.

Таблиця 2. Значення спектральної щільності  $S_f$ ,  $H^2$ 

| N       | èp    | 1     | 2     | 3      | 4      | 5      | 6      | 7      | 8      |
|---------|-------|-------|-------|--------|--------|--------|--------|--------|--------|
| Ŀ       | $B_E$ | 20    | 10    | 6,67   | 5      | 4      | 3,33   | 2,86   | 2,5    |
| $f_i$ , | 6,65  | 25832 | 41435 | 54925  | 69380  | 78895  | 91542  | 102985 | 104792 |
|         | 20    | 12357 | 17929 | 22284  | 26138  | 29149  | 32281  | 35172  | 37821  |
|         | 27    | 22567 | 27222 | 29751  | 30715  | 32642  | 34569  | 36978  | 38303  |
| Гп      | 40    | 30956 | 39990 | 49867  | 59623  | 67934  | 74679  | 80702  | 85399  |
| ,       | 70    | 17947 | 24211 | 29992  | 33967  | 36617  | 36978  | 40110  | 42158  |
|         | 92    | 5245  | 6099  | 6660   | 7227   | 7347   | 7588   | 7950   | 8432   |
| №p      | 9     | 10    | 11    | 12     | 13     | 14     | 15     | 16     |        |
| $B_E$   | 20    | 10    | 6,67  | 5      | 4      | 3,33   | 2,86   | 2,5    |        |
|         | 2,22  | 42651 | 48250 | 52998  | 54584  | 56250  | 55407  | 60105  | 64802  |
| f       | 20    | 61911 | 91181 | 121534 | 144420 | 161523 | 162126 | 181518 | 198622 |
| $J_i$ , | 40    | 12060 | 21801 | 28788  | 36015  | 42880  | 50469  | 58180  | 66970  |
| ΙЦ      | 70    | 32281 | 36737 | 47096  | 56371  | 65886  | 74920  | 82147  | 87808  |
|         | 88    | 2088  | 2964  | 3638   | 4336   | 4577   | 5059   | 5541   | 6143   |

На рис. 1 і 2 зображено спектральні щільності осьової динамічної сили, одержані за різної ширини спектрального вікна  $B_E$  (2,5; 5 і 10 Гц).

Згідно цих рисунків, незалежно від жорсткості компонування бурильного інструменту, із зменшенням величини  $B_E$  збільшується оцінкове значення спектральної щільності на гармонічних складових спектра та кількість гармонічних складових. За жорсткості 225 кН/м із зменшенням ширини вікна від 20 Гц до 2,5 Гц кількість цих складових зросла від 6 до 9, а за жорсткості 6000 кН/м – від 5 до 10.

В табл. З наведено емпіричні кореляційні залежності  $S_{f,i} = f(B_E)$  та результати перевірки умов задовільної апроксимації цими залежностями значень спектральної щільності.



1 – реалізація 8,  $B_E$ =2,5Гц; 2 – реалізація 5,  $B_E$ =5Гц; 3 – реалізація 2,  $B_E$ =10Гц

Рис. 1. Спектральна щільність потужності процесу зміни осьової динамічної сили для компонування бурильного інструменту жорсткістю 225 кН/м

Згідно даних табл. З ймовірність існування емпіричних залежностей  $S_{f,i} = f(B_E)$  для гармонічних складових спектра всіх 16-ти реалізацій більша за 0,98.



Рис. 2. Спектральна щільність потужності процесу зміни осьової динамічної сили для компонування бурильного інструменту жорсткістю 6000 кН/м

Далі за відношенням  $\frac{S_{f.B_{E.n}}}{S_{f.B_{E.min}}}$  знаходимо безрозмірний коефіцієнт

 $K_{B_E}$ , де  $S_{f.B_{E.min}}$  – оцінкове значення спектральної щільності, визначене за використання фільтраційного вікна з найменшою шириною (*n*=1).

Наприклад, згідно табл. 2 для 7-мої реалізації та частоти 6,65 Гц оцінкове значення спектральної щільності – 102985 H<sup>2</sup>. Ширина фільтраційного вікна для цього значення становить 2,86 Гц, для нашого прикладу n=2. Оцінкове значення спектральної щільності на цій частоті для найменшої ширини рівне 104792  $H^2$ . Для вікна  $B_E=2,86$  Гц значен-

ня безрозмірного коефіцієнта 
$$K_{B_E.7.2} = \frac{S_{f.B_{E.1}}}{S_{f.B_{E.min}}} = \frac{102985}{104792} = 0,9828.$$

Таблиця 3. Результати підбору залежностей  $S_{f,i} = f(B_E)$  та перевірка умов задовільної апроксимацій ними значень спектральної щільності

| №<br>реал. | <i>f</i> <sub>i</sub> ,<br>Гц                                                 | Емпіричні залежності                         | Вибіркове<br>значення<br>коефіцієнта<br>кореляції | Перевірка<br>умови<br>$\sigma_0 < 0.1 \overline{S}_{f.i}$ |  |  |  |  |  |  |
|------------|-------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------|-----------------------------------------------------------|--|--|--|--|--|--|
|            | 6,65                                                                          | $S_{f.l} = 20781, 2 \cdot B_E^{-0.6959486}$  | -0,8856<br>P>0,99                                 | 2383<7122                                                 |  |  |  |  |  |  |
|            | 20                                                                            | $S_{f.2} = 61735,82 \cdot B_E^{-0.53698}$    | -0,8990<br>P>0,99                                 | 94<2664                                                   |  |  |  |  |  |  |
|            | 27                                                                            | $S_{f.3} = 46916, 4 \cdot B_E^{-0,2443095}$  | -0,9115<br>P>0,99                                 | 665<3159                                                  |  |  |  |  |  |  |
| 18         | 40                                                                            | $S_{f.4} = 135793, 6 \cdot B_E^{-0.5089647}$ | -0,8801<br>P>0,99                                 | 1359<6114                                                 |  |  |  |  |  |  |
|            | 70                                                                            | $S_{f.5} = 62671,97 \cdot B_E^{-0.4085451}$  | -0,9415<br>P>0,999                                | 1076<3275                                                 |  |  |  |  |  |  |
|            | 92                                                                            | $S_{f.6} = 10065, 31 \cdot B_E^{-0,2175874}$ | -0,9274<br>P>0,999                                | 1114<707                                                  |  |  |  |  |  |  |
|            | 2,22                                                                          | $S_{f.l} = 72685,02 \cdot B_E^{-0,1779481}$  | -0,8977<br>P>0,99                                 | 1759<5791                                                 |  |  |  |  |  |  |
| 9 16       | 20                                                                            | $S_{f.2} = 333898, 6 \cdot B_E^{-0.5545269}$ | -0,9181<br>P>0,99                                 | 5963<14035                                                |  |  |  |  |  |  |
| 210        | 40                                                                            | $S_{f.3} = 134782, 6 \cdot B_E^{-0,8057328}$ | -0,8491<br>P>0,98                                 | 1196<3965                                                 |  |  |  |  |  |  |
|            | 70                                                                            | $S_{f.4} = 135577, 4 \cdot B_E^{-0.5183398}$ | -0,8294<br>P>0,98                                 | 3395<6041                                                 |  |  |  |  |  |  |
|            | 88                                                                            | $S_{f.5} = 9495,453 \cdot B_E^{-0,5055979}$  | -0,8965<br>P>0,998                                | 104<429                                                   |  |  |  |  |  |  |
| При        | Прим.: Р – ймовірність кореляційного зв'язку між значеннями $S_{f.i}$ і $B_E$ |                                              |                                                   |                                                           |  |  |  |  |  |  |

Значення безрозмірного коефіцієнта  $K_{B_E}$ , обчислені для всіх 16-ти реалізацій, наведені в табл. 4.

В табл. 5 наведені статистичні характеристики вибірок значень безрозмірного коефіцієнта  $K_{B_E}$ , згруповані за шириною фільтраційного вікна. Виділені значення в табл. 4 – артефакти, вони відбраковуються. Графік одержаної залежності зображено на рис. 3.

Таблиця 4. Значення безрозмірного коефіцієнта  $K_{B_E}$  для всіх гармонічних складових спектральної щільності 16-ти реалізацій

| №.реал.                 | 8   | 7              | 6      | 5      | 4      | 3      | 2      | 1      |
|-------------------------|-----|----------------|--------|--------|--------|--------|--------|--------|
| n                       | 1   | 2              | 3      | 4      | 5      | 6      | 7      | 8      |
| $f_i$ ,Гц $B_{E,i}$ ,Гц | 2,5 | 2,86           | 3,33   | 4      | 5      | 6,67   | 10     | 20     |
| 6,65                    | 1   | 0,9828         | 0,8736 | 0,7529 | 0,6621 | 0,5241 | 0,3954 | 0,2465 |
| 20                      | 1   | 0,9300         | 0,8535 | 0,7707 | 0,6911 | 0,5892 | 0,4740 | 0,3267 |
| 27                      | 1   | 0,9654         | 0,9025 | 0,8522 | 0,8019 | 0,7767 | 0,7107 | 0,5892 |
| 40                      | 1   | 0,9450         | 0,8745 | 0,7955 | 0,6982 | 0,5839 | 0,4693 | 0,3625 |
| 70                      | 1   | 0,9514         | 0,8771 | 0,8686 | 0,8057 | 0,7114 | 0,5743 | 0,4257 |
| 92                      | 1   | 0,9428         | 0,8999 | 0,8713 | 0,8571 | 0,7898 | 0,7233 | 0,622  |
| №.реал.                 | 16  | 15             | 14     | 13     | 12     | 11     | 10     | 9      |
| n                       | 1   | 2              | 3      | 4      | 5      | 6      | 7      | 8      |
| $f_i$ ,Гц $B_{E.i}$ ,Гц | 2,5 | 2,86           | 3,33   | 4      | 5      | 6,67   | 10     | 20     |
| 2,22                    | 1   | 0,9275         | 0,8550 | 0,8680 | 0,8423 | 0,8178 | 0,7464 | 0,6582 |
| 20                      | 1   | 0,9139         | 0,8162 | 0,8132 | 0,7271 | 0,6119 | 0,4591 | 0,3117 |
| 40                      | 1   | <b>0,868</b> 7 | 0,7536 | 0,6403 | 0,5378 | 0,4299 | 0,3255 | 0,180  |
| 70                      | 1   | 0,9355         | 0,8532 | 0,7503 | 0,6420 | 0,5364 | 0,4184 | 0,3676 |
| 88                      | 1   | 0,9020         | 0,8235 | 0,7451 | 0,7058 | 0,5922 | 0,4825 | 0,3399 |

Таблиця 5. Статистичні характеристики вибірок значень безрозмірного коефіцієнта  $K_{B_{\rm F}}$ 

| В <sub>Е.і</sub> ,<br>Гц | $\overline{K}_{B_E}$ | D      | $\sigma$ | $t_{\kappa p}$ | Δ       | Скоригова-<br>ний об'єм | $\hat{\overline{K}}_{\scriptscriptstyle B_E}$ | $\hat{D}$ | $\hat{\sigma}$ |
|--------------------------|----------------------|--------|----------|----------------|---------|-------------------------|-----------------------------------------------|-----------|----------------|
| 2,86                     | 0,9332               | 0,001  | 0,031    | 1,372<br>β=0,8 | ±0,4442 | $\hat{n} = 9$           | 0,943                                         | 0,0004    | 0,0193         |
| 3,33                     | 0,853                | 0,0018 | 0,0427   | 1,372          | ±0,6119 | $\hat{n} = 10$          | 0,8629                                        | 0,0008    | 0,0286         |
| 4                        | 0,7935               | 0,0051 | 0,0714   | 1,372          | ±0,1023 | $\hat{n} = 10$          | 0,8088                                        | 0,0028    | 0,0528         |
| 5                        | 0,7246               | 0,0092 | 0,0958   | 1,372          | ±0,1373 | $\hat{n} = 10$          | 0,7433                                        | 0,0059    | 0,077          |
| 6,67                     | 0,633                | 0,0154 | 0,1243   | 1,372          | ±0,1781 | $\hat{n} = 9$           | 0,6351                                        | 0,0099    | 0,0994         |
| 10                       | 0,5252               | 0,0204 | 0,1429   | 1,372          | ±0,2048 | $\hat{n} = 10$          | 0,5032                                        | 0,0168    | 0,1297         |
| 20                       | 0,4027               | 0,0244 | 0,1561   | 1,372          | ±0,2237 | $\hat{n} = 10$          | 0,3772                                        | 0,0191    | 0,1381         |

Співставлення оцінкових значень спектральної щільності, одержаних за різних значень ширини спектрального вікна, з використанням залежності  $\overline{K}_{B_E} = 1,552 \cdot B_E^{-0,4753708}$ , здійснюється наступним чином:

1. Для кожної гармонічної складової щільності та ширини вікна, яка є більшою за  $B_{E,\min}$ , за залежністю  $\overline{K}_{B_E} = 1,552 \cdot B_E^{-0,4753708}$  обчислюється значення  $\overline{K}_{B_E}$ ;

2. Скореговане оцінкове значення спектральної щільності для цієї ширини фільтраційного вікна обчислюється за формулою –  $S_{f.i.c\kappa} = \frac{S_{f.i}}{\overline{K}_{p}}$ .



Наприклад, згідно даних табл. 2 для 7-мої реалізації та частоти гармонічної складової 6,65 Гц оцінкове значення спектральної щільності – 102985 Н<sup>2</sup>. Ширина фільтраційного вікна для цього значення становить 2,86 Гц. Для цього вікна  $\overline{K}_{B_E} = 1,552 \cdot B_E^{-0,4753708} = 1,552 \cdot 2,86^{-0,4753708} = 0,9418$ . Скореговане оцінкове значення спектральної щільності –  $S_{f.i.c\kappa} = \frac{S_{f.i}}{\overline{K}_{B_E}} \frac{102985}{0,9418} = 109349 H^2$ .

Таблиця 6. Значення спектральної щільності  $S_{f,i}$ , скорегованої спектральної щільності  $S_{f,i,c\kappa}$  та відновної похибки ВП%

| ſГ                        | №p                   | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      |
|---------------------------|----------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| J <sub>i</sub> ,1ц        | $B_E$                | 20     | 10     | 6,67   | 5      | 4      | 3,33   | 2,86   | 2,5    |
|                           | $S_{f.i}$            | 25832  | 41435  | 54925  | 69380  | 78895  | 91542  | 102985 | 104792 |
| 6,65                      | $S_{f.i.c\kappa}$    | 69141  | 79771  | 87226  | 96075  | 98256  | 104492 | 109249 | -      |
|                           | ВΠ%                  | -34,0  | -23,9  | -16,8  | -8,3   | -6,2   | -0,3   | 4,2    | 0      |
|                           | $S_{f.i}$            | 12357  | 17929  | 22284  | 26138  | 29149  | 32281  | 35172  | 37821  |
| 20                        | $S_{f.i.c\kappa}$    | 33074  | 34517  | 35389  | 36195  | 36302  | 36848  | 37350  | -      |
|                           | ВΠ%                  | -12,5  | -8,7   | -6,4   | -4,3   | -4,0   | -2,6   | -1,2   | 0      |
|                           | $S_{f.i}$            | 22567  | 27222  | 29751  | 30715  | 32642  | 34569  | 36978  | 38303  |
| 27                        | $S_{f.i.c\kappa}$    | 60402  | 52408  | 47247  | 42533  | 40652  | 39459  | 39264  | -      |
|                           | ВΠ%                  | 57,7   | 36,8   | 23,4   | 11,0   | 6,1    | 3,0    | 2,5    | 0      |
|                           | $S_{f.i}$            | 30956  | 39990  | 49867  | 59623  | 67934  | 74679  | 80702  | 85399  |
| 40                        | $S_{f.i.c\kappa}$    | 82856  | 76989  | 79193  | 82564  | 84605  | 85244  | 85691  | -      |
|                           | ВΠ%                  | -3,0   | -9,8   | -7,3   | -3,3   | -0,9   | -0,2   | 0,3    | 0      |
|                           | $S_{f.i}$            | 17947  | 24211  | 29992  | 33967  | 36617  | 36978  | 40110  | 42158  |
| 70                        | $S_{f.i.c\kappa}$    | 48036  | 46611  | 47630  | 47037  | 45603  | 42201  | 42590  | -      |
|                           | ВΠ%                  | 13,9   | 10,6   | 13     | 11,6   | 8,2    | 0,1    | 1,0    | 0      |
|                           | $S_{f.i}$            | 5245   | 6099   | 6660   | 7227   | 7347   | 7588   | 7950   | 8432   |
| 92                        | $S_{f.i.c\kappa}$    | 14039  | 11742  | 10577  | 10008  | 9150   | 8661   | 8441   | -      |
|                           | ВΠ%                  | 66,5   | 39,2   | 25,4   | 18,7   | 8,5    | 2,7    | 0,1    | 0      |
| f Eu                      | №p                   | 9      | 10     | 11     | 12     | 13     | 14     | 15     | 16     |
| <i>J</i> <sub>i</sub> ,1ц | $B_{E}$              | 20     | 10     | 6,67   | 5      | 4      | 3,33   | 2,86   | 2,5    |
|                           | $S_{f.i}$            | 42651  | 48250  | 52998  | 54584  | 56250  | 55407  | 60105  | 64802  |
| 2,22                      | $S_{f.i.c\kappa}$    | 114159 | 92892  | 84165  | 75586  | 70054  | 63245  | 63821  | -      |
|                           | ВΠ%                  | 76,2   | 43,3   | 30     | 16,6   | 8,1    | -2,4   | -1,5   | 0      |
|                           | $S_{f.i}$            | 61911  | 91181  | 121534 | 144420 | 161523 | 162126 | 181518 | 198622 |
|                           | $S_{f.i.c\kappa}$    | 165710 | 175543 | 193006 | 199989 | 201161 | 185061 | 192740 | -      |
|                           | ВΠ%                  | -16,6  | -11,6  | -2,8   | 0,6    | 1,3    | -6,8   | -3,0   | 0      |
|                           | $S_{f.i}$            | 12060  | 21801  | 28788  | 36015  | 42880  | 50469  | 58180  | 66970  |
|                           | $S_{f.i.c\kappa}$    | 32280  | 41972  | 45718  | 49873  | 53403  | 57609  | 61777  | -      |
|                           | ВΠ%                  | -51,8  | -37,3  | -31,7  | -25,5  | -20,2  | -14    | -7,8   | 0      |
|                           | $S_{f.i}$            | 32281  | 36737  | 47096  | 56371  | 65886  | 74920  | 82147  | 87808  |
|                           | $S_{f.i.c\kappa}$    | 86403  | 70727  | 74792  | 78061  | 82055  | 85519  | 87225  | -      |
|                           | ВП%                  | -1,2   | -19,4  | -14,8  | -11,1  | -6,6   | -2,6   | -0,7   | 0      |
|                           | $\overline{S}_{f.i}$ | 2088   | 2964   | 3638   | 4336   | 4577   | 5059   | 5541   | 6143   |
|                           | $S_{f.i.c\kappa}$    | 5589   | 5706   | 5777   | 6004   | 5700   | 5775   | 5884   | -      |
|                           | ВП%                  | -9,0   | -7,1   | -6,0   | -2,3   | -7,2   | -6,0   | -4,2   | 0      |

Відносна похибка по відношенню до оцінкового значення щільності, одержаного для мінімальної ширини вікна, визначається за форму-

лою – 
$$B\Pi\% = \frac{S_{f.B\min} - S_{f.i.c\kappa}}{S_{f.B\min}} \cdot 100 = \frac{104792 - 109249}{104792} \cdot 100 = 4,2\%$$
.

В табл. 6 наведено оцінкові спектральні щільності  $S_{f,i}$ , скориговані оцінкові значення спектральної щільності  $S_{f,i,c\kappa}$  та відносні похибки ВП% по відношенню до оцінкового значення щільності, одержаного для мінімальної ширини фільтраційного вікна, а в табл. 7 середні значення відносної похибки для різних значень ширини фільтраційного вікна.

Таблиця 7. Середні значення відносної похибки

| $B_{E}$     | 20   | 10   | 6,67 | 5    | 4   | 3,33 | 2,86 | 2.5 |
|-------------|------|------|------|------|-----|------|------|-----|
| Середні ВП% | 31,1 | 22,5 | 16   | 10,1 | 7,0 | 3,7  | 2,4  | 0   |

Згідно даних табл. 7 задовільним є порівняння оцінкових значень спектральної щільності за умови  $B_{E.max} = 2B_{E.min}$ . В цьому випадку середнє значення відносної похибки не перевищує 10%.

#### Висновки

1. Під час проведення спектрального аналізу, з метою одержання обґрунтованих оцінкових значень спектральної щільності, згладжують спектр за допомогою функцій, які називаються спектральними вікнами. Дисперсія під час застосування вікон, наприклад вікна Бартлета, пропорційна виразу  $\frac{2}{3} \cdot \frac{m}{N}$ , число ступенів вільності складає  $\frac{2N}{m}$ . З ростом довжини реалізації збільшується об'єм вибірки *N*. При цьому дисперсія оцінки падає, тобто оцінка стає обґрунтованою.

Параметри спектрального вікна визначаються числом кроків автокореляційної функції *m*. При зменшенні m покращується точність оцінки, але погіршується розділювальна здатність (збільшується ширина пропускання фільтра). Для порівняння значень спектральної щільності, одержаних за різних величин фільтраційного вікна, авторами запропонований алгоритм, який базується на емпіричних кореляційних залежностях  $S_{f,i} = f(B_E)$  і  $\overline{K}_{B_E} = f(B_E)$ .

2. За результатами експериментальних досліджень процесу зміни осьової динамічної сили на долоті було встановлено, що залежності  $S_{f.i} = f(B_E)$  і  $\overline{K}_{B_E} = f(B_E)$  – це степеневі функції, ймовірність існування яких більша за 0,98. Залежність  $\overline{K}_{B_E} = f(B_E)$  має вигляд:  $\overline{K}_{B_E} = 1,552 \cdot B_E^{-0.4753708}$ .

3. За середнім значенням похибки між оцінками дисперсій експериментальних досліджень і дисперсіями, обчисленими із використанням залежності  $\overline{K}_{B_E} = f(B_E)$  автори пропонують порівнювати оцінкові значення спектральних щільностей в інтервалі величин спектральних вікон, які відповідають умові  $B_{E.max} = 2B_{E.min}$ . Під час виконання цієї умови середнє значення відносної похибки не буде перевищувати 10%.

#### Література

1. Налимов В.В. Теория эксперимента / В.В.Налимов. – М.: Наука, 1974. – 208 с.

2. Мойсишин В.М. Статистичний аналіз результатів стендових експериментальних досліджень зміни осьової сили при бурінні долотом ІІІ-93С / В.М.Мойсишин, О.М.Лисканич, А.І.Масьовський // Прикарпатський вісник НТШ. Число. – 2015. – №1(29) – С. 232-249.

3. Стійкість і коливання бурильної колони / В.М.Мойсишин, Б.Д.Борисевич, Ю.Л.Гаврилів, С.А.Зінченко. – Івано-Франківськ: Лілея-НВ, 2013. – 590 с.

Стаття надійшла до редакційної колегії 25.01.2016 р. Рекомендовано до друку д.т.н., професором Векериком В.І., д.т.н., професором Кунцяком Я.В. (м. Київ)

#### ALGORITHM OF COMPARISON OF SPECTRAL CLOSENESS VALUES OF AXIAL DYNAMIC FORCE ON A BIT AT A DIFFERENT WIDTH OF FILTRATION WINDOW

V. M. Moisyshyn, V. V. Rys, B. D. Borysevych, I. M. Gural

Ivano-Frankivsk National Technical University of Oil and Gas; 76019, m. Ivano-Frankivsk, Carpathian str., 15; ph. +380 (3422) 72-71-31; e-mail: math@nung. edu. ua

As a result of experimental researches of change of axial dynamic force on mining holes are set, that between the width of filtration window which is used during determination of spectral closeness, and values of this closeness, there is empiric correlation dependence probability of existence of which is anymore after 0,98. The mean value of error between estimations of dispersions of experimental researches and dispersions calculated with the use of dependence is determined. According to the mean value of error whatever exceeds 10%, the interval of values VE gets out, for what value of spectral closeness are compared.

**Key words:** stand experimental researches, axial dynamic force, random process, stationary, ergodicity, autocorrelation function, spectral closeness, filtration windows, empirical correlation.