УДК 621.362.2

Вихор Л.М., Михайловський В.Я., Білинський-Слотило В.Р.

Інститут термоелектрики НАН і МОН України вул. Науки, 1, Чернівці, 58029, Україна

СЕКЦІЙНІ ТА КАСКАДНІ СТРУКТУРИ НА ОСНОВІ PbTe/Zn₄Sb₃ ДЛЯ ТЕРМОЕЛЕКТРИЧНИХ ГЕНЕРАТОРНИХ МОДУЛІВ

Подано результати проектування секційних термоелектричних модулів, модулів на основі функціонально-градієнтних матеріалів (ФГМ), а також каскадних структур з матеріалів на основі PbTe/Zn₄Sb₃ для використання у термоелектричних перетворювачах енергії, рівень температур гарячої сторони яких досягає ~ 780 К. **Ключові слова:** генераторні модулі, рекуперація тепла, перетворювачі енергії.

The results of simulation of sectional thermoelectric modules, functionally grades materials (FGM) based modules, as well as stage structures from $PbTe/Zn_4Sb_3$ -based materials for thermoelectric energy converters the hot temperature of which are ~780 K are presented. **Keywords:** generator modules, heat recovery, energy converters.

Вступ

Серед термоелектричних матеріалів, що використовуються для створення генераторних модулів на рівні гарячих температур 775 – 875 К, традиційним є матеріал на основі *PbTe* [1]. Наявність у складі цього матеріалу свинцю і телуру на нинішньому етапі розвитку науки і техніки не є обмежуючим чинником його масового застосування, зокрема для рекуперації відходів тепла автотранспорту, промисловості та ін. Однак на відміну від *n-PbTe*, *p*-тип має низьку механічну міцність і нестабільні параметри, особливо за підвищених температурах [2]. Найчастіше альтернативою *p-PbTe* є *GeTe-AgSbTe* [3-5], але, беручи до уваги світові запаси і вартість вихідних елементів, наведених у таблиці 1 [6], слід обмежувати використання *Ag*, *Ge* та *Te* як основних компонентів для створення термоелектричних перетворювачів енергії.

<u>Таблиця 1</u>

Вартість, об'єми виробництва та світові запаси компонентів, які використовуються для створення середньотемпературних термоелектричних матеріалів

Матеріал Характеристики	Pb	Те	Ag	Ge	Sb	Zn
Ціна (2011р.), \$/кг	2.73	360	1109	1400	15.1	2.34
Виробництво (2011 р.), 1000 т	4.5	0.12	23.8	118	169	12.4
Світові запаси, 1000 т	85	24	530	>500	1800	250

Впродовж останніх років рядом дослідників було отримано низку термоелектричних матеріалів з потенційно високими робочими характеристиками [7-10]. Серед них перспективним є

 β -*Zn*₄*Sb*₃, який має високу ефективність (*ZT* = 1.2 – 1.4 за 675 К) за достатньо низької собівартості. Перелічені вище чинники підтверджують можливість використання матеріалу β -*Zn*₄*Sb*₃ які вітки *p*-типу провідності для середньотемпературних термоелектричних модулів.

Мета пропонованої роботи – проектування й оцінка ефективності секційних, каскадних модулів та модулів з ФГМ на основі *PbTe/Zn₄Sb*₃, а також оптимізація таких структур для досягнення максимальної ефективності модулів.

Проектування секційних термоелектричних модулів та модулів з ФГМ

Розрахунок і проектування модулів здійснювалось з використанням методів теорії оптимального керування [11] та експериментально виміряних концентраційно-температурних залежностей параметрів α , σ , κ зразків *PbTe n*-типу провідності, легованих йодом [12] та європієм [13], а також зразків *p*-типу провідності – $Zn_{3.96+x}Cd_{0.04}Sb_3$ [14] та ($Zn_{1-x}Cd_x)_4Sb_3$ [15]. Такі залежності для кращих зразків з різним ступенем легування, різним складом й відповідно різною концентрацією носіїв струму наведено на рис. 1, 2.

Рис. 1. Температурні залежності термоелектричних параметрів матеріалів п-типу провідності на основі PbTe:
а) PbTe+x мол.% PbI₂ (1 − x = 0.01; 2 − x = 0.03; 3 − x = 0.055; 4 − x = 0.1) [12];
б) PbTe+x % Eu (1 − x = 1; 2 − x = 2; 3 − x = 3) [13].

Рис. 2. Температурні залежності термоелектричних параметрів матеріалів р-типу провідності на основі ZnSb:

a) $Zn_{3.96+x}Cd_{0.04}Sb_3$ (1 - x = -0.05; 2 - x = 0; 3 - x = 0.05; 4 - x = 0.1) [14]; 6) $(Zn_{1-x}Cd_x)_4Sb_3$ (1 - x = 0; 2 - x = 0.005; 3 - x = 0.01; 4 - x = 0.015) [15].

Показані на рис. 1, 2 температурні залежності апроксимувалися двовимірними поліномами у вигляді $\alpha^{n,p} = \alpha^{n,p}(x_0^{n,p}, T), \sigma^{n,p} = \sigma^{n,p}(x_0^{n,p}, T), \kappa^{n,p} = \kappa^{n,p}(x_0^{n,p}, T)$. Коефіцієнти поліномів вводилися в комп'ютерну програму як вхідні дані для проектування термоелектричних модулів. Позначення віток модулів з таких матеріалів показано в таблиці 2.

Таблиця 2

митерияль на основі 1 012/21/4503						
Позначення	Вітка <i>п</i> -типу	Позначення	Вітка р-типу			
S1	<i>PbTe</i> < <i>x</i> мол.% <i>PbI</i> ₂ > (<i>x</i> = 0.01 – 0.1) [12]	S2	$Zn_{3.96+x}Cd_{0.04}Sb_3$ (x = -0.05 - 0.1) [14]			
83	PbTe < x % Eu > (x = 1 - 3) [13]	S4	$(Zn_{1-x}Cd_x)_4Sb_3$ (x = 0 - 0.015) [15]			

Позначення віток генераторних модулів з термоелектричних матеріалів на основі PbTe/Zn₄Sb₃

Розраховані в режимі максимального ККД оптимальні енергетичні характеристики (струм *I*, напруга *U*, потужність *P*, ККД η) одно- та двосекційних модулів, а також модулів з ФГМ, що містять 32 термоелементи (висота віток 5.6 мм, площа поперечного перерізу віток $4 \times 4 \text{ мм}^2$) наведено в таблиці 3. Величини контактних опорів у розрахунках приймались рівними $5 \cdot 10^{-5} \text{ Ом} \cdot \text{см}^2$. Оптимізація проводилась шляхом визначення таких концентрацій домішок у матеріалах кожної секції, за яких ККД термоелемента досягає найбільшого значення, з урахуванням при цьому оптимальних густин струму в його вітках та висоти секцій.

<u>Таблиця 3</u>

Позначення модулів		Оптимальні параметри матеріалів віток (секцій)	<i>l</i> _{віток} (<i>l</i> _{сек}), MM	<i>Р</i> , Вт	I, A	<i>U</i> , B	η, %	
Односек-	Вітка <i>п</i> -типу		<i>x</i> = 0.02	5.6				
ційний (S1-S2) Вітка <i>р</i> -типу		x = 0.062	5.6	11	3.35	3.28	7.6	
	Вітка холодна		<i>x</i> = 0.01	3.2				
Двосекційний (S1-S2)	<i>п</i> -типу Вітка	гаряча	x = 0.064	2.4	25.8 7.62	762	3.39	14.65
		холодна	x = -0.048	2.4	23.8	7.02		14.05
	р-типу	гаряча	x = 0.09	3.2				
Модуль з	Вітка	<i>п-</i> типу		5.6				
ΦΓΜ (S1-S2)	Вітка	<i>р-</i> типу	рис. 3 а	5.6	23.5	1, A 0, B 3.35 3.28 7.62 3.39 7.34 3.2 3.125 3.39 5.47 3.52 5.6 3.31 1.64 3.32 5.49 3.1 6.13 3.1 1.72 3.18 4.5 3.17	3.2	15.52
Односек-	Вітка	. <i>п-</i> типу	<i>x</i> = 0.019	5.6				
ційний (S1-S4)	Вітка	р-типу	x = 0.004	5.6	10.59	3.125	3.39	7.47
	Вітка	холодна	x = 0.01	3.3				
Двосекційний	п-типу	гаряча	x = 0.059	2.3	19.26	5.47	3.52 3.31 3.32	12.25
(S1-S4)	Вітка	холодна	x = 0.0045	2.3				
	<i>р</i> -типу	гаряча	x = 0.0075	3.3				
Модуль з ФГМ	вітка <i>п</i> -типу		рис. 3 б	5.6	18.5	5.6	3.31	14.04
(S1-S4) Вітка <i>р</i> -типу		<i>р-</i> типу	P	5.6				
Односек-	Вітка <i>п-</i> типу		<i>x</i> = 1.65	5.6				
ційний (S3-S2)	Вітка	<i>р-</i> типу	x = -0.048	5.6	5.43	1.64	3.32	6.2
	Вітка	холодна	<i>x</i> = 1.1	2.3				14.5
Двосекційний	<i>п</i> -типу	гаряча	<i>x</i> = 2.8	3.3	17.04	5 40	2.1	
(\$3-\$2)	Вітка	холодна	x = -0.03	3.3	17.04	5.49	5.1	
	р-типу	гаряча	<i>x</i> = 0.03	2.3				
Модуль з ФГМ	Вітка	<i>п</i> -типу	рис Зв	5.6	19 613	6.13 3.1	15.49	
(\$3-\$2)	Вітка <i>р-</i> типу		F	5.6				
Односек-	Вітка <i>п-</i> типу		<i>x</i> = 1.73	5.6		1.72	3.18	6.01
ційний (S3-S4)	Вітка <i>р-</i> типу		x = 0.0063	5.6	5.47			
Двосекційний (S3-S4)	Вітка <i>п</i> -типу	холодна	<i>x</i> = 1.2	2				
		гаряча	<i>x</i> = 2.43	3.6 14.2	15 217	2 17	12.67	
	Вітка	холодна	x = 0.006	3.6	14.3	4.3	3.17	12.07
	р-типу гаряча		x = 0.0129	2				
Модуль з	Вітка <i>п-</i> типу		рис. 3 <u>г</u>	5.6	15	1 01	3.1	12 00
(S3-S4)	Вітка <i>р</i> -типу			5.6	13	4.04	3.1	13.88

Характеристики генераторних модулів з матеріалів на основі PbTe/Zn₄Sb₃ для робочого діапазону температур 323 – 773 К

Аналіз отриманих даних показує, що односекційні модулі *S1-S2* та *S1-S4* мають співмірні ефективності ($\eta \approx 7.5 - 7.6$ %), однак з переходом до двох секцій ефективність S1-S2 становить $\eta = 14.65$ % в той час, як ефективність модуля S1-S4 суттєво нижча $\eta = 12.25$ %. Аналогічні результати отримано для модулів S3-S2 та S3-S4. При використанні за *n*-вітку *PbTe* легованого європієм (S3) ефективність односекційних модулів знижується ($\eta \approx 6$ %), а двосекційних – залишається практично на тому ж рівні, що й при виборі за *n*-вітку телуриду свинцю легованого йодом (S1).

Рис. 3. Розподіл вмісту домішок (складу) у вітках з ФГМ для генераторних модулів: a) S1-S2; б) S1-S4; в) S3-S2; г) S3-S4.

Отже, при виборі матеріалу для *n*- вітки перевагу слід віддати *PbTe* легованому йодом (S1), а для *p*-вітки провідності – $Zn_{3.96+x}Cd_{0.04}Sb_3$ (S2). Використовуючи матеріали з певним розподілом концентрації домішок вздовж висоти віток (рис. 3), можна отримати модулі, які характеризуються вищими значеннями ефективності, ніж їх двосекційні аналоги (табл. 3).

Порівняння досліджених секційних структур на основі $PbTe/Zn_4Sb_3$ з модулями на основі *n*- і *p-PbTe* [16] показує, що їхні ефективності співмірні, а головною перевагою β - Zn_4Sb_3 є суттєво нижча вартість і кращі механічні властивості.

Каскадні генераторні модулі з матеріалів на основі PbTe/Zn₄Sb₃

Вибір матеріалів віток для кожного каскаду модулів проводився за допомогою методів теорії оптимального керування [11] таким чином, що холодний і гарячий каскади характеризувалися максимальними ККД в температурному інтервалі 323 - 523 К і 523 - 773 К відповідно. Вхідними даними для оптимізації були експериментально виміряні температурні залежності термоелектричних параметрів (α , σ і κ) матеріалів *n*-*PbTe*, легованих йодом [12] і *p*-*Zn*_{3.96+x}*Cd*_{0.04}*Sb*₃ [14] з різним ступенем легування (рис. 1 а, 2 а), які для секційних модулів показали найкращі результати. Оптимальні матеріали віток двокаскадного модуля наведено в таблиці 4.

<u>Таблиця 4</u>

Позначення каскадів і віток		Матеріал вітки	Оптимальна концентрація			
холодний	<i>п-</i> тип	<i>PbTe+x</i> мол.% <i>PbI</i> ₂	<i>x</i> = 0.01			
	р-тип	$Zn_{3.96+x}Cd_{0.04}Sb_3$	<i>x</i> = -0.048			
гарячий	<i>п-</i> тип	$PbTe+x$ мол.% PbI_2	x = 0.059			
	р-тип	$Zn_{3.96+x}Cd_{0.04}Sb_3$	<i>x</i> = 0.09			

Оптимальні матеріали двокаскадного модуля

З використанням оптимальних матеріалів у вітках *n*- і *p*-типів проведені розрахунки конструкцій двокаскадних модулів (табл. 5) за умови послідовного з'єднання холодного і гарячого каскадів, а також теплового та електричного узгодження каскадів. Теплоприймальна та тепловіддаюча поверхні модулів однакові і становлять 40 × 40 мм².

<u>Таблиця 5</u>

No		Значення параметра				
л/п	Параметр	Модуль №1	Модуль №2	Модуль №3		
1.	Площа перерізу віток холодного і гарячого каскадів, мм ²	4×4	1.8 × 4.3	1.5 × 1.5		
2.	Висота вітки холодного каскаду, мм	5.1	2.9	1.8		
3.	Висота вітки гарячого каскаду, мм	5.8	3.2	2		
4.	Кількість пар віток холодного і гарячого каскадів	32	48	160		
5.	Електрична потужність Р, Вт	7.62	9.78	14.79		
6.	Напруга U, B	2.75	4.1	6.7		
7.	Струм <i>I</i> , А	2.77	2.38	2.2		
8.	ККД ң, %	13.18	13.07	12.91		
9.	Кількість термоелектричного матеріалу, см ³	5.58	2.27	1.52		

Розраховані параметри 2-каскадних генераторних модулів з матеріалів на основі PbTe/Zn₄Sb₃ при $T_h = 773$ K, $T_c = 323$ K

З наведених у таблиці 5 даних видно, що зі збільшенням розмірів термоелементів двокаскадного модуля досягається краща ефективність за суттєво меншої електричної потужності (модуль № 1). Для створення двокаскадного модуля з максимальною потужністю на даний рівень робочих температур перевагу слід віддати конструкції модуля № 3. При цьому кількість термоелектричного матеріалу, яка необхідна для створення модуля, в 1.5 раза менша порівняно з модулем № 2 і в 3.6 раза менша порівняно з модулем № 1.

Залежності ефективності та електричної потужності двокаскадних модулів від температури гарячої сторони наведено на рис. 4.

Рис. 4. Залежності ефективності (а) та електричної потужності (б) двокаскадних модулів на основі PbTe/Zn₄Sb₃ від температури гарячої сторони за T_c=323 К.

Як видно з рис. 4, в діапазоні температур гарячої сторони 673 – 773 К залежності ефективностей від температури гарячої сторони для модулів №1 – 3 аналогічні, ККД збільшується від ~ 11 до ~ 13 %, електрична потужність модуля № 3 значно вища порівняно з двома іншими конструкціями (~ в 2 рази).

Висновки

З використанням методів теорії оптимального керування здійснено проектування секційних та каскадних модулів з матеріалів на основі *PbTe/Zn₄Sb₃*. Визначено оптимальні концентрації легуючих домішок для матеріалів віток, оптимальні геометричні параметри віток, використанням яких забезпечується досягнення максимальної ефективності термоелектричних генераторних модулів у діапазоні температур 323 – 773 К.

Показано, що ефективність односекційних модулів з матеріалів $PbTe/Zn_4Sb_3$ становить $\eta \approx 6-7.5$ %, двосекційних – $\eta \approx 12.5 - 14.5$ %, модулів з ФГМ – $\eta \approx 14 - 15.5$ %, а каскадних структур – $\eta \approx 13$ %. За визначених геометричних параметрів каскадних модулів оптимальна міжкаскадна температура знаходиться в межах 495-525 К.

Термоелектричні структури на основі $n-PbTe/p-Zn_4Sb_3$ і n-PbTe/p-PbTe характеризуються однаковою ефективністю. Однак порівняно з $p-PbTe p-Zn_4Sb_3$ має суттєво нижчу собівартість і кращі механічні властивості, що в цілому надає йому перевагу у виборі для генераторних модулів термоелектричного матеріалу середньотемпературного діапазону.

Література

- 1. Dughaish Z.H. Lead telluride as a thermoelectric material for thermoelectric power generation / Z.H. Dughaish // Physica B. Vol. 322. 2002. P.205-223.
- 2. Сабо Е.П. Технология халькогенидных термоэлементов. Физические основы. Гл. 1. Структура и свойства материалов / Е.П. Сабо // Термоэлектричество. №3. 2000. С.30-46.
- Natural Microstructure and Thermoelectric Performance of (GeTe)₈₀(Ag_ySb_{2-y}Te_{3-y})₂₀ /S.H. Yang, T.J. Zhu, J.J. Shen, [etc] // Journal of Electronic Materials. 39(9). 2010. P.2127-2131.
- Electron Transport Properties of Rapidly Solidified (GeTe)_x(AgSbTe₂)_{1-x} Pseudobinary Thermoelectric Compounds / B.S. Kim, I.H. Kim, J.K. Lee, [etc] // Electronic Materials Letters. Vol.6, No 4. 2010. P.181-185.
- Skrabek E.A., Trimmer D.S. Properties of the General TAGS System. CRC Handbook of Thermoelectrics // E.A. Skrabek // edited by D.M. Rowe. 1995. P.267-275.

- 6. Mineral commodity summaries 2012 / U.S. Geological Survey. Reston: Virginia, 2012. 198 p.
- Singh D.J. Electronic Transport in Old and New Thermoelectric Materials / D.J. Singh // Science of Advanced Materials. Vol.3. 2011. P.561-570.
- 8. High-performance nanostructured thermoelectric materials / J.-F. Li, W.-Sh. Liu [etc] // NPG Asia Mater. Vol.2, No.4. 2010. P.152-158.
- 9. Tritt T.M. Thermoelectric Phenomena, Materials, and Applications / T.M. Tritt // Annual Review of Materials Research. Vol.41. 2011. P.433-448.
- Snyder G.J. Complex thermoelectric materials / G.J. Snyder, E.s. Toberer // Nature Materials. Vol.7. 2008. P.105-114.
- 11. Анатычук Л.И. Термоэлектричество. Функционально-градиентные термоэлектрические материалы. // Л.И. Анатычук, Л.Н. Вихор // Том IV. – Черновцы: Букрек, 2012. – 180 с.
- 12. Шперун В.М.Термоелектрика телуриду свинцю та його аналогів. / В.М. Шперун, Д.М. Фреїк, Р.І.Запухляк // – Івано-Франківськ: Плай, 2000. – 250 с.
- Kong H. Thermoelectric Property Studies on Lead Chalcogenides, Double-filled Cobalt Tri-Antimonide and Rare Earth-Ruthenium-Germanium. // A dissertation of Doctor of Philosophy (Physics). The University of Michigan. 2008. 116 p.
- 14. Wang Sh., Fu F., She X., Zheng G., Li H., Tang X. Optimizing thermoelectric performance of Cd-doped β-Zn₄Sb₃ through self-adjusting carrier concentration // Intermetallics. Vol.19, №12. 2011. P.1823-1830.
- Wang Sh. Enhancement of the thermoelectric performance of β-Zn₄Sb₃ by in situ nanostructures and minute Cd-doping / Sh Wang, Y. Li, W. Xie, X. Tang // Acta Materialia. Vol.59. 2011. P.4805-4817.
- Струтинська Л.Т.Комп'ютерне проектування секційних термоелектричних модулів на основі PbTe / Л.Т. Струтинська, В.Р. Білинський – Слотило, В.Я. Михайловський // Термоелектрика. №3. 2012.

Надійшла до редакції 20.12.2012.