УДК 661. 52: 662. 2

ИНГИБИРОВАНИЕ ВЗАИМОДЕЙСТВИЯ ПИРИТА С АММИАЧНОСЕЛИТРЕННЫМИ ВЗРЫВЧАТЫМИ ВЕЩЕСТВАМИ

И. Л. Коваленко

Государственное высшее учебное заведение «Украинский государственный химико-технологический университет»

просп. Гагарина, 8, г. Днепропетровск, 49000, Украина.

E-mail: il-kovalenko@mail.ru

В. П. Куприн

ООО «Экком»

ул. В. Дубинина, 69, г. Днепропетровск, 49000, Украина.

E-mail: kuprinvp@mail.ru

Показана недостаточная эффективность использования карбамида и уротропина для ингибирования реакций пирита с аммиачной селитрой. Установлено, что исключить самопроизвольное разложение взрывчатого вещества при контакте с пиритом можно при использовании слабощелочных эмульсий (рН более 7,2), не содержащих гранулированную аммиачную селитру или ANFO. Технология сенсибилизации взрывчатого вещества не должна предусматривать подкисления до рH = 1-3 и высокой температуры.

Ключевые слова: аммиачная селитра, пирит, ингибирование.

ІНГІБІРУВАННЯ РЕАКЦІЙ ПІРИТУ З АМІАЧНОСЕЛІТРЕННИМИ ВИБУХОВИМИ РЕЧОВИНАМИ

І. Л. Коваленко

Державний вищий начальний заклад «Український державний хімікотехнологічний університет

просп. Гагаріна, 8, м. Дніпропетровськ, 49000. Україна.

E-mail: il-kovalenko@mail.ru

В. П. Купрін

ТОВ «Екком»

вул. В. Дубініна, 69, м. Дніпропетровськ, 49000. Україна.

E-mail: kuprinvp@mail.ru

Показана недостатня ефективність використання карбаміду та уротропіну для інігібірування реакцій піриту з аміачною селітрою. Встановлено, що виключення самочинного розкладу вибухової речовини при контакті з піритом можливе при використанні слабколужних емульсій (рН понад 7,2), які не містять гранульовану аміачну селітру або ANFO. Технологія сенсибілізації вибухової речовини не повинна передбачати підкислення до pH=1-3 і високої температури.

Ключові слова: аміачна селітра, пірит, інігібірування.

АКТУАЛЬНОСТЬ РАБОТЫ. Известно, что контакт агрессивных сульфидных пород с аммиачной селитрой и аммиачно-селитренными взрывчатыми ве-

ществами (ВВ) может привести к неуправляемым экзотермическим процессам и несанкционированному разложению скважинных зарядов. Основную опасность для применяемых взрывчатых материалов представляет пирит, которым представлено большинство сульфидных включений. Кроме того, пирит обладает наибольшей химической активностью по сравнению с пирротином, халькопиритом, борнитом и т.д.

Цель работы – исследовать возможность предотвращения самопроизвольного экзотермического разложения взрывчатых систем за счет ингибирования химических реакций взаимодействия пирита с аммиачной селитрой.

МАТЕРИАЛ И РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ. *Методика эксперимента* и материалы. Термический анализ осуществляли с помощью установки для дифференциально-термического анализа TERMOSKAN–2 (НПП «Аналитприбор», г. Санкт-Петербург), исследование кинетики выделения газов – с помощью газоанализатора Дозор–СМ (НПО «Орион», г. Харьков). В исследуемые системы вводили 1–5 % природного пирита, измельченного на воздухе, полифракционного состава с дисперсностью более 100 мкм.

Согласно многочисленным исследованиям экзотермическая деструкция аммиачной селитры (AC) описывается комплексом последовательно-параллельных реакций. В интервале температур 200-250 °C реакция идет преимущественно с образованием N_2O и NO, а при температурах выше 260 °C приобретает автокаталитический характер. Катализатором термолиза нитрата аммония является оксид азота(IV) [1], образующийся при термическом разложении азотной кислоты:

$$NH_4NO_3 = HNO_3 + NH_3, \tag{1}$$

$$2HNO_3 = 2NO_2 + 0.5O_2 + H_2O$$
, (2)

$$NH_4NO_3+2NO_2=2HNO_3+N_2+H_2O;$$
 (3)

Существенное увеличение температуры в скважине, необходимое для преодоления активационного барьера и реализации самоускоряющегося циклического механизма разложения, может происходить в результате непосредственного взаимодействия пирита (FeS₂) с аммиачной селитрой (стандартный тепловой эффект: Q_p =4810 кДж на 1 кг пирита):

$$2FeS_2+9NH_4NO_3 \rightarrow Fe_2(SO_4)_3+SO_2+4N_2O+2N_2+6NH_3+9H_2O$$
 (4)

Однако наиболее вероятным источником саморазогрева системы является взаимодействие пирита с азотной кислотой (Q_p =6320 кДж на 1 кг пирита) [2]:

$$3FeS_2 + 8HNO_3 = 6SO_2 + Fe_3O_4 + 4NO + 2N_2 + 4H_2O.$$
 (5)

Известно, что пластовые воды в пиритсодержащих породах имеют кислую реакцию (pH=1-2), что неизбежно приводит к образованию азотной кислоты и нитрозилсульфата при формировании заряда BB и пребывании его в массиве.

Измерения показали, что введение 1 % пирита в слабоминерализованную воду (0,1 % NaCl) снижает ее водородный показатель рН с 7,2 до 2,0. При этом стационарный электродный потенциал пирита приобретает значение E=0,21 В (относительно нормального водородного электрода) [2].

Как следует из диаграммы Пурбэ, для пирита и пирротина [3] поверхность сульфидных минералов при указанных значениях Е и рН частично покрыта серой, образующейся по реакциям:

$$FeS_2 + 2H_2O = HFeO_2^- + 3H^+ + 2S + 2e$$
 (6)

$$FeS_2 - 2e = Fe^{2+} + 2S.$$
 (7)

Однако полной пассивации поверхности пирита серой в кислых растворах не происходит из-за обратимых процессов ее восстановления:

$$S + 2H^+ + 2e = H_2S.$$
 (8)

Практически полная пассивация сульфидов железа происходит лишь в нейтральных и слабощелочных средах, когда их поверхность покрыта не только серой, но и оксидами железа (III) [4].

Анализ термического поведения аммиачной селитры в присутствии пирита говорит о каталитическом влиянии FeS_2 (рис. 1,а). Аналогичная картина наблюдается и при введении пирита в ANFO (гранулированная пористая аммиачная селитра омасленая горючим компонентом). При этом анализ выделяющихся газов показывает значительные концентрации оксидов азота, аммиака (рис. 1,б), а также сероводорода и диоксида серы. Такие продукты реакции характерны для взаимодействия разбавленной азотной кислоты с различными восстановителями, в частности с пиритом. Следует отметить, что даже незначительное увлажнение селитры (до 0,5 %) значительно интенсифицирует процесс — высота экзотермического максимума возрастает на 35 %, а общее количество выделившегося тепла — на 61 %.

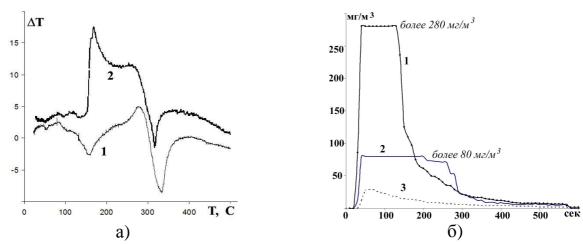


Рисунок 1 —Термограммы систем: a) 1— аммиачная селитра (AC), 2— AC/пирит; δ) выделение газов при контакте увлажненной аммиачной селитры (0,5 % воды) с пиритом (40 °C): $1-NO_2$, 2-NO, $3-NH_3$.

Анализ полученных экспериментальных данных позволяет предположить следующее суммарное уравнение взаимодействия [2]:

$$0.0923 \text{FeS}_2 + \text{NH}_4 \text{NO}_3 \rightarrow 0.04615 \text{ Fe}_2(\text{SO}_4)_3 + 0.04615 \text{ (NH}_4)_2(\text{SO}_4)_3 + 0.153858 \text{NO} + 0.14615 \text{NO}_2 + 0.80385 \text{N}_2 + 1.81558 \text{ H}_2 \text{O}$$
. (9)

Следует отметить, что реакции (4), (5), (9) реализуются не только при использовании смесевых BB, содержащих гранулированную аммиачную селитру (игданит, ANFO, граммонит, гранулиты и т.п.), но и в случае контакта пирита с аммиачно-селитреными эмульсионными BB (ЭВВ).

Традиционно [5], для предотвращения взаимодействия пирита с эмульсионными BB в их состав вводят мочевину (карбамид) и уротропин (гексаметилентетрамин), которые получили статус ингибиторов, обеспечивающих безопасность применения BB в сульфидных породах.

Действительно, введение карбамида в систему АС/пирит смещает начало экзотермической реакции в область более высоких температур (рис. 2,а). Стабилизирующее действие карбамида обусловлено связыванием оксидов азота как самим карбамидом, так и продуктами его разложения – биуретом и аммиаком [6].

Экспериментально установлено [5], что предельная концентрация карбамида в ВВ ограничена 4 % масс. Дальнейшее увеличение концентрации карбамида резко снижает энергетические и детонационные характеристики ВВ, что связано с торможением термодеструкции аммиачной селитры как окислителя ВВ за счет встречных эндоэффектов термолиза (рис. 2,б).

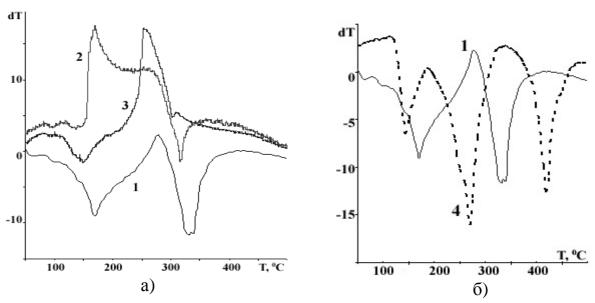


Рисунок 2 — Термограммы систем: 1— аммиачная селитра (AC); 2 - AC/пирит; 3 - AC/пирит/ карбамид (4 % масс.); 4—карбамид

Однако в указанных концентрационных пределах карбамид не обеспечивает необходимой степени безопасности, и продолжительность его защитного действия в зависимости от обводненности, проточности и рН пластовых вод, может составлять от десятка минут до нескольких часов.

В отличие от карбамида уротропин (гексаметилентетрамин) не оказывает флегматизирующего действия на термолиз аммиачной селитры как окислителя

и за счет термоокисления положительно влияет на экзотермичность процесса (рис. 3,а). При этом введение 4 % уротропина в систему АС/пирит оказывает значительно больший ингибирующий эффект, чем карбамид (рис. 3,б).

Уротропин $(CH_2)_6N_4$ как органическое основание (третичный амин) способен нейтрализовывать накапливающуюся кислоту, и в кислых средах способен гидролизовать [7] с образованием формальдегида.

При нагревании уротропина с серосодержащими материалами образуется сероводород, при контакте которого с горячими растворами уротропина и продукта его гидролиза – формальдегида – образуются тритиан и метатиоформальдегид [17] – устойчивые, инертные вещества нерастворимые в воде. Эти вещества способны блокировать поверхность пирита и предотвращать контакт с аммиачной селитрой.

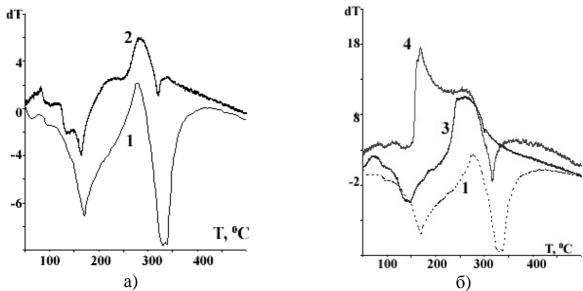


Рисунок 3 – Термограммы систем: 1– аммиачная селитра (AC); 2– AC/уротропин (4 % масс.); 3– AC/пирит/ уротропин (4 % масс.); 4– AC/пирит

Однако следует отметить, что механизм ингибирующего действия уротропина, как и карбамида, базируется на собственном гидролизе и разложении. При этом уротропин, являясь восстановителем, во взрывчатой системе выступает как горючий компонент, и увеличение его концентрации выше 4 % масс. невозможно из-за нарушения стехиометричности состава (кислородного баланса).

Экспериментально установлено, что введение 4 % масс. уротропина не может обеспечить продолжительного ингибирования реакций пирита с аммиачно-селитренными BB.

По результатам комплекса термодинамических расчетов и кинетических исследований можно с уверенностью констатировать, что одним из главных факторов, определяющих опасность самопроизвольной деструкции аммиачной селитры при контакте с сульфидами, является степень кислотности системы (рН). Чем меньше значение рН, тем выше термодинамическая вероятность самоускоряющегося процесса разложения нитрата аммония. Наибольшая инертность

природных сульфидов наблюдается только в нейтральных либо слабощелочных средах, что обусловлено отсутствием инициирующих факторов и практически полной пассивацией поверхности сульфидных минералов.

Установлено, что исключить вероятность самопроизвольного взаимодействия с сульфидсодержащими породами можно при использовании эмульсионных BB, в которых раствор окислителя и сама эмульсия имеет слабощелочную реакцию и не содержит гранулированную аммиачную селитру и/или ANFO. Кроме того, технология получения ЭВВ должна предусматривать такой способ сенсибилизации, который не требует подкисления до pH = 1-3 и высокой температуры.

Указанный подход был реализован при разработке эмульсионного ВВ Украинит ПП–2 (ТУ У 20.5–32613399–002:2012), основа которого представляет обратную эмульсию бинарного раствора кальциевой и аммиачной селитр в горючем компоненте. Для сенсибилизации эмульсионной основы был разработан так называемый «пероксидный способ» – в эмульсию в процессе заряжания впрыскивается 1 %-ный водный раствор неорганического пероксида, который, разлагаясь, насыщает эмульсию микропузырьками кислорода. Украинит ПП–2 не содержит гранулированную аммиачную селитру и имеет слабощелочную реакцию (рН=7,8–8,4). Термические исследования действия измельченного природного пирита на Украинит ПП–2 показали его высокую стабильность и полное отсутствие саморазогрева [2].

Для оценки реакционной активности и способности к саморазложения ЭВВ при контакте с пиритом были проведены сравнительные испытания Украинита ПП–2 и ЭВВ, применяемых в России для дробления сульфидсодержащих пород: Фортис–80 (Dyno Nobel, Orica) – содержит 20 % гранулированной аммиачной селитры; Фортис С–80 – содержит дополнительно до 6 % масс. карбамида; Тован–60 (ЕТІ) – содержит 40 % ANFO; Поремит–С (ОАО «ГосНИИ «Кристалл») – содержит 4–6 % масс. карбамида.

Результаты испытаний работоспособности, термической устойчивости, анализ состава и количества, выделяющихся при контакте с пиритом газов, показали, что разработанный подход к созданию эмульсионных ВВ повышенной безопасности для использования в пиритсодержащих массивах, обеспечивает получение ВВ, которое по безопасности и детонационным параметрам превосходит аналоги ведущих зарубежных фирм (табл. 1, 2).

Таблица 1– Количество газов, выделяющихся при контакте эмульсионных ВВ с пиритом (40 °C)

ЭВВ	рН	Количество газов, мг/ кг ВВ			
		NO	NO_2	H_2S	SO_2
Фортис–80 (без мочевины) – Dyno Nobel, Orica	2,0-3,0	128,52	70,60	52,11	2,75
Фортис C-80 (с мочевиной) – Dyno Nobel, Orica	2,0-3,0	95,75	1,056	19,94	0
Тован 60–ЕТІ	4,0-5,0	153,53	129,91	7,68	0
Украинит ПП-2	7,8–8,4	5,94	0	1,01	0

Таблица 2 – Скорость детонации открытого заряда (100 мм)

	1 ' ' '		
ЭВВ	Скорость детонации, м/с		
Украинит ПП-2	5107-5211		
Фортис C– 80 (с мочевиной) – Dyno Nobel, Orica	4878–4886		
Тован 60-ЕТІ	4300–4500		
Поремит С (с мочевиной) – ОАО «ГосНИИ «Кристалл»	4800–5000		

ВЫВОДЫ. Применяемые в настоящее время «ингибиторы» взаимодействия пирита с аммиачной селитрой (карбамид и уротропин) не обеспечивают достаточного торможения процесса. Исключить вероятность самопроизвольного разложения ВВ при контакте с пиритом можно при использовании слабощелочных или нейтральных ЭВВ (рН более 7,2), не содержащих гранулированную аммиачную селитру и/или ANFO. Сенсибилизация ВВ не должна предусматривать подкисления до рН =1–3 и высокой температуры.

ЛИТЕРАТУРА

- 1. Kovalenko I., Kuprin A. Features of thermal decompositions of nitrate of ammonium in open systems // New trends in research of energetic materials Pardubice, the Czech Republic, 2009. P. II. PP. 678–683.
- 2. Коваленко И.Л., Куприн В.П. Взаимодействие эмульсионных взрывчатых веществ и их компонентов с сульфидными минералами // Взрывное дело: научн.техн. сб. М.: ЗАО «МВК по взрывному делу при АГН», 2010. Вып. № 103/60. С. 154–170.
- 3. Радюшкина К.А., Вигдергауз В.Е., Тарасевич М.Р., Чантурия В.А. Электрохимия сульфидных минералов. Электрохимические процессы на поверхности пирита и пирротина в водных растворах электролитов // Электрохимия. –1986. Т. XXII, вып. 10. С. 1394–1398.
- 4. Кудайкулова Г.А., Тарасевич М.Р., Радюшкина К.А. Электрохимическое восстановление дикислорода на пирите // Электрохимия. 1990. Т. XXVI, вып. $8.-C.\ 1025-1030.$
- 5. Колганов Е.В., Соснин В.А. Эмульсионные промышленные взрывчатые вещества. В 2 кн.; кн. 1. Составы и свойства. Дзержинск: ГосНИИ «Кристалл», 2009. 592 с.
- 6. Коваленко И.Л., Куприн А.В., Штеменко А.В. Влияние карбамида на термическое разложение нитрата аммония // Вопросы химии и хим. технологии. 2010. № 4. С. 128–130.
- 7. Уоккер Дж.Ф. Формальдегид. М.: Гос. науч.-техн. изд-во хим. л-ры, 1957. 608 с.
- 8. Kovalenko I., Kuprin A. Emulsive Explosive Sensitized by Inorganic Peroxides // New trends in research of energetic materials. IX International sem. / Pardubice (the Czech Republic) 2006. PP. 652–657.

INHIBITION OF REACTIONS BETWEEN PYRITE AND AMMONIUM NITRATE BASED EXPLOSIVES

I. Kovalenko

Ukrainian State University of Chemical Technology prosp. Gagarina, 8, 49000, Dnepropetrovsk, Ukraine.

E-mail: il-kovalenko@mail.ru

V. Kuprin

Eccom Ltd

vul. V. Dubinina, 69, 49000, Dnepropetrovsk, Ukraine.

E-mail: kuprinvp@mail.ru

The insufficient efficiency of a carbamide and urotropin for inhibition of reactions of pyrite with ammonium nitrate was shown. It was found that emulsions with pH > 7,2, which do not contain granular ammonium nitrate or ANFO, have the greatest inertness to pyrite and resistance to thermal self-decomposition. The sensitization technology of explosives should not include acidation to pH = 1-3 and high temperatures.

Key words: ammonium nitrate, pyrite. inhibition.

REFERENCES

- 1. Kovalenko I., Kuprin A. Features of thermal decompositions of nitrate of ammonium in open systems// New Trends in Research of Energetic Materials. Pardubice, the Czech Republic, 2009. P. II. PP. 678–683. [in English]
- 2. Kovalenko I.L. Kuprin V.P. Reactions of emulsion explosives and their components with sulphidic minerals // Vzryvnoe Delo. M.: ZAO MVK Po Vzryvnomu Delu pri AHN, 2010. № 103/60. PP. 154–170. [in Russian]
- 3. Electrochemistry of sulphidic minerals. Electrochemical processes on a pyrite's and pyrrhotine's surface in water solution of electrolytes / Radyushkina K.A.. Vigdergauz V. E. Tarasevich M.R., Chantury V.A. // Elektrokhimiya. − 1986. − Vol. XXII, № 10. − PP. 1394–1398. [in Russian]
- 4.Kudaykulova G. A. Tarasevich M.R., Radyushkina K.A. Electrochemical reduction of double oxygen on pyrites// Elektrokhimiya. − 1990. − Vol. XXVI, № 8. − PP. 1025–1030. [in Russian]
- 5 . Kolganov E.V. Sosnin V.A. Industrial Emulsion Explosives. In 2 books, B.1. Structures and Properties. Dzerzhinsk. : Hos NII "Kristall", 2009. 592 p. [in Russian]
- 6. Kovalenko I.L. Kuprin A.V. Shtemenko A.V Influence of a carbamide on thermal decomposition of ammonium nitrate // Voprosy Khimii I Khimicheskoy Tekhnologii. 2010. № 4. PP. 128–130. [in Russian]
- 7. Uokker J.F. Formaldehyde. M.: Hosudarstvennoe Nauchno-Tekhnicheskoe Izdatelstvo Khimicheskoi literatury, 1957. 608 p. [in Russian]
- 8. Kovalenko I., Kuprin A. Emulsive Explosive Sensitized by Inorganic Peroxides// New Trends in Research of Energetic Materials Pardubice, the Czech Republic, 2006. P. II. PP. 652–657. [in English]

Стаття налійшла 24.07.2012.