ТЕРМОЕЛЕКТРИЧНА ДОБРОТНІСТЬ МОНОКРИСТАЛІВ *p-(Bi_xSb*_{1-x})_{2-y}Sn_yTe₃ В ШИРОКОМУ ТЕМПЕРАТУРНОМУ ДІАПАЗОНІ

Кульбачинський В.А.¹, Китін В.Г.¹, Кудряшов А.А.¹, Лоштак П.² (¹Московський державний університет ім. М.В. Ломоносова, Ленінські гори 1/2, GSP-1, Москва, 119991, Росія; ²Пардубицкий університет, вул. Студентська, 573, Пардубице, 53210, Чеська Республіка)

• У пропонованій праці ми повідомляємо про вплив олова на термоелектричні властивості монокристалів $p - (Bi_x Sb_{1-x})_2 Te_3$ (x = 0; 0.25; 0.5) у температурному діапазоні 7 K – 300 K. Проведено дослідження температурної залежності коефіцієнта Зеєбека S. електропровідності σ , теплопровідності k і добротності монокристалів $p-(Bi_{s}Sb_{1,s})_{2}Te_{3}$. Для визначення кониентрації легких дірок і енергії Фермі ми використовували ефект Шубніковаде-Гааза за T = 4.2 К. З підвищенням вмісту Sn концентрація дірок в $p-(Bi_xSb_{1-x})_{2,y}Sn_yTe_3$ зростає. Теплопровідність к кристалів p-(Bi_xSb_{1-x})_{2-v}Sn_vTe₃ знижується за рахунок легування Sn, а електричний опір зростає в температурному інтервалі 150 K < T < 300 K і знижується за T < 150 К. Коефіцієнт Зеєбека S для всіх сполук додатний і знижується за рахунок легування Sn у всьому температурному діапазоні. Основною причиною цього є акцепторний ефект і зростання концентрації дірок з легуванням Sn. Енергія Фермі з легуванням Sn зростає й, отже, коефіцієнт Зеєбека знижується.

Вступ

У цей час напівпровідники на основі телуридів вісмуту й сурми – найбільш ефективні й широко використовувані матеріалами для термоелектричних пристроїв у діапазоні робочих температур 200 – 350 К. Показано, що викривлення щільності станів резонансною домішкою Sn підвищує термоелектричну добротність ZT вихідного напівпровідника у випадку Bi₂Te₃ [1]. Принцип викликаного домішкою зв'язаного стану, відомого також як «віртуальний зв'язаний стан», був введений Фріделем [2] як зв'язаний стан з додатною енергією щодо краю енергетичної зони, тобто, з тою ж енергією, що й у делокалізованому стані. Якщо він може резонувати з компонентом цього делокалізованого стану, то нарощується два делокалізовані стани із трохи різними енергіями; вони у свою чергу мають ті ж енергії, що й делокалізовані стани, з якими вони будуть резонувати, і т.д., поки надлишкова щільність станів не виникне у вузькому енергетичному діапазоні зони матеріалу-хазяїна. Невдовзі після їхнього відкриття віртуальні зв'язані стани в металах призвели до росту термоЕРС металу-хазяїна за механізмом, відомим тепер як резонансне розсіювання [3]. На протилежність принципу резонансного розсіювання Маган і Софо [4] пропонують, що термоЕРС і термоелектричну добротність можна підвищити за рахунок самої надлишкової щільності станів. Оскільки цей механізм не пов'язаний з розсіюванням, він, по суті, не залежить від температури (крім температурної залежності самої зонної структури [5]), і тому підходить для поліпшення добротності в практичних термоелектричних матеріалах за кімнатної температури й вищої. Гальваномагнітні властивості легованих оловом твердих розчинів монокристалів (Bi_xSb_{1-x})_{2-v}Sn_vTe₃ досліджено в працях [6-12]. Квантові коливання опору Холла в магнітному полі до 54 T і енергетичний спектр легованих Sn шаруватих напівпровідників $p-(B_{1-x}Sb_x)_2Te_3$ вивчені в працях [10, 12]. Відомо, що олово утворює резонансний стан на 15 меВ нижче поверхні верхньої валентної зони й підвищує коефіцієнт Зеєбека S монокристалів Bi₂Te₃ [6 – 9].

Верхні валентні зони Ві2Те3 містять поверхні Фермі, що складаються із шести еліпсоїдальних кишень в *k*-просторі, із центром у дзеркальній площині зони Бріллюена в напрямку 0.3 - 0.5 X і мають ефективну масу інтегральної щільності станів $md = 0.35m_0$. Показано, що нижня, більш важка валентна зона, що складається із шести еліпсоїдів, на 20.5 меВ нижча верхньої валентної зони в k-просторі за 0.3 – 0.4 A. Bi₂Te₃ p-типу можна легувати домішковими атомами Ge, Sn, Pb, а n-типу – In, Cl або I. Як правило, введення легуючих домішок суттєво збільшує флуктуації термоЕРС, що виникають у результаті стохастичного характеру розподілу домішки через кристал. Однак, у випадку з Bi₂Te₃, легованому Sn, спостерігається зворотна ситуація. Зі збільшенням кількості домішки Sn знижуються флуктуації термоЕРС і відповідно концентрації дірок, указуючи на значно поліпшену електричну однорідність кристалів [13, 14]. Тверді розчини (Bi_xSb_{1-x})₂Te₃ ефективніші термоелектричні матеріали, ніж Bi_2Te_3 . Тому важливо досліджувати вплив Sn на термоелектричну добротність у широкому температурному діапазоні твердих розчинів монокристалів (Bi_xSb_{1-x})₂Te₃ з різним х. Тут ми повідомляємо про вплив легування оловом на термоелектричні властивості монокристалів (Bi_xSb_{1-x})₂Te₃ у температурному діапазоні 7 К – 300 К. Нами вивчені зразки монокристалів $(Bi_xSb_{1-x})_2Te_3$ (x = 0; 0.25; 0.5) *р*-типу як нелеговані, так і леговані оловом.

Зразки

У пропонованій праці нами досліджено чисті й леговані *Sn* монокристали $p(Bi_xSb_{1-x})_2Te_3$ (x = 0; 0.25; 0.5), вирощені методом Бріджмена. Зразки для вимірювань з характерними розмірами $1 \times 1 \times 5$ мм (найбільший розмір уздовж осі C_2) після розщеплення уздовж площин спайності перпендикулярно осі C_3 кристала розрізалися на електроерозійному верстаті. Електричні контакти припаювалися за допомогою сплаву *BiSb*. Під час вимірювання ефекту Холла струм протікав уздовж осі C_2 , а магнітне поле було спрямовано уздовж осі C_3 . При вимірюванні термоЕРС і теплопровідності температурний градієнт і тепловий потік були направлені уздовж осі C_2 . Деякі параметри зразків згідно з гальванометричними вимірами перераховані в таблиці. Фактична концентрація олова в досліджених зразках визначалася експериментально за допомогою атомної абсорбційної спектрометрії. Як видно з таблиці, холловська концентрація дірок після легування *Sn* зростає. Для визначення концентрації легких дірок і енергії Фермі ми також використовували ефект Шубнікова-де-Гааза за T = 4.2 К в сильних магнітних полях [12].

Термоелектричні властивості

1. $Sb_{2-x}Sn_xTe_3$

На рис. 1 *а* подано графік температурної залежності коефіцієнта Зеєбека *S* монокристалів $Sb_{2-x}Sn_xTe_3$. Значення *S* є додатним, тому обидва зразки (чистий і легований *Sn*) мають провідність *p*-типу. За низьких температур ми спостерігаємо максимум за рахунок фононного гальмування. Як видно на рис. 1 *a*, легування *Sn* знижує термоЕРС монокристала Sb_2Te_3 у всьому температурному інтервалі. Основна причина полягає в тому, що *Sn* є акцептором і підвищує концентрацію дірок і рівень Фермі.

Проста модель із квадратичним законом дисперсії й ізотропним часом релаксації т, вираженим як

$$\tau = \tau_0 E^r \,, \tag{1}$$

призводить до такого виразу для коефіцієнта Зеєбека:

$$S(T) = \frac{k_B}{e} \left(\frac{(2r+5)F_{r+3/2}(\eta)}{(2r+3)F_{r+1/2}(\eta)} - \eta \right);$$
(2)

тут k_B – постійна Больцмана, e – заряд електронів, E_F – енергія Фермі, $\eta = E_F / k_B t$ – наведена енергія Фермі, а r – параметр, що характеризує механізм розсіювання (r = -1/2 f для розсіювання на акустичних фононах, r = 1/2 для полярного оптичного розсіювання, а r = 3/2 для розсіювання на іонізованих домішках);

$$F_{s}(\eta) = \int_{0}^{\infty} [x^{s} / (e^{x-\eta} + 1)] dx$$
(3)

- інтеграл Фермі. У випадку невиродження вираження (2) дає для S

$$S = \frac{k_B}{e} \left(p + \frac{5}{2} - \frac{\varepsilon_F}{k_B T} \right).$$
(4)

Таким чином, ріст енергії Фермі знижує значення S.

<u>Таблиця</u>

за $T = 4.2$ К для $(Bi_{1x}Sb_x)_{2-y}Sn_yTe_3$.							
Сполука зразка	у – навантажений	y-AAS	$1/eR_{H4.2}$ (10^{19}cm^{-3})	р _{4.2} (мкОм∙см)	р ₃₀₀ (мкОм∙см)	μH _{4.2} (m ² /B·c)	EF (мeB)
Sb _{2-ysnyte3}	0 0.0075	0 0.047	8.2 56.4	38.8 67.6	260 181	0.196 0.018	104 137
	0	0	6.4	47.4	445	0.205	69
$(Bi_{0.25}Sb_{0.75})_{2-y}Sn_yTe_3$	0.005	0.0030	7.4	68.6	426	0.122	97
	0.0075	0.0034	—	73	292	_	110
$(Bi_{0.5}Sb_{0.5})_{2-y}Sn_yTe_3$	0	0	3.5	56	737	0.320	44
	0.0075	0.0037	20.8	148	435	0.020	115

Холловська концентрація дірок 1/eR, питомий опір $\rho_{4.2}$ за $T = 4.2 \text{ K i } \rho_{300}$ за T = 300 K, холловський коефіцієнт $R_{H4.2}$ і холловська рухливість $\mu_{H4.2}$ за T = 4.2 K для $(Bi_{1x}Sb_x)_{2-y}Sn_yTe_3$.

Теплопровідність монокристалів $Sb_{2-x}Sn_xTe_3$ була виміряна в температурному діапазоні 5 – 300 К. Температурний градієнт направлений уздовж осі C_2 . На рис. 1 б показано температурні залежності теплопровідності k. Теплопровідність k кристалів $Sb_{2-x}Sn_xTe_3$ знижується несуттєво за рахунок легування Sn порівняно з чистим Sb_2Te_3 , а електропровідність зростає в температурному інтервалі 150 К < T < 300 К і знижується за T < 150 К, як показано на рис. 1 в. За T = 10 К ми спостерігали максимум на залежності k(T) зі значенням для Sb_2Te_3 близько 18 Вт/м·К. Це значення відповідає тому, яке спостерігалося в праці [12, 13].

Під впливом усіх цих факторів значення безрозмірної термоелектричної добротності *ZT* знижується після легування оловом (рис. 1 *г*).

Рис. 1 Температурна залежність (a) коефіцієнта Зеєбека S; (б) теплопровідності k; (в) електропровідності σ і (г) безрозмірної добротності ZT для монокристалів Sb_{2-x}Sn_xTe₃.

2. $(Bi_{0.25}Sb_{0.75})_{2-x}Sn_xTe_3$

Температурна залежність коефіцієнта Зеєбека *S* для монокристалів $(Bi_{0.25}Sb_{0.75})_2Te_3$ і $(Bi_{0.25}Sb_{0.75})_{1.9925}Sn_{0.0075}Te_3$ показано на рис. 2 *a*. Значення *S* є додатним і знижується за рахунок легування *Sn* у всьому температурному діапазоні. Основна причина цього – вплив акцепторів і ріст концентрації дірок при легуванні *Sn*. Енергія Фермі збільшується, і згідно (2), (4) знижується коефіцієнт Зеєбека.

Теплопровідність *k* монокристалів $(Bi_{0.25}Sb_{0.75})_2Te_3$ і $(Bi_{0.25}Sb_{0.75})_{1.9925}Sn_{0.0075}Te_3$ зростає до ~ 8 Вт/м·К із зниженням температури (рис. 2 *б*). Значення *k* для $(Bi_{0.25}Sb_{0.75})_{1.9925}Sn_{0.0075}Te_3$ менше, ніж для $(Bi_{0.25}Sb_{0.75})_2Te_3$ у всьому температурному діапазоні. Це характерно для легованого матеріалу завдяки додатковому розсіюванню фононів на домішках. Електропровідність зростає за рахунок легування *Sn* у температурному інтервалі 150 К < *T* < 300 К і знижується за *T* < 150 К, як показано на рис. 2 *e*. У всьому температурному діапазоні це типово для вироджених провідників, тобто, відбувається ріст σ при зниженні температури. Розрахункове значення добротності *ZT* у легованому *Sn* ($Bi_{0.25}Sb_{0.75}$)₂*Te*₃ дещо нижче, ніж у чистому матеріалі, як показано на рис. 2 *e*. 150 К в легованих зразках ще вища.

Рис. 2. Температурна залежність (a) коефіцієнта Зесбека S, (б) теплопровідності k, (в) електропровідності σ, (г) безрозмірної термоелектричної ефективності ZT для монокристалів (Bi_{0.25}Sb_{0.75})_{2-x}Sn_xTe₃.

3. $(Bi_{0.5}Sb_{0.5})_{2-x}Sn_xTe_3$

На рис. 3 показано температурну залежність *S*, *k*, σ і *ZT* для монокристалів ($Bi_{0.5}Sb_{0.5}$)₂ Te_3 і ($Bi_{0.5}Sb_{0.5}$)_{1.9925} $Sn_{0.0075}Te_3$. Результати аналогічні отриманим для ($Bi_{0.25}Sb_{0.75}$)_{2-x} Sn_xTe_3 . Коефіцієнт Зеєбека *S* і теплопровідність *k* знижуються при легуванні *Sn*, провідність зростає за T > 220 K і знижується за T < 220 K. Нарешті, добротність *ZT* знижується у всьому температурному діапазоні.

Застосовуючи просту модель і квадратичний закон дисперсії, а також ізотропний час релаксації τ (1), можна обчислити параметр розсіювання *r*, використовуючи формулу (2) для всіх зразків. Як приклад, на рис. 4 показано значення *r*, обчислене за допомогою експериментальних даних для $(Bi_{0.25}Sb_{0.75})_{2-x}Sn_xTe_3$. У кристалах без *Sn* параметр *r* наближається до -1/2 за високих температур, визначаючи основну роль розсіювання акустичних фононів: *r* збільшується за низьких температур. Легування оловом призводить до очевидного збільшення *r*, вказуючи на основну зміну механізму розсіювання дірок: з акустичного фононного розсіювання до розсіювання на іонізованих домішках у легованих зразках. Таке ж явище спостерігалося для всіх досліджених твердих розчинів *p*-(*Bi_xSb_{1-x})_{2-y}Sn_yTe₃.*

Рис. 3. Температурна залежність (а) коефіцієнта Зеєбека S, (б) теплопровідності k, (в) електропровідності σ, (г) безрозмірної термоелектричної ефективності ZT для (Bi_{0.5}Sb_{0.5})_{2-x}Sn_xTe₃.

Рис. 4. Температурна залежність параметра розсіювання г для кристалів (Bi_{0.25}Sb_{0.075)2-y}Sn_yTe₃.

Висновки

Нами досліджено термоелектричні властивості чистих і легованих *Sn* монокристалів $p-(Bi_xSb_{1-x})_2Te_3$ (x = 0, 0.25, 0.5) у температурному діапазоні 5 < T < 300 К. Ми встановили, що у твердих розчинах (Bi_xSb_{1-x})₂ Te_3 олово має характеристики акцептора. Значення коефіцієнта

Зеєбека $S \in$ додатним для всіх сполук і знижується за рахунок легування Sn у всьому температурному діапазоні у зв'язку зі збільшенням концентрації дірок у зразках легованих оловом. Теплопровідність k також знижується за рахунок легування Sn для всіх сполук. Температурна залежність провідності σ складніша: за кімнатної температури σ зростає за рахунок легування Sn, а за низьких температур σ знижується. Нарешті, добротність ZT знижується за 7 < T < 300 К для всіх сполук $p-(Bi_xSb_{1-x})_2Te_3$. Переважний механізм розсіювання в зразках легованих Sn змінюється від акустичного фононного до розсіювання на іонізованих домішках.

Література

- 1. C.M. Jaworski, V.A. Kulbachinskii, J.P. Heremans, Phys. Rev. B 80, 233201 1 (2009).
- 2. J. Friedel, Can. J. Phys. 34, 1190, (1956).
- P. de Faget de Casteljau, J. Friedel, J. Phys. Radium, 17, 27 (1956); A. Blandin, J. Friedel, ibid. 20, 160 (1959).
- 4. G.D. Mahan, J.O. Sofo, Proc. Natl. Acad. Sci. U.S.A. 93, 7436 (1996).
- 5. V. Jovovic, S.J. Thiagarajan, J.P. Heremans, T. Komissarova, D.R. Khokhlov, A. Nicorici, JAP, 103, 053710 (2008).
- V.A. Kulbachinskii, N.B. Brandt, P.A. Cheremnykh, S.A. Azou, J. Horak, P. Lostak, Phys. Status Solidi 150, 237 – 243 (1988).
- V.A. Kulbachinskii, M. Inoe, M. Sasaki, H. Negishi, W.X. Gao, K. Takase, Y. Giman, P. Lostak, J. Horak, Phys. Rev. B 50, 16921 – 16930 (1994).
- V.A. Kulbachinskii, H. Negishi, M. Sasaki, Y. Giman, M. Inoue, P. Lostak, J. Horak, Phys. Status Solidi 199, 505 – 513 (1997).
- V.A. Kul'bachinskii, N.E. Klokova, J. Horak, P. Lostak, S.A. Azou, G.A. Mironova, Sov. Phys. Solid State, 31, 112 – 114 (1989).
- N. Miyajima, M. Sasaki, H. Negishi, M. Inoue, V.A. Kulbachinskii, A.Yu. Kaminskii, K. Suga, J. Low Temp. Phys. 123, N 3/4, 219 – 238 (2001).
- 11. Kulbachinskii V.A., Kaminskii A.Yu., Lunin R.A., Kindo K., Narumi Y., Suga K, Kawasaki S., Sasaki S., Miyajima N., G.R. Wu, Lostak P., Hajek, phys. stat. sol. (*b*) 229, 1467 1480 (2002).
- 12. Kulbachinskii V.A., Kaminskii A.Yu., Lunin R.A., Kindo K., Narumi Y., Suga K, Kawasaki S., Sasaki S., Miyajima N., Lostak P., Hajek, Semicond. Sci. Technol. 17, 1133 1140 (2002).
- M.K. Zhitinskaya, S.A. Nemova, V.R. Muhtarova, T.E. Svechnikova, Semiconductors, 45, 988 992 (2011).
- 14. M.K. Zhitinskaya, S.A. Nemov, T.E. Svechnikova, P. Reinhaus, E. Müller, Semiconductors, 34, 1363 1364 (2000).
- 15. P.M. Tarasov, V.A. Kulbachinski, V.G. Kytin, JETP, 105, 21 (2007).
- 16. Dyck J.S., Chen W., Uher C., Drasar C, Lostak P., Phys. Rev. B., 66, 125206-1 (2002).

Надійшла до редакції 04.10.2011.