УДК 621.362.2

Білинський-Слотило В.Р., Вихор Л.М., Михайловський В.Я., Мочернюк Р.М., Семізоров О.Ф.

Інститут термоелектрики НАН і МОН України вул. Науки, 1, Чернівці, 58029, Україна

ПІДВИЩЕННЯ ЕФЕКТИВНОСТІ ГЕНЕРАТОРНИХ МОДУЛІВ НА ОСНОВІ *CoSb* ШЛЯХОМ ВИКОРИСТАННЯ СЕКЦІЙНИХ І КАСКАДНИХ СТРУКТУР

Подано результати комп'ютерного моделювання термоелектричних генераторних модулів з однорідних, секційних та функціонально-градієнтних матеріалів (ФГМ) на основі CoSb. Показано, що ККД модулів з однорідних матеріалів досягає ~8%, двосекційних — ~10 %, модулів з ФГМ — ~11 %. Дослідження характеристик двокаскадних модулів показали, що використання в холодному каскаді матеріалів на основі телуриду вісмуту, а в гарячому — скутерудитів підвищує ефективність термоелектричних перетворювачів до 12 %.

Ключові слова: генераторні модулі, рекуперація тепла, термоелектричні перетворювачі енергії, ФГМ.

Results of computer simulation of thermoelectric generator modules of homogeneous, segmented and functionally-graded materials (FGM) based on CoSb are presented. It is shown that the efficiency of modules made of homogeneous materials reaches ~8%, two-segmented materials -~10 %, FGM – ~11 %. Studies on characteristics of two-stage modules have shown that bismuth telluride materials as the cold stage, and skutterudites as the hot stage improve the efficiency of thermoelectric converters to 12 %.

Key words: generator modules, heat recovery, thermoelectric energy converters, FGM.

Вступ

Теплові відходи промислового виробництва та двигунів внутрішнього згорання є одним із факторів екологічного забруднення навколишнього середовища. Рекуперація цих відходів шляхом прямого перетворення теплової енергії в електричну та повернення її в робочі цикли суттєво покращить екологічну ситуацію. Тому створення ефективних рекуператорів відходів тепла – актуальне економічне та екологічне завдання.

Термоелектричний спосіб прямого перетворення теплової енергії в електричну є достатньо привабливий для утилізації теплових відходів різноманітних промислових теплових установок та двигунів. Відсутність рухомих частин і можливість функціонування в екстремальних умовах забезпечують термоелектричним генераторам енергії високу надійність. Головним чинником, що обмежує широке використання термогенераторів у рекуператорах є низька ефективність перетворення теплової енергії в електричну, зумовлена низьким значенням безрозмірної добротності термоелектричних матеріалів $ZT = \alpha^2 \cdot \sigma \cdot T/\kappa$ (де α – коефіцієнт термоЕРС, T – температура, σ – електропровідність, κ – теплопровідність).

У зв'язку з цим виникає потреба у використанні нових ефективних, дешевих та екологічно чистих матеріалів. Упродовж останнього десятиліття увагу дослідників привертають скутерудити

[1]. Це перспективні матеріали на основі *CoSb* для широкого застосування в термогенераторах, які працюють за температур гарячої сторони до 773 К. Вони характеризуються достатньо високими значеннями коефіцієнтів термоЕРС і електропровідності. Для підвищення їх добротності використовуються два основні технологічні способи [1]: перший грунтується на заповненні порожнин кристалічної гратки матеріалів на основі *CoSb* атомами рідкоземельних елементів шляхом легування; другий спосіб пов'язаний з використанням легування для підвищення розсіювання на точкових дефектах, а також регулювання концентрації носіїв заряду.

Аналіз результатів експериментальних досліджень термоелектричних характеристик скутерудитів [1-9] показує, що для отримання матеріалів *n*-типу провідності найбільш ефективними легуючими домішками для $CoSb_3 \in In$, Ga, Ni, Eu, Te, Se, S [2-6], а для матеріалів *p*-типу провідності з покращеними параметрами легування доцільно проводити відразу декількома елементами, а саме: *Fe* i *Yb*; *Fe*, *Yb* i *La*; *Ca* i *Fe*; *Ca* i *Mn* [7-9].

Мета даного дослідження — оцінка можливості підвищення ефективності генераторних модулів з однорідних, секційних, функціонально-градієнтних і каскадних структур шляхом визначення оптимального рівня легування матеріалів на основі скутерудитів.

Проектування секційних термоелектричних модулів та модулів з ФГМ

Пошук оптимального складу матеріалів на основі *CoSb* для однорідних та секційних віток термоелектричних модулів здійснено з використанням методів теорії оптимального керування [10, 11].

<u>Таблиця 1</u>

Вітка р-типу	$Yb_xFe_2Co_2Sb_{12}$		$Yb_{x}La_{0.85-x}Fe_{2.7}Co_{1.3}Sb_{12}$	
Вітка <i>п</i> -типу	(<i>x</i> =0.4-0.8) [7]		(<i>x</i> =0.17-0.42) [9]	
$Tl_{0,1}In_{x}Co_{4}Sb_{12}$ (x=0.1-0.3) [12]	$x_n = 0.3$	<i>Р</i> =19 Вт	$x_n = 0.3$	<i>Р</i> =22 Вт
	$x_p = 0.65$	η=6.8 %	$x_p = 0.25$	η=8.3 %
	ККД, % 7 6.5 6 5.5 4.5 0.2 5 4.5 0.2 5 0.2 0.2 Xn 0.15 0.10.8 0.7 0.6 Xp		ККД % 8.5 7.5 6.5 6.5 0.25 0.25 0.10 42 0.10 42 0.10 42 0.10 42	
	$x_n = 0.25$	<i>Р</i> =15 Вт	$x_n = 0.25$	<i>Р</i> =18.4 Вт
CoSb _{2.875x} Ge _{0.125} Te _x (x=0.175-0.275) [13]	$x_p = 0.62$	<i>η</i> =5.35 %	$x_p = 0.25$	η=6.75 %
	ККД, % 5.5 4.5 4.5 4.5 4.5 5 4.5 6.2 5 0.2 5 0.2 0.1750.8	0.5 0.7 Xp	ККД, % 7 6.5 6 5.5 4.5 0.25 Xn 0.225 0.2 0.2	0.32 1750.42 0.37 0.32 Xp

Параметри генераторних модулів з однорідних матеріалів на основі $CoSb_3$ при $T_{cap} = 773$ K, $T_{xon} = 323$ K

У розрахунках використано експериментальні залежності термоелектричних параметрів термоЕРС, електропровідності та теплопровідності від температури і концентрації легуючих домішок зразків *n*- та *p*-*CoSb*. Розрахунки зроблено для модулів з наступними параметрами: кількість термоелементів 32 пари, висота віток 5.6 мм, площі поперечних перерізів віток 4х4 мм². Величини контактних опорів приймалися рівними 5·10⁻⁵Ом·см².

Результати розрахунків характеристик термоелектричних модулів з однорідних матеріалів на основі *CoSb* в робочому інтервалі температур 323-773 К показано в табл.1. Наведено оптимальні концентрації легуючих домішок x_n та x_p в матеріалах віток, за яких досягається максимальний ККД η і відповідна потужність *P* модулів та представлено залежності ККД від концентрації домішок у вітках.

Аналіз даних, наведених у табл.1, показує, що залежності ККД модулів від розподілу домішки ітербію у матеріалах для віток *p*-типу провідності, а саме $La_{0.85}Fe_{2.7}Co_{1.3}Sb_{12}$ та $Fe_2Co_2Sb_{12}$, характеризуються плавною зміною, що вказує на незначний вплив концентрації легуючої компоненти вітки *p*-типу на характеристики модулів. Стосовно *n*-вітки, то залежності ККД модулів від концентрації індія в $Tl_{0.1}Co_4Sb_{12}$ характеризуються суттєвим зростанням із збільшенням концентрації легуючої компоненти, в той час як легування телуром *n*- $CoSb_{2.875}Ge_{0.125}$ призводить до появи двох екстремумів.

Максимальний ККД η=8.3 % у модуля з матеріалів *n-Tl*_{0.1}*In*_{0.3}*Co*₄Sb₁₂ / *p-Yb*_{0.25}*La*_{0.6}*Fe*_{2.7}*Co*_{1.3}*Sb*₁₂. Тому саме ці сполуки доцільно використовувати для створення функціонально-градієнтних термоелектричних матеріалів шляхом формування неоднорідного розподілу домішок.

На рис.1 наведено визначені комп'ютерними методами оптимальні розподіли концентрації індію x_n уздовж вітки *n*-типу провідності із $Tl_{0.1}In_xCo_4Sb_{12}$ та концентрації ітербію x_p уздовж вітки *p*-типу із $Yb_xLa_{0.85-x}Fe_{2.7}Co_{1.3}Sb_{12}$.

Рис. 1. Розподіл концентрації легуючих домішок уздовж висоти віток для генераторних модулів з ФГМ на основі n-Tl_{0.1}In_xCo₄Sb₁₂ / p-Yb_xLa_{0.85-x}Fe_{2.7}Co_{1.3}Sb₁₂. x/L=0 відповідає холодній стороні вітки.

Максимальний ККД модуля з оптимальним розподілом легуючих домішок у вітках (рис.1) з перепадом температур 323-773 К досягає 10.6 %, а генерована електрична потужність – 29.7 Вт.

Результати розрахунків модулів з двосекційних віток наведено в табл.2. Визначено оптимальні матеріали кожної секції n- та p-віток, а також їх висоти, за яких досягається максимальний ККД η модулів.

Як для модулів з однорідних матеріалів, так і для двосекційних віток найвищий ККД

досягається з використанням матеріалів $Tl_{0.1}In_xCo_4Sb_{12}$ *п*-типу та $Yb_xLa_{0.85-x}Fe_{2.7}Co_{1.3}Sb_{12}$ *р*-типу провідності (табл.2).

<u>Таблиця 2</u>

ни основі Собоз при $I_{гар} = 775$ К, $I_{xon} = 525$ К							
Вітка р-типу	$Yb_{x}Fe_{2}Co_{2}Sb_{12}$		$Yb_{x}La_{0.85-x}Fe_{2.7}Co_{1.3}Sb_{12}$				
Вітка п-типу	(<i>x</i> =0.4-0.8) [7]		(<i>x</i> =0.17-0.42) [9]				
$Tl_{0.1}In_{x}Co_{4}Sb_{12}$ (x=0.1-0.3) [12]	$x_n^{cap}=0.3$ $x_n^{xon}=0.27$ $x_p^{cap}=0.68$ $x_p^{xon}=0.62$	$\ell_n^{cap}=2.8 \text{ MM}$ $\ell_n^{xon}=2.8 \text{ MM}$ $\ell_p^{cap}=2.8 \text{ MM}$ $\ell_p^{xon}=2.8 \text{ MM}$	$x_n^{cap}=0.295$ $x_n^{xon}=0.27$ $x_p^{cap}=0.25$ $x_p^{xon}=0.218$	$\ell_n^{cap}=2.9 \text{ MM}$ $\ell_n^{xon}=2.7 \text{ MM}$ $\ell_p^{cap}=2.7 \text{ MM}$ $\ell_p^{xon}=2.9 \text{ MM}$			
	$P=27 \text{ Br} \qquad \eta=9.1 \%$		<i>Р</i> =28.8 Вт <i>η</i> =10.3 %				
$CoSb_{2.875-x}Ge_{0.125}Te_{x}$ (x= 0.175-0.275) [13]	$x_n^{2ap}=0.25$ $x_n^{xon}=0.238$ $x_p^{2ap}=0.7$ $x_p^{xon}=0.632$	$\ell_n^{cap}=2.8 \text{ MM}$ $\ell_n^{xon}=2.8 \text{ MM}$ $\ell_p^{cap}=2.8 \text{ MM}$ $\ell_p^{xon}=2.8 \text{ MM}$	$x_n^{zap}=0.25$ $x_n^{xon}=0.24$ $x_p^{zap}=0.234$ $x_p^{xon}=0.202$	$\ell_n^{cap}=2.9 \text{ MM}$ $\ell_n^{xon}=2.7 \text{ MM}$ $\ell_p^{cap}=2.7 \text{ MM}$ $\ell_p^{xon}=2.9 \text{ MM}$			
	<i>Р</i> =22.6 Вт <i>η</i> =7.35 %		<i>Р</i> =24.6 Вт η=8.5 %				

Параметри генераторних модулів з двосекційних	віток
на основі CoSb3 при Т _{эт} = 773 К. Т _{тол} = 323 К	

Дослідження каскадних генераторних модулів

З використанням оптимальних матеріалів, вибір яких для кожного каскаду проводився за допомогою методів теорії оптимального керування таким чином, що холодні і гарячі каскади характеризувалися максимальними ККД в температурному інтервалі 323-523 К і 523-773 К відповідно, розраховано конструкції двокаскадних модулів розміром 40х40 мм² (табл.3) за умови послідовного з'єднання холодного і гарячого каскадів, а також теплової та електричної узгодженості каскадів.

У розрахунках використано експериментальні концентраційно-температурні залежності термоелектричних параметрів матеріалів на основі BiTe [14]. У модулі №1 для обох каскадів вибрано матеріали на основі скутерудитів. У модулях №2 і №3 для низькотемпературного каскаду використано BiTe. У табл. 3 подано оптимальні для кожного з каскадів значення електропровідності σ за 300 К матеріалів на основі BiTe та оптимальні концентрації домішок у скутерудитах, а також розраховані значення потужностей і ККД модулів.

З наведених у табл.З даних видно, що ККД генераторного модуля, в якому для обох каскадів вибрано матеріали на основі *CoSb*, досягає ~10.2 % (модуль №1), що є нижчим показником, ніж при виборі для холодного каскаду матеріалів на основі *BiTe* ($\eta \approx 11.2$ %, модуль №2). Електрична узгодженість каскадів при цьому забезпечується оптимальними значеннями висот термоелементів кожного каскаду. Використання послідовно-паралельного з'єднання термоелементів холодного каскаду (модуль №3) дає можливість підвищити ефективність модуля майже до 12 %.

<u>Таблиця 3</u>

Параметри двокаскадних генераторних модулів з матеріалів
на основі CoSb3 за Т _{гар} = 773 К. Т _{кол} = 323 К

№ п/п	Параметр		Значення параметра			
			Модуль №1	Модуль №2	Модуль №3	
1.	Матеріали віток	Вітка <i>п</i> -типу		$(Bi_2Te_3)_{0.90}(Sb_2Te_3)_{0.05}(Sb_2Se_3)_{0.05},$ легований I_2 , $\sigma_0^n = 1365 \text{ Om}^{-1}\text{cm}^{-1}$		
	холодного каскаду	Вітка <i>р-</i> типу	$I l_{0.1} I m_{0.27} C O_4 S O_{12}$			
2.	Матеріали	Вітка п-типу	$-Yb_{0.196}La_{0.654}Fe_{2.7}-$ $Co_{1.3}Sb_{12}$	$(Bi_2Te_3)_{0.25}(Sb_2Te_3)_{0.72}(Sb_2Se_3)_{0.03},$		
	віток гарячого каскаду	Вітка <i>р-</i> типу		легований <i>Pb</i> , $\sigma_0^{\ p} = 1570 \text{ Om}^{-1} \text{см}^{-1}$		
3.	Площа перерізу віток холодного і гарячого каскадів, мм ²		1.8x4.3			
4.	Висота вітки холодного каскаду, мм		2.9	2.7	3	
5.	Висота вітки гарячого каскаду, мм		3	3.3	3	
6.	Кількість пар віток холодного і гарячого каскадів		48			
7.	Електрична потужність Р, Вт		14.1	13.8	16	
8.	Напруга U, B		4.1	4.4	3.6	
9.	Струм І, А		3.5	3.2	4.4	
10.	ККД η, %		10.2	11.2	11.9	

Залежності ККД та генерованої електричної потужності двокаскадних модулів на основі *Bi*₂*Te*₃*/CoSb*₃ від температури їх гарячої поверхні наведено на рис.2.

Рис. 2. Залежності ККД η (a) та електричної потужності P (б) двокаскадних модулів на основі $Bi_2Te_3/CoSb_3$ від температури їх гарячої поверхні T_{rap} за умови холодної температури $T_{xon}=323$ K.

За умови температури гарячої поверхні 773 К ефективність модуля №3 (η =11.9 %) вища, ніж модуля №2 (η =11.16 %). Із зменшенням температури T_{cap} ККД спадає і за T_{cap} =623 К ККД обох модулів однаковий, а з подальшим зниженням температури гарячої сторони дещо більшу ефективність має модуль №2.

З наведених даних видно, що з використанням для каскадів і секцій аналогічних матеріалів ККД двокаскадних модулів фактично не перевищує ККД модулів з двосекційних віток.

Висновки

Методами комп'ютерного моделювання визначено оптимальні параметри матеріалів для секцій та оптимальні функції неоднорідностей ФГМ, за яких досягається максимальна ефективність термоелектричних генераторних модулів з матеріалів на основі скутерудитів.

ККД модулів в інтервалі робочих температур 323 – 773 К знаходиться в межах 5-8 % для модулів з однорідних матеріалів, 7-10 % для модулів з двосекційних віток і наближається до 11 % для модулів з ФГМ. Використання у модулях на основі *CoSb* замість однорідних матеріалів двохсекційних віток робить можливим збільшити їх ККД в 1.2 – 1.4 раза.

Дослідження каскадних структур показали, що використання в холодному каскаді матеріалів на основі *BiTe*, а в гарячому скутерудитів дає можливість забезпечити ККД термоелектричного перетворення теплової енергії на рівні 11-12 %.

Література

- 1. C.Uher, Skutterudite-Based Thermoelectrics. Thermoelectrics Handbook. Macro to Nano. Edited by D.M.Rowe (CRC Press, 2006), P.34-1–34-13.
- A. Harnwunggmoung, K.Kurosaki, T.Plirdpring, T.Sugahara, Yu.Ohish, H.Muta, and Sh.Yamanaka, Thermoelectric properties of Ga-added CoSb₃ based Skutterudites, J. Applied Physics 110, 013521 – 013521-5 (2011).
- S.-Ch. Ur, Il-H.Kim, Electronic Transport Properties of Ni-doped CoSb₃ Prepared by Hot Pressing, J. Korean Physical Society 55(3), 942-946 (2009).
- Y.Z.Pei, S.Q.Bai, X.Y.Zhao, W.Zhang and L.D.Chen, Thermoelectric Properties of Eu_yCo₄Sb₁₂ Filled Skutterudites, Solid State Sciences 10(10), 1422-1428 (2008).
- 5. B.Duan, P.Zhai, L.Liu, Q.Zhang, and X. Ruan, Beneficial Effect of Se Substitution on Thermoelectric Properties of *Co*₄*Sb*_{119-x}*Te*_x*Se*_{0.1} Skutterudites, J.Solid State Chemistry **193**, 8-12 (2012).
- 6. B.Duan, P.Zhai, L.Liu, and Q.Zhang, Enhanced Thermoelectric Performance in Sulfur-Doped $Co_4Sb_{11.9-x}Te_xS_{0.1}$ Skutterudites, Materials Letters **79**, 69-71 (2012).
- Ch.Zhou, D.Morelli, X.Zhou, G.Wang, and C.Uher, Thermoelectric Properties of *p*-type Yb-filled Skutterudite *Yb_xFe_yCo_{4-y}Sb*₁₂, Intermetallics **19**(10), 1390-1393 (2011).
- 8. K.-H. Park, Il-H. Kim, Thermoelectric Properties of *Ca*-filled *CoSb*₃-based Skutterudites Synthesized by Mechanical Alloying, J. Electronic Materials **40**(5), 493-498 (2011).
- 9. L.Zhou, P.Qiu, C.Uher, X.Shi, and L.Chen, Thermoelectric Properties of p-type Yb_xLa_yFe_{2.7}Co_{1.3}Sb₁₂ Double-Filled Skutterudites, Intermetallics **32**, 209-213 (2013).
- 10. Вихор Л.Н. Комп'ютерне проектування термоелектричних генераторних модулів / Л.Н. Вихор // Термоелектрика. – №2. – 2005. – С.60 – 67.
- 11. Анатычук Л.И. Термоэлектричество. Том IV. Функционально-градиентные термоэлектрические материалы. / Л.И. Анатычук, Л.Н. Вихор //Черновцы: Букрек, 2012. 180 с.
- A.Harnwunggmoung, K.Kurosaki, A.Kosuga, M.Ishimaru, Th.Plirdpring, R.Yimnirun, J.Jutimoosi, S.Rujirawat, Yu.Ohishi, H.Muta, and Sh. Yamanaka, Enhancement of Thermoelectric Properties of *CoSb*₃based Skutterudites by Double Filling of Tl and In, J. Applied Physics **112**, 043509 – 043509-6 (2012).
- X.Su, H.Li, Q.Guo, X.Tang, Q.Zhang, and C.Uher, Structure and Thermoelectric Properties of *Te* and *Ge*doped Skutterudites *CoSb*_{2.875-x}*Ge*_{0.125}*Te*_x, J. Electronic Materials **40**(5), 1286-1291 (2011).
- L.N.Vikhor, L.I.Anatychuk, Generator Modules of Segmented Thermoelements, Energy Conversion and Management 50, 2366-2372 (2009).

Надійшла до редакції 24.01.13