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DYNAMIC CHARACTERISTICS OF A MOBILE ROBOT 

MANIPULATOR BUILT ON THE BASIS OF A MECHANISM WITH 

PARALLEL KINEMATIC COUPLINGS 

 
Розроблена математична модель динамічних характеристик мобільного робота з паралельними 

кінематичними зв’язками на основі використання теорії нечітких множин. Для динамічної 

системи платформи введено чотири парціальні динамічні підсистеми. Три з них описують 

поступальні переміщення платформи у трьох напрямках, а підсистема сферичного руху описує 
поворотний рух платформи відносно полюса. Динамічні підсистеми  штанг змінної довжини 

враховують розподіленість параметрів штанг по довжині. Проведено математичне моделювання 

динамічних процесів мобільного роботах паралельної кінематики при одиничних і пакетних 
імпульсних динамічних збуреннях штанг. 

Ключові слова: динамічні характеристики  мобільного робота, математичне моделювання 

 
Разработана математическая модель динамических характеристик мобильного робота с 

параллельными кинематисечкими связями на основе использования теории нечетких множеств. 

Для динамической системы платформы введены четыре парциальные динамические подсистемы. 
Три из них описывают поступательные перемещения платформы в трех направлениях, а 

подсистема сферического движения описывает поворотное движение платформы относительно 

полюса. Динамические подсистемы штанг переменной длины учитывают распределенность 
параметров штанг по длине. Проведено математическое моделирование динамических процессов 

в роботах параллельной кинематики при единичных и пакетных импульсных динамических 

возмущениях штанг. 
Ключевые слова: динамические характеристики мобильного робота, математическое 

моделирование 

 
The mathematical model of dynamical characteristics of a mobile robot with parallel kinematic bonds is 

developed on the basis of the use of the theory of fuzzy sets. For the dynamic system platform, four 
partial dynamic subsystems are introduced. Three of them describe the translational movement of the 

platform in three directions, and the subsystem of the spherical motion describes the rotary motion of the 

platform relative to the pole. Dynamic subsystems of a variable-length rod take into account the 
distribution of the parameters of the rod in length. The mathematical modeling of dynamic processes in 

mobile works of parallel kinematics at single and packet pulse dynamic shock disturbances is carried 

out. 
Keywords: dynamical characteristics of a mobile robot, mathematical modeling 

 

Currently robotic equipment is widely developed on the basis of mechanisms 

with parallel structures. Mobile work of this type has low material capacity and 

wide functionality. Therefore, work in the field of research of multi-coordinate 

mobile robots with parallel kinematic structures is relevant. 
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The problem in general form is to increase the quality of accuracy of multi-

coordinate mobile robots. 

The problem is related to the important scientific and practical tasks of 

creating highly efficient robotic complexes of special purpose. 

Famous studies and publications [1-3] provide information on the 

development and use of multi-coordinate mobile robots. It is noted that 

improvement of qualitative indexes of manipulators can be achieved by applying 

mechanisms with parallel kinematic bonds [4-6]. 

As a result of the analysis of literary sources, the design of mobile robots with 

parallel kinematics requires thorough theoretical and experimental studies [7, 8]. 

This scientific problem is devoted to a significant number of publications [9-

11]. In the main, the authors investigate the laws of kinematics of mobile robots 

with parallel structures [12, 14]. 

Mobile work with parallel kinematics works in hard dynamic modes. 

Therefore, it is especially important to study their dynamic characteristics. 

Dynamic characteristics of mobile robots are considered in a number of papers [15-

18]. In the main they are presented general questions on modeling the movement of 

the executive body of the mechanism. There are no mathematical models for 

determining the dynamic properties of mobile robots of this type in the literature. 

Unsettled parts of the common problem include the development of a refined 

mathematical model of a multi-coordinate mobile robot that takes into account the 

distribution of parameters in a dynamic system and the presence of factors that take 

into account the unclearly defined hard sleep and dissipative parameters of the 

dynamic mobile robot system. 

 

The purpose of the research outlined in this article is to develop a 

mathematical model of structural type intended to study the dynamic properties of 

multi-coordinate mobile robots, which takes into account the unclear parameters of 

the dynamic mobile robot system and the mathematical modeling of the parameters 

of the accuracy of the mobile robot. 

The objectives of the research are to construct a structural mathematical 

model, to develop methods for taking into account the distribution of the 

parameters of a dynamic system under unclear conditions of mobile robot operation 

and the implementation of multi-coordinate mobile robot modeling in typical 

operating modes. 

 

Presentation of the main research material 

Multi-coordinate mobile robot with parallel kinematics is a complex spatial 

dynamic system in which there are complex oscillations (Fig. 1).  
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Fig.1 Constructive scheme of multi-coordinate mobile robot of parallel kinematics 

 

The robot has a frame P that changes its position with the help of a hydraulic 

drive T. On the frame, six rods of variable length S are installed which are pivotally 

connected to the mobile platform П. On the platform there is a manipulator (catch) 

of the robot M that interacts with the object of manipulation WITH. 

The robot provides the exact movement of the platform within the Rmin 

working space. With an increase in the initial length of the bar, the working space 

increases, extending beyond the boundary of the region R2. When the frame R is 

rotated by the hydraulic drive G, the working space of the robot expands to the 

region Rmax. 

The mobile robot is implemented as a prototype [19]. To test the performance 

of the robot developed a special equipment. The frame work with variable-length 

barbs and a mobile platform is installed on a special support, which has racks 1 and 

2 with beams 3 and 4 (fig. 2). 

The support has a traverse 5, on which the turning frame of the frame 6 is 

fixed. The peculiarity of the design of a mobile robot is the presence of malo-rigid 

rod systems, which connect the platform of a mobile robot with a fixture mounted 

on it. 

The mobile robot platform has six coordinates. It carries forward movements 

in the directions x, y, z and the transverse angular displacements ψ, θ, φ around the 

visage coordinates. 

Movement of the executive body provides six drives that change the length of 

the rod 5. 
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Fig. 2. Installation of a mobile frame of a mobile robot on a special support 

 

The feature of a multi-coordinate mobile robot is the complex spatial 

movement of individual nodes and parts of the mobile robot. 

To determine the basic properties of a dynamic mobile robot system and to 

construct mathematical models of individual dynamic subsystems, an analysis of 

the system was performed to determine the characteristics of the movement of 

individual nodes. 

The design scheme of the dynamic system of mobile robot, which unites the 

platform and the executive body as one solid body, is developed, and the rod of 

variable length presents in the form of equivalent deformed rods with distributed 

mass. The equivalent dynamic model of elastic system of robot in the form of a set 

of elastic bars is offered (Fig. 3). 

External force factors in the form of force act on the executive body of the 

mobile robot. 

The working body of the mobile robot has the form of a platform that is 

located on the supports of the rod. In supports there are supporting reactions that 

are internal forces of the dynamic system. The executive body of the mobile robot 

(cheat) has a mass of much less mass of the platform. Therefore, we can assume 

that the specific inertial loads on the grip and the platform are close and consider 

the platform and grip of one solid. The rods of the variable length of the mobile 

robot have a certain stiffness and significant dissipative properties that need to be 

taken into account when developing a mathematical model of the dynamic 

processes of mobile robots with parallel kinematics. 
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Fig. 3. Equivalent dynamical model of mobile robot of parallel kinematics, which 

takes into account the distribution of parameters of the rod 

 

Mobile work with parallel kinematics has a complex spatial structure of the 

dynamic system. Accordingly, in the dynamical system of mobile robot there are 

various partial dynamic systems. 

Partial dynamic systems correspond to the spatial movements of individual 

mobile robot nodes. The main dynamic nodes are a rod and a platform. The 

platform moves in space under the action of supporting reactions in the supports of 

the rod. These power factors are reduced to the main vector and the main moment: 
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where 
iR


 – vector of the dynamic reaction of the i-th rod; 
ib


 – radius-vector of 

force action 
iR


 relative to the pole; n=6 – Number of rods on which the platform 

is installed. The platform has six degrees of freedom. Therefore, for the description 

of its dynamics, three partial systems of translatory movement of the platform pole 

and one partial system of spherical motion of the platform relative to the pole are 

used (Fig. 4). 

According to the proposed dynamic model of the platform a structural 

mathematical model is developed. 
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Fig. 4. Partial dynamic systems of translational and spherical motion of the platform 

 

The block diagram of a mathematical model of a dynamic platform of the 

platform includes a block 1 for the simulation of three components of the partial 

system of translational platform movement (Fig. 5). 
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Fig. 5. Structural flowchart of the mathematical model of the dynamic system of 

spatial displacement of the platform (a) and representation of the model in the form of a 

block (b) 
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The components 
px , 

py , 
pz  the translational movement of the platform is 

modeled by separate blocks 2, each of which determines the displacement of the 

center of the masses of the platforms in the corresponding direction. Block 3 

simulates the partial system of spherical motion of the platform relative to the pole. 

Blocks 4 and 5 form respectively the main vector and the main moment that acts 

from the side of the rod to the platform. 

The output of the mathematical model of the dynamic system of the platform 

is a six-dimensional vector position of the platform. 

The inputs of the dynamic system of the platform are the vectors of the 

supporting forces of the rod R1..Rn and the loading vector. 

As blocks 1.2, known mathematical models are used [19]. Known 

mathematical models are tested at calculations in order to confirm their adequacy. 

General characteristics of the dynamical accuracy of the mechanism 

determine the dynamic properties of the rod. The bars correspond to separate partial 

systems that determine the specific, dynamic processes that accompany their 

displacement. The essential output parameters for the dynamical systems of the 

barb is the movement of joints. Therefore, for each rod allocated partial dynamic 

systems describing the longitudinal displacement of the rod, taking into account the 

distribution of their parameters (Fig. 6). 
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Fig. 6 Dynamic model of longitudinal displacement of a rod, taking into account the 

distribution of its parameters 
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Let's assume that the bar of length l represents a quasi-homogeneous rod with 

a mass distributed in length. 

We will assume that the ends of the rod carry out harmonious movements by 

law: 

 ,tsinuu 1aR1R 
  

 ,tsinuu 020a01 
  

(1) 

where aRu , 0au - the amplitudes of harmonic displacements; 1 , 2  - circular 

frequencies of harmonic displacements of boundary bar cross sections; 0  - the 

phase difference of the harmonic displacements of the ends of the bar. 

Let's assume that the ends of the bar are firmly fixed in the supports. 

Accordingly, the parts and forms of oscillation are determined in the form [8]: 
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(2) 

where l – rod length; і – shape number of oscillations; Е – An equivalent modulus 

of elasticity of the rod;   - Seamless weight of the rod; a  - equivalent sound 

speed in a rod. An equivalent modulus of elasticity is found by experimentally 

measuring the stiffness of the rod. The loading of the rod by the longitudinal force 

Fk was carried out and the relative displacement of the ends of the rod was 

measured. Rigidity was the ratio of the increase in force to the increase in 

displacement by the formula: 

k

k
k

l

F
C




 .    (3) 

Measurements are made at variable loads under different values of force and, 

accordingly, displacement. It is established that the value of stiffness essentially 

depends on the amplitude of loads (deformations). At low amplitudes of alternating 

loads, the stiffness of the rod decreases. This is due to the selection of backlashes 

and gaps in the kinematic chain. Increasing the load amplitude leads to increased 

stiffness. Results of rigidity measurements subject to statistical processing. The 

histograms of the relative frequency of rigidity measurements of this value are 

constructed. For this purpose, the measured values of rigidity are broken down into 

discharges and a calculation of the number of measurements that fall into each 

discharge is made. The number of values of measurements that fall into the 

category with the maximum number of values of measurements is taken as the 

norm. Relative number of measurements in each level N is established relative to it. 

The measurements of rigidity at different amplitudes are grouped into separate 

histograms Nm and Na (Fig. 7). 
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Fig. 7. Experimentally determined values of the equivalent stiffness of the rod, 

presented in the form of histograms and corresponding functions of the membership of fuzzy 

sets describing the equivalent stiffness of the rod 

 

As a result of experimental measurements, it was established that histograms 

are close to triangular graphs with maxima corresponding to the mean values of 

stiffness Cm and Ca and width ΔCm and ΔCа. 

Triangular functions μm and μa have been introduced to describe the 

histograms, which are interpreted as characteristic features of fuzzy (blurry) sets 

[20], which describe the characteristics of rod stiffness. For small amplitudes of 

oscillations, stiffness is determined by the function μm, and for large amplitudes, 

by the function μa. 

On the basis of measured rigidity values the current values of the equivalent 

elastic modulus are determined. Dependence is used for this purpose: 
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where l  - rod length; es  - equivalent to the cross-sectional area of the rod; kC  - 

the value of the current stiffness of the rod, which is determined taking into account 

the value of the amplitude of the oscillation of the rod in accordance with the value 

of the characteristic function µm і µа. 

Assume the characteristic movement of a rod in its middle part at 
2

x
l

 . 

1 

Сk 

 
Малі 

амплітуди Великі 

амплітуди 

Na 

Nm 

µa 

µm 

ΔCa 

ΔCm 

Cm Ca 

N, 



ISSN 2078-7499. Сучасні технології в машинобудуванні, 2018, вип. 13 

201 

Characteristic displacement of the rod as a system with distributed parameters 

is determined by the next [19]: 
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where the parameters of formula (5) are determined by the dependences (1) - (4). 

Formula (5) defines polarharmonic displacements of a characteristic mid-

section of a rod at sinusoidal displacements of its ends. Expressions in square 

brackets represent the amplitude-frequency characteristics of the dynamical rod 

system with two sinusoidal inputs in the form of moving its ends. These frequency 

characteristics are frequency functions in the form of infinite series: 
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The coefficients defined by formula (7) are fuzzy sets defined according to the 

dependences (2), (4). 

Frequency characteristics (6) include only the square of the frequency. 

Therefore, they correspond to the transmission functions of the form: 



ISSN 2078-7499. Сучасні технології в машинобудуванні, 2018, вип. 13 

202 

  ,
1sT

sK

2

1
sW

1i
22

i

2
i1

1 


 


  

  ,
1sT

sK

2

1
sW

1i
22

i

2
i2

2 


 


       

(8)

 

where s is Laplace's operator. 

These transmission functions represent an infinite number of parallel chains, 

each of which has two sequentially connected differentiation links and one 

conservative link [21]. The presence of a conservative link does not correspond to 

the physical nature of the problem, namely the presence of a process of energy 

dissipation in the dynamic system of the rod. Therefore, in transmitting functions, 

conservative links are replaced by oscillations [21] and accordingly obtained: 
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(9) 

where i1  - a set of attenuation parameters that determine the dissipative 

characteristics of the rod. 

As a result of experimental measurements of the proper oscillation of the rod, 

it is found that the damping parameters are insignificant and make up 

001.0..01.0i  . 

Taking into account the received transfer functions, the connection of the 

dynamic perturbations of the bar in the middle section and displacement of its ends 

is established: 

          .sW/susWsusu 101211R                         (10) 

Accordingly, the reaction of the first rod:  

       ,shcssusR 1111R1     (11) 

where  s1  - the movement of the platform in the direction of the axis of the rod, 

which is determined by the vector X coordinates; с1 та b1 – the stiffness and the 

resistance coefficient of the hinged fixing of the rod on the platform. 

The movement of the platform in the direction of the axis of the bar is 

uniquely determined by the vector x coordinates of the platform in the form of 

linear dependence:  

  .xs j

6

1j

j11  
    

(12) 

The combination of relations (10) - (12) is carried out in a special block of the 

mathematical model (Fig. 8). 
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The inputs of the block are the coordinate vector of the platform X, the 

dynamic disturbance in the drive of the first bar u1 and the dynamic perturbation 

(vibration) of the base u01 in the place of fixing the first rod. 

To calculate the uncertain stiffness of the rod Ck is a special block of the 

model, which implements the dependence (4) in accordance with the experimental 

values (see Fig. 4), taking into account the amplitude of displacements of the upper 

joint hinge [23]. 
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Fig. 8. Structural model is designed to calculate the reaction of the rod (a) and the 

presentation of this model in the form of block (b) 

 

The mathematical model of the platform and the bar is combined into one 

general structural mathematical model (Fig. 9). 
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Fig. 9. Block diagram of a general mathematical model of a mechanism with parallel 

kinematics 

 

The output of the mathematical model is the coordinate vector of the platform 

X, the inputs of the control signals of the drives of individual rods ui and the 

vibration of the base u0i. 

The mathematical modeling of the platform movement under the influence of 

impulse loads ui in the drives of each separate rod is fulfilled. As a result of the 

calculations, it was found that when the pulse loads of the rod the platform carries a 

complex oscillatory motion. In the plane of the platform, this motion corresponds 
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to a spiral trajectory, which is localized in the elliptical region and fades with  time 

(Fig. 10). 

The parity of the elliptical parasites is 1,4 ... 1,7. The rails x1 and y1 

correspond to the main axes of the rigidity of the elastic platform system. On the 

trajectory of movement of the platform there are loops similar areas 1, 2, 3. They 

correspond to the first basic frequency of oscillations of the bar with time fade. 
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Fig. 10. Estimated trajectory of moving the center of the platform of a multi-coordinate 

mobile robot with impulse perturbation in the first rod 

 

Sequential packet pulse disturbances in all mobile robot rods change the 

trajectory of moving the platform in the haw plane. 

On the trajectory are traced to evil, corresponding to the presence of 

perturbations (Fig. 11). 

 

 
Fig.11. Trajectory of moving the pole of the platform with sequential pulse 

disturbances in all mobile robot rods 
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Evil occurs at points 1, .. 6, which correspond to the time of impulse (shock) 

loads in rods 1-6. 

Consecutive pulsed loads complicate the movement of the platform. The 

trajectory is within the area close to the circle. On the trajectory, loop-like areas can 

be traced, similar to their own oscillations of individual rods. Subsequently (point 7 

and further), the trajectory of the platform moves to a fading elliptic spiral, which 

ends at point 1. 

Conclusions 

1. It has been established that for mathematical modeling of the dynamics of 

spatial motion of a mobile robot platform, it is necessary to allocate four partial 

dynamic subsystems of the platform. Three of them determine the translational 

motion of the platform pole in three directions, and the fourth corresponds to the 

spherical motion relative to the pole. Six additional partial dynamic rotor systems 

take into account the distribution of the rod parameters at their longitudinal and 

transverse vibrations. 

2. To describe the dynamical processes of a moving rod, it is expedient to use 

a mathematical model of an equivalent beam with a mass distributed in length. The 

elastic properties of the rod depend on the amplitude of the oscillations and 

represent a fuzzy set, which has two triangular functions of belonging, 

corresponding to small and large amplitudes of oscillations. At the same time, the 

stiffness of the rod at small amplitudes is 2 · 3 times lower than the stiffness at 

large amplitudes of oscillations. 

3. The mathematical model of a mobile robot with parallel kinematics is 

structurally-blocked, with the blocks corresponding to the partial dynamic systems 

of the bar and platform, and the connections between the blocks, including 

feedback, lock the model, determining the spatial position of the platform, 

depending on the force factors that act on individual mobile robot nodes, in 

particular depending on impulse disturbances in drive changes in the length of the 

mobile robot rod. 

4. As a result of mathematical modeling, it has been established that forced 

oscillations of the platform of a multi-coordinate mobile robot with unit pulse 

disturbances in one of the bars take place in a definite direction, which corresponds 

to the axis of the minimum stiffness of the elastic system of the mobile robot. At 

the same time, the velocity of oscillations in the direction of the axle of maximum 

stiffness is 0.6-0.7 times smaller than in the direction of the axle of minimum 

rigidity. In sequential packet pulse disturbances, in all rods of a mobile robot, the 

specified directions are leveled and the platform pole moves within a circular area 

with its successive decrease to zero. 

5. As a direction of further research, it is recommended to clarify the 

structural mathematical model and its testing by comparing the results of modeling 

with experimental data. 
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