КВАЗІЛОКАЛЬНІ ДОМІШКОВІ СТАНИ В ТЕРМОЕЛЕКТРИЧНИХ СПОЛУКАХ НА ОСНОВІ *Bi*₂*Te*₃

Житінська М.К.¹, Ісполов Ю.Г.¹, Немов С.А.¹, Мухтарова А.А.¹, Свєчнікова Т.Є.² (¹Санкт-Петербурзький державний політехнічний університет, вул. Політехнічна, 29, Санкт-Петербург, 195251, Росія; ²Інститут металургії ім. Байкова Російської Академії наук, Ленінський просп., 49, Росія, 119991, Москва)

• Параметр термоелектричної ефективності (ТЕ) за різних рівних умов вищий в однорідних кристалах. Ми розглядаємо можливість підвищення ступеня однорідності кристалів шляхом уведення нестандартної легуючої домішки для сполук A^5B^6 – домішки олова. В Ві₂Те₃ легування атомами Sn призводить до появи квазілокальних домішкових станів на фоні дозволеного енергетичного спектра й розташованих поблизу верха валентної зони додаткового екстремума. Більша густина цих станів призводить до стабілізації хімічного потенціалу й до збільшення електричної однорідності кристалів. У пропонованій роботі вивчено вплив ізовалентного заміщення атомів у підгратці Ві або Те у монокристалах Ві₃Те₃:Sn. Виміряно основні транспортні коефіцієнти: теплопровідності, електропровідності, Холла, Зеєбека й Нернста-Еттінгсгаузена. Усі кристали вирощені методом Чохральского. Залежно від сполуки зразки мали й п-, і р-тип провідності. Встановлено, що із заміною атомів Ві на Sb і Te на Se у кристалах Bi₂Te₃:Sn зберігається утворення квазілокальних станів олова у валентній зоні. Крім того, на всіх кристалах з оловом був знайдений більш однорідний розподіл концентрації носіїв струму. На зразках п-типа було отримано підвишене значення параметра TE: v максимумі $Z = 3.3 \cdot 10^{-3} K^{-1}$ за 340 - 370 K. Зроблено припущення, що квазілокальні стани, розташовані у валентній зоні, взаємодіють із основними електронними станами й впливають і на властивості електронного $Bi_2Te_{2.85}Se_{0.15}$

Вступ

Традиційне застосування твердих розчинів на основі Bi_2Te_3 у термоелектричних перетворювачах зумовлює пошук методів покращення їх властивостей. Для одержання матеріалів з високими термоелектричними властивостями застосовується легування цих матеріалів різними домішками. Однак додавання домішок звичайно призводить до суттєвого збільшення флуктуацій термоелектричних властивостей, яке пов'язано зі статистичним характером просторового розподілу домішок.

Згідно з [1-3] було встановлено, що із введенням домішки Sn в Bi_2Te_3 квазілокальні стани виникають усередині валентної зони поблизу вершини додаткового екстремума. Квазілокальні стани призводять до закріплення рівня Фермі. Оскільки термоЕДС чутлива до зміни рівня Фермі, квазілокальні стани призводять до її стабілізації й покращення однорідності, що підтверджено дослідженнями розподілу коефіцієнта Зеєбека на поверхні кристалів за допомогою скануючого мікрозонда [3] і мікрорентгеноструктурного аналізу [4]. Це особливо важливо для кристалів тригональної системи $A^V B^{VI}$ з яскраво вираженою анізотропією. У реальних умовах вирощування навіть найкращі монокристали даної сполуки містять велику кількість неоднорідностей. Відомо, що в однорідних кристалах термоелектрична добротність вища. Отже, можуть бути розглянуті різні можливості для одержання матеріалу з високою однорідністю. Одна з них – застосування методу Чохральского [5]. Інший шлях полягає в застосуванні легуючих домішок (*Sn*), що створюють квазілокальні стани в сполуці. У нашому дослідженні ми використовували обидва підходи.

Нами досліджено вплив додавання атомів Sn на термоелектричні властивості Bi_2Te_3 зі заміщенням частини атомів у підгратках Bi або Te.

1. Експеримент

Постійні Нернста-Еттінгсгаузена Q_{ikl} і основні кінетичні коефіцієнти – електропровідності σ_{ii} , термоЕРС S_{ii} , Холла R_{ikl} вимірювані на легованих *Sn* монокристалах Bi_2Te_3 , $Bi_{1.99}Sb_{0.01}Te_3$ і $Bi_2Te_{3-x}Se_x$ (x = 0.06; 0.12) у температурному діапазоні від 77 до 420 К. Усі монокристали вирощені методом Чохральского з підживленням рідкою фазою із плаваючого тигля [5]. Монокристали вирощені в напрямку [1010] перпендикулярно основній кристалографічній вісі с. Густину носіїв визначено з виразу $n, p = [q \cdot R_{321}(77 \text{ K})]^{-1}$.

Просторовий розподіл термоЕРС за поверхнею монокристалів $Bi_2Te_{3-x}Se_x:Sn$ досліджено мікрозондовим методом, описаним в [6].

2. Результати

2.1. Вплив резонансних станів на концентрацію вільних дірок

Легування кристалів *Bi*₂*Te*₃ оловом супроводжується утворенням зони резонансних станів на фоні дозволеного спектра станів валентної зони. Резонансні стани призводять до закріплення рівня Фермі.

Рис. 1. Залежність концентрації дірок (p_H) від концентрації домішок (N_{imp}) Bi_2Te_3 (1 – 7) і $Bi_2Te_{3-y}Se_y$ (8 – 10): тільки Sn (1, 8); без Sn, тільки акцепторна Bi, Pb (2) або донорна I (3, 9) домішка; і спільне легування Sn і акцепторною (4) або донорною (5 – 7, 10) домішкою.

На рис. 1 показано залежність концентрації дірок $p-Bi_2Te_3$ від кількості введеної домішки *Sn* (N_{imp}). Крім того, показано дані про спільне легування Bi_2Te_3 *Sn* і додатковими домішками *Cl*, *Pb* і *J*. Спостерігається дуже слабка зміна концентрації дірок: від 2 10¹⁸ до 5 10¹⁸ см⁻³ за вмісту олова в $N_{imp} = (1.2 \div 6)10^{19}$ см⁻³. Тому ми можемо говорити про «м'яку» стабілізацію хімічного потенціалу. Усі монокристали *n*- і *p*-типу, леговані *Sn*, демонструють зростання електричної однорідності порівняно з нелегованим Bi_2Te_3 .

2.2. Картина розподілу термоЕРС по поверхні монокристала й однорідність зразка

Просторовий розподіл термоЕРС по поверхні монокристалів досліджено за допомогою мікрозонда.

Рис. 2. Ліворуч – коефіцієнт Зеєбека S₁₁, обмірюваний по поверхні зразків: 1 – Ві_{1.9}Sb_{0.1}Te₃, 2 – (Ві_{1.9}Sb_{0.1})_{0.998}Sn_{0.002}Te₃ і 3 – (Ві_{1.9}Sb_{0.1})_{0.99}Sn_{0.01}Te₃; праворуч – статистичні флуктуації коефіцієнта Зеєбека по поверхні зразків: угорі – Ві₂Te₃, унизу – Ві₂Te₃:Sn.

У той час як нелеговані кристали демонструють звичайні статистичні флуктуації коефіцієнта Зеєбека, статистичні флуктуації зменшуються на зразку, матеріал якого містить 1 ат% *Sn*. Відповідно число точок вимірювання даного значення коефіцієнта Зеєбека, що втримується в картах, показано на рис. 2. Ці розподіли стають більш сфальцьованими із включенням *Sn*.

2.3. Температурні залежності *R*(*T*) і *S*(*T*) у зразках *р*-типу

Резонансні стани у валентній зоні Bi_2Te_3 призводять до різкої зміни температурних залежностей коефіцієнтів переносу σ_{11} , R_{321} , S_{11} у цих кристалах, аналогічно тому, як повідомлялося для Bi_2Te_3 . Температурні залежності R(T) зразків, що містять Sn, змінюються від зростаючої картини з максимумом, типовим для Bi_2Te_3 і Bi_2Te_3 -" Se_x , до сильно спадаючої кривої (рис. 3). Коефіцієнт Зеєбека олововмістовних зразків дещо більший в температурному діапазоні за T = 200 К и за T = 380 К, і їхня залежність стає більш пологою з температурою (рис. 4).

Рис. 3. $R_{321} = f(T)$ для Bi_2Te_3p -типу (1), легованого Sn (2), зі заміщенням Sb \rightarrow Bi (3, 4) i

зі заміщенням Se → Te (5, 6); світлий символ – без Sn, темний символ – легований Sn.

2.4. Електропровідність σ (рухливість дірок) і коефіцієнт Нернста-Эттингсгаузена *Q_e/k*₀ (*p*-тип)

Ми спостерігали значний спад електропровідності σ (рухливості дірок) і рухливості Нернста.

Puc. 5. $\sigma_{11} = f(T)$ (a), $Q_{e'}/k_0 = f(T)$ (б) для Bi_2Te_3p -типу (1), легованого Sn (2), із заміщенням Sb → Bi (3, 4) і із заміщенням Se → Te (5, 6); світлий символ – без Sn, темний символ – легований Sn.

2.5. *п*-тип. $Bi_2Te_{3-x}Se_x$ (x = 0.06; 0.12)

Легування оловом не змінює характеру температурних залежностей коефіцієнтів переносу σ_{11} , R_{321} , S_{11} у кристалах *n*-типу, за винятком сильного зниження рухливості Нернста і її анізотропії.

3. Обговорення й комп'ютерне моделювання

Щоб розв'язати проблему впливу резонансних станів на концентрацію носіїв (дірок), пов'язану із групою дефектів кристалів у сполуках $A^V B^{VI}$, ми використовували той же метод, що й для твердого розчину на основі *PbTe* [7].

Хімічний потенціал дірок µ, вимірюваний від вершини валентної зони, можна знайти з умови мінімуму термодинамічного потенціалу –

$$\Phi = H_{v}n_{v} - kTn_{v}(\ln N/n_{v} + 1) + \Phi_{e}, \qquad (1)$$

де n_v – концентрація вакансій, N – концентрація вузлів у металевій підградці, а H_v – ентальпія утворення однієї вакансії, пов'язана з переносом двох електронів від дна зони провідності до цієї вакансії.

Термодинамічний потенціал електронів Φ_e , диференційований по спільній густині електронів n_e (тобто, з густиною електронів у зоні провідності, валентній зоні й домішкових центрах) дає хімічний потенціал μ . Оскільки кожна металева вакансія поглинає два електрони, звідси випливає, що

$$\partial n_e / \partial n_v = 2$$
, що дає $\partial \Phi_e / \partial n_v = 2\mu$. (2)

Диференціюючи рівняння (1) по *n_v* і прирівнюючи похідну до нуля, одержимо рівняння для µ, розв'язок якого можна подати у вигляді

$$\mu^* = H_{\nu}^* / 2 + 1 / 2 \cdot \ln(n_{\nu} / N).$$
(3)

Ми припустили, як відзначено в [8], що концентрацію вільних носіїв (дірок) можна оцінити як $[h] = [Bi'Te] - 2[V^{..}Te]$. Концентрація вільних носіїв заряду в нелегованому телуриді вісмуту може бути виражена за допомогою наступного відношення:

$$[h^{\cdot}] = N_{AS} - N_{V} = k_{1} [Bi_{Bi}] / 2 \exp(-E_{AS} / k_{B}T_{m}) - 2 [Te_{Te}] \exp(-E_{V} / k_{B}T_{m}), \qquad (4)$$

де $k_1 \sim 1.2$ – статистичний параметр, що відноситься до описання утворення одного антиструктурного дефекту в Bi_2Te_3 . E_{AS} і E_V означають енергію утворення антиструктурних дефектів. $V^{..}Te$ – вакансії в підгратці телуру, k_B – постійна Больцмана, T_m – точка плавлення, $[Bi_{Bi}]$ – число атомів Bi на 1 м³, $[Te_{Te}]$ – число атомів Te на 1 м³, N_{AS} – концентрація антиструктурних дефектів, N_V – концентрація вакансій Te.

Рівняння електронейтральності має вигляд

$$N_{Sn} - n_{Sn} + [Bi'_{Te}] - 2[V_{Te}] = p + n,$$
(5)

де N_{Sn} – концентрація домішкових атомів Sn, n_{Sn} – густина електронів на домішкових рівнях, p і *n*-густина дірок і електронів відповідно.

Якщо припустити, що домішкова зона має два стани на атом, тоді випливає, що

$$n_{Sn} = 2N_{Sn} / [1 + \exp(\varepsilon_{i}^{*} - \mu^{*})],$$

де ε_{i}^{*} – положення домішкового рівня щодо вершини валентної зони.

Якщо густину вільних носіїв виразити через інтеграли Фермі F_{1/2}, знаходимо

$$N_{c}F_{1/2}(\mu^{*}) - N_{v}F_{1/2}(\mu^{*} - \varepsilon_{g}) = N_{Sn}' + [N_{imp}], \qquad (6)$$

де N_c, N_v – ефективні густини станів у зоні провідності й валентній зоні;

$$N_{Sn}' = N_{Sn} \left[1 - \exp\left(\varepsilon_{i}^{*} - \mu^{*}\right) \right] / \left[1 + \exp\left(\varepsilon_{i}^{*} - \mu^{*}\right) \right],$$

є_д – ширина забороненої енергетичної зони між зоною провідності й валентною зоною,

$$N_{imp} = N_{Sn}'' + E_{AS} - E_V,$$

 N_{Sn}'' – частина атомів *Sn*, поміщених у положення Te^{II} , де вони віддають дірки й не створюють резонансних рівнів.

Чисельно ми розв'язали рівняння для рівноважної концентрації вакансій і антиструктурних дефектів за температури розплаву T_m за рахунок мінімізації термодинамічного потенціалу. Потім ми розв'язали рівняння електронейтральності (6) для (n-p) за температури вимірювання, вважаючи, що кількість вакансій і антиструктурних дефектів не залежить від температури.

Рівняння електронейтральності (6) було розв'язано чисельно за наступних допущень:

 $e_i = 0.015 \text{ eB}; N_{Sn} = [0, 2.4] \cdot 10^{19}; e_{g0} = 0.2 \text{ eB}; \alpha = -1.5 \cdot 10^{-5}; k = 0.86 \cdot 10^{-4}$

Домішковий рівень розташований у валентній зоні:

 $e_g^* = (e_{g0} + \alpha \cdot T)/(k_0 \cdot T); e_c = 0.02 \text{ eB}; m_{dn1}^* = 0.35; m_{dn2}^* = 1; m_{dn} = 0.8; m_{dp} = 0.66$

Результати комп'ютерних розрахунків залежності (*n-p*) від *N_{imp}* показано на рис. 8.

Ми бачимо дію резонансного рівня ϵ_i^* на концентрацію дірок і електронів, яка пов'язана з положенням домішкового рівня щодо вершини валентної зони й рівня Фермі.

Можна спостерігати різний вплив резонансного рівня ε_i^* на рівень Фермі для *p*- і *n*-типу, коли він розташований у валентній зоні. На залежності рівня Фермі від концентрації акцепторів $N_A \in M'$ який початковий спад з ростом числа атомів *Sn*. Це означає, що рівень Фермі менше залежить від N_A , уведеної в зразки. Характер залежності рівня Фермі від концентрації донорів N_D такий же, як за легування звичайною акцепторною домішкою.

Рис. 7. Залежність різниці $p-n = f(N_{imp})$ від концентрації домішки (N_{imp}) за різних величин N_{Sn} (1-5): (0, 1.2, 3, 4.2, 6)·10¹⁹ см⁻³.

Рис. 8. Залежності рівня Фермі (μ^*) від концентрації домішки (N_{imp} : N_A , N_D). Номера кривих для різних величин N_{Sn} (1 – 5): (0, 1.2, 3, 4.2, 6)·10¹⁹ см⁻³. Положення рівня домішки Sn $\varepsilon_i = 0.02$ еВ щодо вершини валентної зони.

З рис. 9 *а* видно, що залежності *S* від концентрації домішок змінюються за легування атомами *Sn*. Вони стають більш пологими для зразків *n*- і *p*-типу в діапазоні концентрації, яка зазвичай використовується в термоелектричних пристроях, саме за $N_{imp} = (0.8 \div 3) \cdot 10^{19}$ см⁻³.

Рис. 9 а. Чисельні розрахунки $S = f(N_{imp})$ показано в різній шкалі (+ $N_{imp} = N_{acc}$; - $N_{imp} = N_d$): 1, 2 – p-mun; 3, 4 – n-mun. 1, 3 – без Sn; 2, 4 – $N_{sn} = 2$, 4·10¹⁹ см⁻³.

Нами використано як свої експериментальні дані, так і результати комп'ютерного моделювання для числової оцінки концентрації щільності електронів на розподілі коефіцієнта Зеєбека *n*-типу. Застосовано формулу з [9] –

$$\Lambda_{e\phi} = \Lambda(\langle n \rangle) \left[1 + g \frac{\langle (\delta n)^2 \rangle}{\langle n \rangle^2} \right],$$

де $\Lambda = S$, g – показник ступеня в залежності S від концентрації електронів (дірок): $S \sim n^g$. g = 0.4для зразків без Sn, а g = 0.25 для зразків, легованих Sn. Параметр g для різних твердих розчинів було знайдено нами експериментально й шляхом розрахунків. Ми одержали наступні значення для p-типу: $\Delta N/N \approx 15\%$, $\Delta S/S \approx 5\%$ для зразків без Sn і $\Delta N/N \approx 6\%$ і $\Delta S/S \approx 2\%$.

Результати комп'ютерних розрахунків S_{11} і R_{321} залежно від температури представлено на рис. 10, 11.

Рис. 10. Температурні залежності коефіцієнта Зеєбека S₁₁ для зразків легованих Sn є більш пологими, ніж для нелегованих зразків.

Рис. 11. Температурні залежності коефіцієнта Хола R₃₂₁ змінюються від «традиційних» для нелегованого твердого розчину до зразків, що різко знижуються з підвищенням температури для, легованих Sn.

Комп'ютерне моделювання коефіцієнтів Зеєбека й Холла для твердого розчину p-типу показує зміни температурних залежностей. Вони підтверджують сильний вплив резонансних станів на S(T) і R(T) для p-типу.

Отже, наші розрахунки підтверджують концепцію впливу станів Sn, розташованих на фоні дозволеного спектра валентної зони для твердого розчину *p*-типу. Але зростання однорідності кристалів *n*-типу, легованих Sn, має інше пояснення. За допомогою рентгенівської фотоелектронної спектроскопії [10] було показано, що атоми Sn, включені в гратку $Bi_2Te_{2.85}Se_{0.15}$, взаємодіють із атомами Bi і Te. Вони перерозподіляють густину електронних станів у валентній зоні, вони змінюють енергії зв'язку й хімічні зсуви внутрішніх рівнів. Ця особливість енергетичного спектра впливає на об'ємний розподіл легуючих дефектів. Їхня кількість зменшується, що призводить до високої електричної однорідності.

Висновки

Результати, отримані в пропонованій роботі щодо впливу домішки Sn на електричну однорідність монокристалів Bi_2Te_3 і $Bi_2Te_{3-y}Se_y$, свідчать на користь значного впливу домішкових станів Sn, розташованих у валентній зоні, на термоелектричні властивості кристалів p- і n-типу.

Атоми Sn, введені в гратку $Bi_2Te_{2.85}Se_{0.15}$, перерозподіляють густину електронних станів у валентній зоні, змінюють енергії зв'язку й хімічні зсуви внутрішніх рівнів. Ця особливість енергетичного спектра впливає на об'ємний розподіл легуючих дефектів. Їхня кількість зменшується, що призводить до високої електричної однорідності як *p*-типу, так і *n*-типу.

Термоелектричні параметри кристалів *n*-типу покращені й досягають значення

$$Z = 3.3 \cdot 10^{-3} \,\mathrm{K}^{-1}$$
.

Складена комп'ютерна програма й чисельні результати, отримані в цій роботі, дають можливість одержати кількісну оцінку впливу різних домішкових атомів на концентрацію дірок і електронів. Розрахунки підтверджують правильність фізичної моделі, обраної для розгляду в цій роботі. Чисельні результати добре узгоджуються з експериментальними даними.

Література

- 1. V.A. Kulbachinskii, M. Inoue, M. Sasaki, H. Negishi, W.X. Gao, K. Takase, Y. Giman, J. Horak and P. Lostak, *Phys. Rev. B* 50, 16921 (1994).
- 2. Житинская М.К. Особенности легирования *Bi*₂*Te*₃ примесью *Sn* / М.К. Житинская, С.А. Немов, Т.Е. Свечникова // Физика твердого тела. – 1998. – 40. – 1428.
- 3. Влияние резонансных состояний *Sn* на электрическую однородность монокристаллов *Bi*₂*Te*₃ / М.К. Житинская, С.А. Немов, Т.Е. Свечникова [и др.] // ФТП. 34. С. 1363.
- Рентгеновская фотоэлектронная спектроскопия и рентгеновский микроанализ монокристаллов на основе теллурида висмута / И.В. Гасенкова, А. Чубаренко, Е.А. Тявловская [и др.] // ФТП. – 2003. – 37 (6). – С. 661.
- 5. Свечникова Т.Е. Легирование твердого раствора *Bi*₂*Te*_{2.85}*Se*_{0.15} германием / Т.Е. Свечникова, С.Н. Чижевская, Н.М. Максимова // Неорганические материалы. 1994. 30, С. 161.
- D. Platzek, G. Karpinski, C. Drasar, E. Miller Seebeck Scanning Microprobe for Thermoelectric FGM Conf. on Thermoelectrics (ICT2003), La GrandeMotte, France, IEEE, Piscataway 2004, p. 528 – 531.
- 7. Самокомпенсация электроактивных примесей собственными дефектами в твердых растворах *Pb*_{0.8}*Sn*_{0.2}*Te* / С.А. Немов, Ю.И. Равич, М.К. Житинская [и др.] // ФТП. − 1992. − 26 (8). − С. 839.
- 8. Karamazov S., Lostak P., Horak J., and Kuzel R., Phys.Stat.Sol.(a), 148, 229(1995).
- 9. Житинская М.К. Влияние флуктуации концентрации носителей тока на величины измеряемых кинетических коэффициентов / М.К. Житинская // Известия вузов. Физика. 1985. 4.
- 10. Перераспределение электронной плотности в *Bi*₂*Te*₃, легированном *Sn* / И.В. Гасенкова, М.К. Житинская, С.А. Немов [и др.] // Физика твердого тела. 1999. 41 (11). С. 1805.

Надійшла до редакції 10.05.2011.